1
|
Hidese R, Ohira T, Sakakibara S, Suzuki T, Shigi N, Fujiwara S. Functional redundancy of ubiquitin-like sulfur-carrier proteins facilitates flexible, efficient sulfur utilization in the primordial archaeon Thermococcus kodakarensis. mBio 2024; 15:e0053424. [PMID: 38975783 PMCID: PMC11323500 DOI: 10.1128/mbio.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Ubiquitin-like proteins (Ubls) in eukaryotes and bacteria mediate sulfur transfer for the biosynthesis of sulfur-containing biomolecules and form conjugates with specific protein targets to regulate their functions. Here, we investigated the functions and physiological importance of Ubls in a hyperthermophilic archaeon by constructing a series of deletion mutants. We found that the Ubls (TK1065, TK1093, and TK2118) in Thermococcus kodakarensis are conjugated to their specific target proteins, and all three are involved in varying degrees in the biosynthesis of sulfur-containing biomolecules such as tungsten cofactor (Wco) and tRNA thiouridines. TK2118 (named UblB) is involved in the biosynthesis of Wco in a glyceraldehyde 3-phosphate:ferredoxin oxidoreductase, which is required for glycolytic growth, whereas TK1093 (named UblA) plays a key role in the efficient thiolation of tRNAs, which contributes to cellular thermotolerance. Intriguingly, in the presence of elemental sulfur (S0) in the culture medium, defective synthesis of these sulfur-containing molecules in Ubl mutants was restored, indicating that T. kodakarensis can use S0 as an alternative sulfur source without Ubls. Our analysis indicates that the Ubl-mediated sulfur-transfer system in T. kodakarensis is important for efficient sulfur assimilation, especially under low S0 conditions, which may allow this organism to survive in a low sulfur environment.IMPORTANCESulfur is a crucial element in living organisms, occurring in various sulfur-containing biomolecules including iron-sulfur clusters, vitamins, and RNA thionucleosides, as well as the amino acids cysteine and methionine. In archaea, the biosynthesis routes and sulfur donors of sulfur-containing biomolecules are largely unknown. Here, we explored the functions of Ubls in the deep-blanched hyperthermophilic archaeon, Thermococcus kodakarensis. We demonstrated functional redundancy of these proteins in the biosynthesis of tungsten cofactor and tRNA thiouridines and the significance of these sulfur-carrier functions, especially in low sulfur environments. We propose that acquisition of a Ubl sulfur-transfer system, in addition to an ancient inorganic sulfur assimilation pathway, enabled the primordial archaeon to advance into lower-sulfur environments and expand their habitable zone.
Collapse
Affiliation(s)
- Ryota Hidese
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satsuki Sakakibara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoki Shigi
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
2
|
Vailionis JL, Zhao W, Zhang K, Rodionov DA, Lipscomb GL, Tanwee TNN, O'Quinn HC, Bing RG, Kelly RM, Adams MWW, Zhang Y. Optimizing Strategies for Bio-Based Ethanol Production Using Genome-Scale Metabolic Modeling of the Hyperthermophilic Archaeon, Pyrococcus furiosus. Appl Environ Microbiol 2023; 89:e0056323. [PMID: 37289085 PMCID: PMC10304669 DOI: 10.1128/aem.00563-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/13/2023] [Indexed: 06/09/2023] Open
Abstract
A genome-scale metabolic model, encompassing a total of 623 genes, 727 reactions, and 865 metabolites, was developed for Pyrococcus furiosus, an archaeon that grows optimally at 100°C by carbohydrate and peptide fermentation. The model uses subsystem-based genome annotation, along with extensive manual curation of 237 gene-reaction associations including those involved in central carbon metabolism, amino acid metabolism, and energy metabolism. The redox and energy balance of P. furiosus was investigated through random sampling of flux distributions in the model during growth on disaccharides. The core energy balance of the model was shown to depend on high acetate production and the coupling of a sodium-dependent ATP synthase and membrane-bound hydrogenase, which generates a sodium gradient in a ferredoxin-dependent manner, aligning with existing understanding of P. furiosus metabolism. The model was utilized to inform genetic engineering designs that favor the production of ethanol over acetate by implementing an NADPH and CO-dependent energy economy. The P. furiosus model is a powerful tool for understanding the relationship between generation of end products and redox/energy balance at a systems-level that will aid in the design of optimal engineering strategies for production of bio-based chemicals and fuels. IMPORTANCE The bio-based production of organic chemicals provides a sustainable alternative to fossil-based production in the face of today's climate challenges. In this work, we present a genome-scale metabolic reconstruction of Pyrococcus furiosus, a well-established platform organism that has been engineered to produce a variety of chemicals and fuels. The metabolic model was used to design optimal engineering strategies to produce ethanol. The redox and energy balance of P. furiosus was examined in detail, which provided useful insights that will guide future engineering designs.
Collapse
Affiliation(s)
- Jason L. Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dmitry A. Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hailey C. O'Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
3
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|
4
|
Abstract
The nasopharynx and the skin are the major oxygen-rich anatomical sites for colonization by the human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]). To establish infection, GAS must survive oxidative stress generated during aerobic metabolism and the release of reactive oxygen species (ROS) by host innate immune cells. Glutathione is the major host antioxidant molecule, while GAS is glutathione auxotrophic. Here, we report the molecular characterization of the ABC transporter substrate binding protein GshT in the GAS glutathione salvage pathway. We demonstrate that glutathione uptake is critical for aerobic growth of GAS and that impaired import of glutathione induces oxidative stress that triggers enhanced production of the reducing equivalent NADPH. Our results highlight the interrelationship between glutathione assimilation, carbohydrate metabolism, virulence factor production, and innate immune evasion. Together, these findings suggest an adaptive strategy employed by extracellular bacterial pathogens to exploit host glutathione stores for their own benefit.
Collapse
|
5
|
Andreas MP, Giessen TW. Large-scale computational discovery and analysis of virus-derived microbial nanocompartments. Nat Commun 2021; 12:4748. [PMID: 34362927 PMCID: PMC8346489 DOI: 10.1038/s41467-021-25071-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Encapsulins are a class of microbial protein compartments defined by the viral HK97-fold of their capsid protein, self-assembly into icosahedral shells, and dedicated cargo loading mechanism for sequestering specific enzymes. Encapsulins are often misannotated and traditional sequence-based searches yield many false positive hits in the form of phage capsids. Here, we develop an integrated search strategy to carry out a large-scale computational analysis of prokaryotic genomes with the goal of discovering an exhaustive and curated set of all HK97-fold encapsulin-like systems. We find over 6,000 encapsulin-like systems in 31 bacterial and four archaeal phyla, including two novel encapsulin families. We formulate hypotheses about their potential biological functions and biomedical relevance, which range from natural product biosynthesis and stress resistance to carbon metabolism and anaerobic hydrogen production. An evolutionary analysis of encapsulins and related HK97-type virus families shows that they share a common ancestor, and we conclude that encapsulins likely evolved from HK97-type bacteriophages.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Isobutanol production freed from biological limits using synthetic biochemistry. Nat Commun 2020; 11:4292. [PMID: 32855421 PMCID: PMC7453195 DOI: 10.1038/s41467-020-18124-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Abstract
Cost competitive conversion of biomass-derived sugars into biofuel will require high yields, high volumetric productivities and high titers. Suitable production parameters are hard to achieve in cell-based systems because of the need to maintain life processes. As a result, next-generation biofuel production in engineered microbes has yet to match the stringent cost targets set by petroleum fuels. Removing the constraints imposed by having to maintain cell viability might facilitate improved production metrics. Here, we report a cell-free system in a bioreactor with continuous product removal that produces isobutanol from glucose at a maximum productivity of 4 g L−1 h−1, a titer of 275 g L−1 and 95% yield over the course of nearly 5 days. These production metrics exceed even the highly developed ethanol fermentation process. Our results suggest that moving beyond cells has the potential to expand what is possible for bio-based chemical production. A cell free or synthetic biochemistry approach offers a way to circumvent the many constraints of living cells. Here, the authors demonstrate, via enzyme and process enhancements, the production of isobutanol with the metrics exceeding highly developed ethanol fermentation.
Collapse
|
7
|
Abstract
Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis, it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like Zymomonas mobilis and Pseudomonas putida, and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for in vivo and cell-free metabolic engineering.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
8
|
Simons JR, Beppu H, Imanaka T, Kanai T, Atomi H. Effects of high-level expression of A 1-ATPase on H 2 production in Thermococcus kodakarensis. J Biosci Bioeng 2020; 130:149-158. [PMID: 32414665 DOI: 10.1016/j.jbiosc.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
The hyperthermophilic archaeon Thermococcus kodakarensis can grow on pyruvate or maltooligosaccharides through H2 fermentation. H2 production levels of members of the Thermococcales are high, and studies to improve their production potential have been reported. Although H2 production is primary metabolism, here we aimed to partially uncouple cell growth and H2 production of T. kodakarensis. Additional A1-type ATPase genes were introduced into T. kodakarensis KU216 under the control of two promoters; the strong constitutive cell surface glycoprotein promoter, Pcsg, and the sugar-inducible fructose-1,6-bisphosphate aldolase promoter, Pfba. Whereas cells with the A1-type ATPase genes under the control of Pcsg displayed only trace levels of growth, cells with Pfba (strain KUA-PF) displayed growth sufficient for further analysis. Increased levels of A1-type ATPase protein were detected in KUA-PF cells grown on pyruvate or maltodextrin, when compared to the levels in the host strain KU216. The growth and H2 production levels of strain KUA-PF with pyruvate or maltodextrin as a carbon and electron source were analyzed and compared to those of the host strain KU216. Compared to a small decrease in total H2 production, significantly larger decreases in cell growth were observed, resulting in an increase in cell-specific H2 production. Quantification of the substrate also revealed that ATPase overexpression led to increased cell-specific pyruvate and maltodextrin consumptions. The results clearly indicate that ATPase production results in partial uncoupling of cell growth and H2 production in T. kodakarensis.
Collapse
Affiliation(s)
- Jan-Robert Simons
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruki Beppu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
9
|
Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering. Extremophiles 2020; 24:511-518. [PMID: 32415359 DOI: 10.1007/s00792-020-01172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
The key difference in the modified Embden-Meyerhof glycolytic pathway in hyperthermophilic Archaea, such as Pyrococcus furiosus, occurs at the conversion from glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) where the typical intermediate 1,3-bisphosphoglycerate (1,3-BPG) is not present. The absence of the ATP-yielding step catalyzed by phosphoglycerate kinase (PGK) alters energy yield, redox energetics, and kinetics of carbohydrate metabolism. Either of the two enzymes, ferredoxin-dependent glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) or NADP+-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), responsible for this "bypass" reaction, could be deleted individually without impacting viability, albeit with differences in native fermentation product profiles. Furthermore, P. furiosus was viable in the gluconeogenic direction (growth on pyruvate or peptides plus elemental sulfur) in a ΔgapnΔgapor strain. Ethanol was utilized as a proxy for potential heterologous products (e.g., isopropanol, butanol, fatty acids) that require reducing equivalents (e.g., NAD(P)H, reduced ferredoxin) generated from glycolysis. Insertion of a single gene encoding the thermostable NADPH-dependent primary alcohol dehydrogenase (adhA) (Tte_0696) from Caldanaerobacter subterraneus, resulted in a strain producing ethanol via the previously established aldehyde oxidoreductase (AOR) pathway. This strain demonstrated a high ratio of ethanol over acetate (> 8:1) at 80 °C and enabled ethanol production up to 85 °C, the highest temperature for bio-ethanol production reported to date.
Collapse
|
10
|
Integration of large heterologous DNA fragments into the genome of Thermococcus kodakarensis. Extremophiles 2020; 24:339-353. [PMID: 32112303 DOI: 10.1007/s00792-020-01159-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 10/24/2022]
Abstract
In this study, a transformation system enabling large-scale gene recombination was developed for the hyperthermophilic archaeon Thermococcus kodakarensis. Using the uracil auxotroph T. kodakarensis KU216 (∆pyrF) as a parent strain, we constructed multiple host strains harboring two 1-kbp DNA regions from the genomes of either the hyperthermophilic archaeon Pyrococcus furiosus or Methanocaldococcus jannaschii. The two regions were selected so that the regions between them on the respective genomes would include pyrF genes, which can potentially be used for selection. Transformation using these host strains and genomic DNA from P. furiosus or M. jannaschii were carried out. Transformants with exogenous pyrF were obtained only using host strains with regions from P. furiosus, and only when the distances between the two regions were relatively short (2-5 kbp) on the P. furiosus genome. To insert longer DNA fragments, we examined the possibilities of using P. furiosus cells to provide intact genomic DNA. A cell pellet of P. furiosus was overlaid with that of T. kodakarensis so that cells were in direct contact. As a result, we were able to isolate T. kodakarensis strains harboring DNA fragments from P. furiosus with lengths of up to 75 kbp in a single transformation step.
Collapse
|
11
|
The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis. mBio 2019; 10:mBio.01213-19. [PMID: 31506306 PMCID: PMC6737238 DOI: 10.1128/mbio.01213-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of transcriptional regulation in archaea are still poorly understood. In this study, we identified a transcriptional regulator in the hyperthermophilic archaeon Thermococcus kodakarensis that activates the transcription of three operons involved in the biosynthesis of aromatic amino acids. The study represents one of only a few that identifies a regulator in Archaea that activates transcription. The results also imply that transcriptional regulation of genes with the same function is carried out by diverse mechanisms in the archaea, depending on the lineage. TrpY from Methanothermobacter thermautotrophicus is a regulator that inhibits transcription of the Trp biosynthesis (trp) operon. Here, we show that the TrpY homolog in Thermococcus kodakarensis is not involved in such regulation. There are 87 genes on the T. kodakarensis genome predicted to encode transcriptional regulators (TRs). By screening for TRs that specifically bind to the promoter of the trp operon of T. kodakarensis, we identified TK0271. The gene resides in the aro operon, responsible for the biosynthesis of chorismate, a precursor for Trp, Tyr, and Phe. TK0271 was expressed in Escherichia coli, and the protein, here designated Tar (Thermococcalesaromatic amino acid regulator), was purified. Tar specifically bound to the trp promoter with a dissociation constant (Kd) value of approximately 5 nM. Tar also bound to the promoters of the Tyr/Phe biosynthesis (tyr-phe) and aro operons. The protein recognized a palindromic sequence (TGGACA-N8-TGTCCA) conserved in these promoters. In vitro transcription assays indicated that Tar activates transcription from all three promoters. We cultivated T. kodakarensis in amino acid-based medium and found that transcript levels of the trp, tyr-phe, and aro operons increased in the absence of Trp, Tyr, or Phe. We further constructed a TK0271 gene disruption strain (ΔTK0271). Growth of ΔTK0271 was similar to that of the host strain in medium including Trp, Tyr, and Phe but was significantly impaired in the absence of any one of these amino acids. The results suggest that Tar is responsible for the transcriptional activation of aromatic amino acid biosynthesis genes in T. kodakarensis.
Collapse
|
12
|
Shi T, Liu S, Zhang YHPJ. CO2 fixation for malate synthesis energized by starch via in vitro metabolic engineering. Metab Eng 2019; 55:152-160. [DOI: 10.1016/j.ymben.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
|
13
|
Orita I, Futatsuishi R, Adachi K, Ohira T, Kaneko A, Minowa K, Suzuki M, Tamura T, Nakamura S, Imanaka T, Suzuki T, Fukui T. Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance. Nucleic Acids Res 2019; 47:1964-1976. [PMID: 30605516 PMCID: PMC6393311 DOI: 10.1093/nar/gky1313] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/05/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022] Open
Abstract
Random mutagenesis for the hyperthermophilic archaeon Thermococcus kodakarensis was established by the insertion of an artificial transposon designed to allow easy identification of the transposon-inserted locus. The phenotypic screening was applied for the isolation of thermosensitive mutants of T. kodakarensis, which resulted in the isolation of 16 mutants showing defective growth at the supraoptimal temperature 93°C. The high occurrence of the mutants suggested that the high thermotolerance of hyperthermophiles was achieved by a combination of diverse gene functions. The transposon insertion sites in two-thirds of the mutants were identified in a group of genes responsible for tRNA modifications including 7-formamidino-7-deaza-guanosine (archaeosine), N1-methyladenosine/N1-methylinosine, N4-acetylcytidine, and N2-dimethylguanosine/N2,N2-dimethylguanosine. LC–MS/MS analyses of tRNA nucleosides and fragments exhibited disappearance of the corresponding modifications in the mutants. The melting temperature of total tRNA fraction isolated from the mutants lacking archaeosine or N1-methyladenosine/N1-methylinosine decreased significantly, suggesting that the thermosensitive phenotype of these mutants was attributed to low stability of the hypomodified tRNAs. Genes for metabolism, transporters, and hypothetical proteins were also identified in the thermosensitive mutants. The present results demonstrated the usefulness of random mutagenesis for the studies on the hyperthermophile, as well as crucial roles of tRNA modifications in cellular thermotolerance.
Collapse
Affiliation(s)
- Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Ryohei Futatsuishi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kyoko Adachi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akira Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Keiichi Minowa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miho Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Takeshi Tamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
14
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
15
|
Distinct Physiological Roles of the Three Ferredoxins Encoded in the Hyperthermophilic Archaeon Thermococcus kodakarensis. mBio 2019; 10:mBio.02807-18. [PMID: 30837343 PMCID: PMC6401487 DOI: 10.1128/mbio.02807-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High-energy electrons liberated during catabolic processes can be exploited for energy-conserving mechanisms. Maximal energy gains demand these valuable electrons be accurately shuttled from electron donor to appropriate electron acceptor. Proteinaceous electron carriers such as ferredoxins offer opportunities to exploit specific ferredoxin partnerships to ensure that electron flux to critical physiological pathways is aligned with maximal energy gains. Most species encode many ferredoxin isoforms, but very little is known about the role of individual ferredoxins in most systems. Our results detail that ferredoxin isoforms make largely unique and distinct protein interactions in vivo and that flux through one ferredoxin often cannot be recovered by flux through a different ferredoxin isoform. The results obtained more broadly suggest that ferredoxin isoforms throughout biological life have evolved not as generic electron shuttles, but rather serve as selective couriers of valuable low-potential electrons from select electron donors to desirable electron acceptors. Control of electron flux is critical in both natural and bioengineered systems to maximize energy gains. Both small molecules and proteins shuttle high-energy, low-potential electrons liberated during catabolism through diverse metabolic landscapes. Ferredoxin (Fd) proteins—an abundant class of Fe-S-containing small proteins—are essential in many species for energy conservation and ATP production strategies. It remains difficult to model electron flow through complicated metabolisms and in systems in which multiple Fd proteins are present. The overlap of activity and/or limitations of electron flux through each Fd can limit physiology and metabolic engineering strategies. Here we establish the interplay, reactivity, and physiological role(s) of the three ferredoxin proteins in the model hyperthermophile Thermococcus kodakarensis. We demonstrate that the three loci encoding known Fds are subject to distinct regulatory mechanisms and that specific Fds are utilized to shuttle electrons to separate respiratory and energy production complexes during different physiological states. The results obtained argue that unique physiological roles have been established for each Fd and that continued use of T. kodakarensis and related hydrogen-evolving species as bioengineering platforms must account for the distinct Fd partnerships that limit flux to desired electron acceptors. Extrapolating our results more broadly, the retention of multiple Fd isoforms in most species argues that specialized Fd partnerships are likely to influence electron flux throughout biology.
Collapse
|
16
|
Koga Y, Konishi K, Kobayashi A, Kanaya S, Takano K. Anaerobic glycerol-3-phosphate dehydrogenase complex from hyperthermophilic archaeon Thermococcus kodakarensis KOD1. J Biosci Bioeng 2018; 127:679-685. [PMID: 30583977 DOI: 10.1016/j.jbiosc.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
Abstract
Glycerol-3-phosphate (G3P) is a key intermediate of glycerol metabolism and is oxidized to dihydroxyacetone phosphate aerobically or anaerobically by appropriate G3P dehydrogenases. A hyperthermophilic archaeon Thermococcus kodakarensis KOD1 has a novel operon consisting of three genes encoding an anaerobic G3P dehydrogenase (G3PDH), an NADH oxidase (NOX), and a molybdopterin oxidoreductase (MOX). Typically, the G3PDH gene (glpA) is included in an operon with genes encoding essential subunits of the G3PDH complex, glpB and glpC. The three genes from T. kodakarensis were cloned and expressed in Escherichia coli, and their recombinant proteins, Tk-G3PDH, Tk-NOX and Tk-MOX, were characterized. The optimal temperature of Tk-G3PDH for activity was 80°C, indicating high thermal stability. Tk-G3PDH has flavin adenine dinucleotide as a prosthetic group and catalyzes oxidation of G3P with kcat/Km 1.93 × 103 M-1s-1 at 80°C, compared with 9.83 × 105 M-1s-1 for the E. coli G3PDH complex at 37°C. Interestingly, Tk-G3PDH can catalyze this reaction even as a monomer, whereas GlpA must form a complex with GlpB and GlpC. Tk-G3PDH also forms a putative heteropentamer with Tk-NOX and Tk-MOX (G3PDH:NOX:MOX = 2:2:1). This complex may form an electron transfer pathway to a final electron acceptor in the cell membrane, as is the case for the typical G3PDH complex GlpABC.
Collapse
Affiliation(s)
- Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kanako Konishi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Kobayashi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
17
|
A Phosphofructokinase Homolog from Pyrobaculum calidifontis Displays Kinase Activity towards Pyrimidine Nucleosides and Ribose 1-Phosphate. J Bacteriol 2018; 200:JB.00284-18. [PMID: 29866806 DOI: 10.1128/jb.00284-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023] Open
Abstract
The genome of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0041, annotated as encoding a PfkB family ribokinase, consisting of phosphofructokinase and pyrimidine kinase domains. Among the biochemically characterized enzymes, the Pcal_0041 protein was 37% identical to the phosphofructokinase (Ape_0012) from Aeropyrum pernix, which displayed kinase activity toward a broad spectrum of substrates, including sugars, sugar phosphates, and nucleosides, and 36% identical to a phosphofructokinase from Desulfurococcus amylolyticus To examine the biochemical function of the Pcal_0041 protein, we cloned and expressed the gene and purified the recombinant protein. Although the Pcal_0041 protein contained a putative phosphofructokinase domain, it exhibited only low levels of phosphofructokinase activity. The recombinant enzyme catalyzed the phosphorylation of nucleosides and, to a lower extent, sugars and sugar phosphates. Surprisingly, among the substrates tested, the highest activity was detected with ribose 1-phosphate (R1P), followed by cytidine and uridine. The catalytic efficiency (k cat/Km ) toward R1P was 11.5 mM-1 · s-1 ATP was the most preferred phosphate donor, followed by GTP. Activity measurements with cell extracts of P. calidifontis indicated the presence of nucleoside phosphorylase activity, which would provide the means to generate R1P from nucleosides. The study suggests that, in addition to the recently identified ADP-dependent ribose 1-phosphate kinase (R1P kinase) in Thermococcus kodakarensis that functions in the pentose bisphosphate pathway, R1P kinase is also present in members of the Crenarchaeota.IMPORTANCE The discovery of the pentose bisphosphate pathway in Thermococcus kodakarensis has clarified how this archaeon can degrade nucleosides. Homologs of the enzymes of this pathway are present in many members of the Thermococcales, suggesting that this metabolism occurs in these organisms. However, this is not the case in other archaea, and degradation mechanisms for nucleosides or ribose 1-phosphate are still unknown. This study reveals an important first step in understanding nucleoside metabolism in Crenarchaeota and identifies an ATP-dependent ribose 1-phosphate kinase in Pyrobaculum calidifontis The enzyme is structurally distinct from previously characterized archaeal members of the ribokinase family and represents a group of proteins found in many crenarchaea.
Collapse
|
18
|
Tästensen JB, Schönheit P. Two distinct glyceraldehyde-3-phosphate dehydrogenases in glycolysis and gluconeogenesis in the archaeon Haloferax volcanii. FEBS Lett 2018; 592:1524-1534. [PMID: 29572819 DOI: 10.1002/1873-3468.13037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 11/06/2022]
Abstract
The halophilic archaeon Haloferax volcanii degrades glucose via the semiphosphorylative Entner-Doudoroff pathway and can also grow on gluconeogenic substrates. Here, the enzymes catalysing the conversion of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate were analysed. The genome contains the genes gapI and gapII encoding two putative GAP dehydrogenases, and pgk encoding phosphoglycerate kinase (PGK). We show that gapI is functionally involved in sugar catabolism, whereas gapII is involved in gluconeogenesis. For pgk, an amphibolic function is indicated. This is the first report of the functional involvement of a phosphorylating glyceraldehyde-3-phosphate dehydrogenase and PGK in sugar catabolism in archaea. Phylogenetic analyses indicate that the catabolic gapI from H. volcanii is acquired from bacteria via lateral genetransfer, whereas the anabolic gapII as well as pgk are of archaeal origin.
Collapse
Affiliation(s)
- Julia-Beate Tästensen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| |
Collapse
|
19
|
Aziz I, Rashid N, Ashraf R, Siddiqui MA, Imanaka T, Akhtar M. Pcal_0632, a phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Pyrobaculum calidifontis. Extremophiles 2017; 22:121-129. [DOI: 10.1007/s00792-017-0982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022]
|
20
|
Kouril T, Eicher JJ, Siebers B, Snoep JL. Phosphoglycerate kinase acts as a futile cycle at high temperature. MICROBIOLOGY (READING, ENGLAND) 2017; 163:1604-1612. [PMID: 28982396 DOI: 10.1099/mic.0.000542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In (hyper)thermophilic organisms metabolic processes have to be adapted to function optimally at high temperature. We compared the gluconeogenic conversion of 3-phosphoglycerate via 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate at 30 °C and at 70 °C. At 30 °C it was possible to produce 1,3-bisphosphoglycerate from 3-phosphoglycerate with phosphoglycerate kinase, but at 70 °C, 1,3-bisphosphoglycerate was dephosphorylated rapidly to 3-phosphoglycerate, effectively turning the phosphoglycerate kinase into a futile cycle. When phosphoglycerate kinase was incubated together with glyceraldehyde 3-phosphate dehydrogenase it was possible to convert 3-phosphoglycerate to glyceraldehyde 3-phosphate, both at 30 °C and at 70 °C, however, at 70 °C only low concentrations of product were observed due to thermal instability of glyceraldehyde 3-phosphate. Thus, thermolabile intermediates challenge central metabolic reactions and require special adaptation strategies for life at high temperature.
Collapse
Affiliation(s)
- Theresa Kouril
- Molecular Enzyme Technology and Biochemistry (MEB), BiofilmCentre, Faculty of Chemistry, University of Duisburg-Essen, Duisburg, Germany
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Johann J Eicher
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), BiofilmCentre, Faculty of Chemistry, University of Duisburg-Essen, Duisburg, Germany
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- MIB, University of Manchester, Manchester, UK
- Molecular Cell Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
An In Vitro Enzyme System for the Production of myo-Inositol from Starch. Appl Environ Microbiol 2017; 83:AEM.00550-17. [PMID: 28600316 DOI: 10.1128/aem.00550-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/29/2017] [Indexed: 02/02/2023] Open
Abstract
We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively.IMPORTANCEmyo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion rates were also high, producing over 2 g of myo-inositol within 4 h in a 200-ml reaction mixture. By adding a thermostable pullulanase, we produced myo-inositol from raw potato with yields of 57 to 61% (wt/wt). The system developed here should provide an attractive alternative to conventional methods that rely on extraction or microbial production of myo-inositol.
Collapse
|
22
|
Zhang Y, Kouril T, Snoep JL, Siebers B, Barberis M, Westerhoff HV. The Peculiar Glycolytic Pathway in Hyperthermophylic Archaea: Understanding Its Whims by Experimentation In Silico. Int J Mol Sci 2017; 18:ijms18040876. [PMID: 28425930 PMCID: PMC5412457 DOI: 10.3390/ijms18040876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 11/25/2022] Open
Abstract
Mathematical models are key to systems biology where they typically describe the topology and dynamics of biological networks, listing biochemical entities and their relationships with one another. Some (hyper)thermophilic Archaea contain an enzyme, called non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), which catalyzes the direct oxidation of glyceraldehyde-3-phosphate to 3-phosphoglycerate omitting adenosine 5′-triphosphate (ATP) formation by substrate-level-phosphorylation via phosphoglycerate kinase. In this study we formulate three hypotheses that could explain functionally why GAPN exists in these Archaea, and then construct and use mathematical models to test these three hypotheses. We used kinetic parameters of enzymes of Sulfolobus solfataricus (S. solfataricus) which is a thermo-acidophilic archaeon that grows optimally between 60 and 90 °C and between pH 2 and 4. For comparison, we used a model of Saccharomyces cerevisiae (S. cerevisiae), an organism that can live at moderate temperatures. We find that both the first hypothesis, i.e., that the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plus phosphoglycerate kinase (PGK) route (the alternative to GAPN) is thermodynamically too much uphill and the third hypothesis, i.e., that GAPDH plus PGK are required to carry the flux in the gluconeogenic direction, are correct. The second hypothesis, i.e., that the GAPDH plus PGK route delivers less than the 1 ATP per pyruvate that is delivered by the GAPN route, is only correct when GAPDH reaction has a high rate and 1,3-bis-phosphoglycerate (BPG) spontaneously degrades to 3PG at a high rate.
Collapse
Affiliation(s)
- Yanfei Zhang
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - Theresa Kouril
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environment Research (CWE), University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany.
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa.
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa.
- The Manchester Centre for Integrative Systems Biology, Manchester Institute for Biotechnology, School for Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 7DN, UK.
- Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environment Research (CWE), University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany.
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - Hans V Westerhoff
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
- The Manchester Centre for Integrative Systems Biology, Manchester Institute for Biotechnology, School for Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 7DN, UK.
- Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Afzal M, Kuipers OP, Shafeeq S. Niacin-mediated Gene Expression and Role of NiaR as a Transcriptional Repressor of niaX, nadC, and pnuC in Streptococcus pneumoniae. Front Cell Infect Microbiol 2017; 7:70. [PMID: 28337428 PMCID: PMC5343564 DOI: 10.3389/fcimb.2017.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
NAD (Nicotinamide Adenine Dinucleotide) biosynthesis is vital for bacterial physiology and plays an important role in cellular metabolism. A naturally occurring vitamin B complex, niacin (nicotinic acid), is a precursor of coenzymes NAD and NADP. Here, we study the impact of niacin on global gene expression of Streptococcus pneumoniae D39 and elucidate the role of NiaR as a transcriptional regulator of niaX, nadC, and pnuC. Transcriptome comparison of the D39 wild-type grown in chemically defined medium (CDM) with 0 to 10 mM niacin revealed elevated expression of various genes, including niaX, nadC, pnuC, fba, rex, gapN, pncB, gap, adhE, and adhB2 that are putatively involved in the transport and utilization of niacin. Niacin-dependent expression of these genes is confirmed by promoter lacZ-fusion studies. Moreover, the role of transcriptional regulator NiaR in the regulation of these genes is explored by DNA microarray analysis. Our transcriptomic comparison of D39 ΔniaR to D39 wild-type revealed that the transcriptional regulator NiaR acts as a transcriptional repressor of niaX, pnuC, and nadC. NiaR-dependent regulation of niaX, nadC, and pnuC is further confirmed by promoter lacZ-fusion studies. The putative operator site of NiaR (5′-TACWRGTGTMTWKACASYTRWAW-3′) in the promoter regions of niaX, nadC, and pnuC is predicted and further confirmed by promoter mutational experiments.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
24
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
25
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
26
|
Jaturapaktrarak C, Napathorn SC, Cheng M, Okano K, Ohtake H, Honda K. In vitro conversion of glycerol to lactate with thermophilic enzymes. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0018-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In vitro reconstitution of an artificial metabolic pathway has emerged as an alternative approach to conventional in vivo fermentation-based bioproduction. Particularly, employment of thermophilic and hyperthermophilic enzymes enables us a simple preparation of highly stable and selective biocatalytic modules and the construction of in vitro metabolic pathways with an excellent operational stability. In this study, we designed and constructed an artificial in vitro metabolic pathway consisting of nine (hyper)thermophilic enzymes and applied it to the conversion of glycerol to lactate. We also assessed the compatibility of the in vitro bioconversion system with methanol, which is a major impurity in crude glycerol released from biodiesel production processes.
Results
The in vitro artificial pathway was designed to balance the intrapathway consumption and regeneration of energy and redox cofactors. All enzymes involved in the in vitro pathway exhibited an acceptable level of stability at high temperature (60°C), and their stability was not markedly affected by the co-existing of up to 100 mM methanol. The one-pot conversion of glycerol to lactate through the in vitro pathway could be achieved in an almost stoichiometric manner, and 14.7 mM lactate could be produced in 7 h. Furthermore, the in vitro bioconversion system exerted almost identical performance in the presence of methanol.
Conclusions
Many thermophilic enzymes exhibit higher stability not only at high temperatures but also in the presence of denaturants such as detergents and organic solvents than their mesophilic counterparts. In this study, compatibilities of thermophilic enzymes with methanol were demonstrated, indicating the potential applicability of in vitro bioconversion systems with thermophilic enzymes in the conversion of crude glycerol to value-added chemicals.
Collapse
|
27
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
28
|
Ito F, Miyake M, Fushinobu S, Nakamura S, Shimizu K, Wakagi T. Engineering the allosteric properties of archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:759-66. [DOI: 10.1016/j.bbapap.2014.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 11/25/2022]
|
29
|
Tomita H, Yokooji Y, Ishibashi T, Imanaka T, Atomi H. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis. J Bacteriol 2014. [PMID: 24415726 DOI: 10.1128/jb.01327-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5'-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4'-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.
Collapse
Affiliation(s)
- Hiroya Tomita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
30
|
An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis. J Bacteriol 2014; 196:1222-30. [PMID: 24415726 DOI: 10.1128/jb.01327-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5'-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4'-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.
Collapse
|
31
|
Affiliation(s)
- Joel A. Farkas
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jonathan W. Picking
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Thomas J. Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523;
| |
Collapse
|
32
|
Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X, Okano K, Ohtake H. In vitro production of n-butanol from glucose. Metab Eng 2013; 20:84-91. [DOI: 10.1016/j.ymben.2013.09.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
|
33
|
Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 2013; 40:1449-60. [PMID: 24048943 DOI: 10.1007/s10295-013-1335-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/28/2013] [Indexed: 02/03/2023]
Abstract
Enzymatic synthesis of some industrially important compounds depends heavily on cofactor NADPH as the reducing agent. This is especially true in the synthesis of chiral compounds that are often used as pharmaceutical intermediates to generate the correct stereochemistry in bioactive products. The high cost and technical difficulty of cofactor regeneration often pose a challenge for such biocatalytic reactions. In this study, to increase NADPH bioavailability, the native NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gapA gene in Escherichia coli was replaced with a NADP(+)-dependent gapB from Bacillus subtilis. To overcome the limitation of NADP(+) availability, E. coli NAD kinase, nadK was also coexpressed with gapB. The recombinant strains were then tested in three reporting systems: biosynthesis of lycopene, oxidation of cyclohexanone with cyclohexanone monooxygenase (CHMO), and an anaerobic system utilizing 2-haloacrylate reductase (CAA43). In all the reporting systems, replacing NAD(+)-dependent GapA activity with NADP(+)-dependent GapB activity increased the synthesis of NADPH-dependent compounds. The increase was more pronounced when NAD kinase was also overexpressed in the case of the one-step reaction catalyzed by CAA43 which approximately doubled the product yield. These results validate this novel approach to improve NADPH bioavailability in E. coli and suggest that the strategy can be applied in E. coli or other bacterium-based production of NADPH-dependent compounds.
Collapse
|
34
|
Kouril T, Esser D, Kort J, Westerhoff HV, Siebers B, Snoep JL. Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus. FEBS J 2013; 280:4666-80. [PMID: 23865479 DOI: 10.1111/febs.12438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023]
Abstract
Four enzymes of the gluconeogenic pathway in Sulfolobus solfataricus were purified and kinetically characterized. The enzymes were reconstituted in vitro to quantify the contribution of temperature instability of the pathway intermediates to carbon loss from the system. The reconstituted system, consisting of phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase and the fructose 1,6-bisphosphate aldolase/phosphatase, maintained a constant consumption rate of 3-phosphoglycerate and production of fructose 6-phosphate over a 1-h period. Cofactors ATP and NADPH were regenerated via pyruvate kinase and glucose dehydrogenase. A mathematical model was constructed on the basis of the kinetics of the purified enzymes and the measured half-life times of the pathway intermediates. The model quantitatively predicted the system fluxes and metabolite concentrations. Relative enzyme concentrations were chosen such that half the carbon in the system was lost due to degradation of the thermolabile intermediates dihydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency.
Collapse
Affiliation(s)
- Theresa Kouril
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Archaeal aldehyde dehydrogenase ST0064 from Sulfolobus tokodaii, a paralog of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, is a succinate semialdehyde dehydrogenase. Biosci Biotechnol Biochem 2013; 77:1344-8. [PMID: 23748791 DOI: 10.1271/bbb.130119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aldehyde dehydrogenase ST0064, the closest paralog of previously characterized allosteric non-phosphorylating glyceraldehyde-3-phosphate (GAP) dehydrogenase (GAPN, ST2477) from a thermoacidophilic archaeon, Sulfolobus tokodaii, was expressed heterologously and characterized in detail. ST0064 showed remarkable activity toward succinate semialdehyde (SSA) (Km of 0.0029 mM and kcat of 30.0 s(-1)) with no allosteric regulation. Activity toward GAP was lower (Km of 4.6 mM and kcat of 4.77 s(-1)), and previously predicted succinyl-CoA reductase activity was not detected, suggesting that the enzyme functions practically as succinate semialdehyde dehydrogenase (SSADH). Phylogenetic analysis indicated that archaeal SSADHs and GAPNs are closely related within the aldehyde dehydrogenase superfamily, suggesting that they are of the same origin.
Collapse
|
36
|
Arutyunov D, Schmalhausen E, Orlov V, Rahuel-Clermont S, Nagradova N, Branlant G, Muronetz V. An unusual effect of NADP+ on the thermostability of the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Biochem Cell Biol 2013; 91:295-302. [PMID: 24032678 DOI: 10.1139/bcb-2012-0104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Adiabatic differential scanning calorimetry was used to investigate the effect of NADP+ on the irreversible thermal denaturation of the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Streptococcus mutans. The GAPN-NADP+ binary complex showed a strongly decreased thermal stability, with a difference of about 20 °C between the temperatures of the thermal transition peak maxima of the complex and the free protein. This finding was similar to the previously described thermal destabilization of GAPN upon binding of inorganic phosphate to the substrate binding site and can be interpreted as the shift of the equilibrium between 2 conformers of tetrameric GAPN upon addition of the coenzyme. Single amino acid substitution, known to abolish the NADP+ binding, cancelled the calorimetric effect of the coenzyme. GAPN thermal inactivation was considerably decelerated in the presence of NADP+ showing that the apparent change in stability of the active centre can be the opposite to that of the whole protein molecule. NADP+ could also reactivate the inactive GAPN* species, obtained by the heating of the apoenzyme below the thermal denaturation transition temperature. These effects may reflect a mechanism that provides GAPN the sufficient flexibility for the earlier observed profound active site reorganizations required during the catalytic cycle. The elevated thermal stability of the apoenzyme may, in turn, be important for maintaining a constant level of active GAPN--an enzyme that is known to be crucial for the effective supply of the reducing equivalents in S. mutans and its ability to grow under aerobic conditions.
Collapse
Affiliation(s)
- Denis Arutyunov
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
37
|
Thorgersen MP, Stirrett K, Scott RA, Adams MWW. Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus. Proc Natl Acad Sci U S A 2012; 109:18547-52. [PMID: 23093671 PMCID: PMC3494905 DOI: 10.1073/pnas.1208605109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic archaeon Pyrococcus furiosus grows by fermenting carbohydrates producing H(2), CO(2), and acetate. We show here that it is surprisingly tolerant to oxygen, growing well in the presence of 8% (vol/vol) O(2). Although cell growth and acetate production were not significantly affected by O(2), H(2) production was reduced by 50% (using 8% O(2)). The amount of H(2) produced decreased in a linear manner with increasing concentrations of O(2) over the range 2-12% (vol/vol), and for each mole of O(2) consumed, the amount of H(2) produced decreased by approximately 2 mol. The recycling of H(2) by the two cytoplasmic hydrogenases appeared not to play a role in O(2) resistance because a mutant strain lacking both enzymes was not more sensitive to O(2) than the parent strain. Decreased H(2) production was also not due to inactivation of the H(2)-producing, ferredoxin-dependent membrane-bound hydrogenase because its activity was unaffected by O(2) exposure. Electrons from carbohydrate oxidation must therefore be diverted to relieve O(2) stress at the level of reduced ferredoxin before H(2) production. Deletion strains lacking superoxide reductase (SOR) and putative flavodiiron protein A showed increased sensitivity to O(2), indicating that these enzymes play primary roles in resisting O(2). However, a mutant strain lacking the proposed electron donor to SOR, rubredoxin, was unaffected in response to O(2). Hence, electrons from sugar oxidation normally used to produce H(2) are diverted to O(2) detoxification by SOR and putative flavodiiron protein A, but the electron flow pathway from ferredoxin does not necessarily involve rubredoxin.|
Collapse
Affiliation(s)
- Michael P. Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Karen Stirrett
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Robert A. Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
38
|
Atomi H, Imanaka T, Fukui T. Overview of the genetic tools in the Archaea. Front Microbiol 2012; 3:337. [PMID: 23060865 PMCID: PMC3462420 DOI: 10.3389/fmicb.2012.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/01/2012] [Indexed: 01/17/2023] Open
Abstract
This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus, and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku Kyoto, Japan ; JST, CREST, Sanbancho, Chiyoda-ku Tokyo, Japan
| | | | | |
Collapse
|
39
|
Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, Kuroda A, Ohtake H. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 2012; 11:120. [PMID: 22950411 PMCID: PMC3512521 DOI: 10.1186/1475-2859-11-120] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/31/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. RESULTS A chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. CONCLUSIONS In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as "synthetic metabolic engineering". Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals or materials on demand.
Collapse
Affiliation(s)
- Xiaoting Ye
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Comparative analysis of two glyceraldehyde-3-phosphate dehydrogenases from a thermoacidophilic archaeon, Sulfolobus tokodaii. FEBS Lett 2012; 586:3097-103. [PMID: 22841742 DOI: 10.1016/j.febslet.2012.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 11/20/2022]
Abstract
Sulfolobus tokodaii, a thermoacidophilic archaeon, possesses two structurally and functionally different enzymes that catalyze the oxidation of glyceraldehyde-3-phosphate (GAP): non-phosphorylating GAP dehydrogenase (St-GAPN) and phosphorylating GAP dehydrogenase (St-GAPDH). In contrast to previously characterized GAPN from Sulfolobus solfataricus, which exhibits V-type allosterism, St-GAPN showed K-type allosterism in which the positive cooperativity was abolished with concomitant activation by glucose 1-phosphate (G1P). St-GAPDH catalyzed the reversible oxidation of GAP to 1,3-bisphosphoglycerate (1,3-BPG) with high gluconeogenic activity, which was specific for NADPH, while both NAD(+) and NADP(+) were utilized in the glycolytic direction.
Collapse
|
41
|
Hileman TH, Santangelo TJ. Genetics Techniques for Thermococcus kodakarensis. Front Microbiol 2012; 3:195. [PMID: 22701112 PMCID: PMC3370424 DOI: 10.3389/fmicb.2012.00195] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/13/2012] [Indexed: 11/13/2022] Open
Abstract
Thermococcus kodakarensis (T. kodakarensis) has emerged as a premier model system for studies of archaeal biochemistry, genetics, and hyperthermophily. This prominence is derived largely from the natural competence of T. kodakarensis and the comprehensive, rapid, and facile techniques available for manipulation of the T. kodakarensis genome. These genetic capacities are complemented by robust planktonic growth, simple selections, and screens, defined in vitro transcription and translation systems, replicative expression plasmids, in vivo reporter constructs, and an ever-expanding knowledge of the regulatory mechanisms underlying T. kodakarensis metabolism. Here we review the existing techniques for genetic and biochemical manipulation of T. kodakarensis. We also introduce a universal platform to generate the first comprehensive deletion and epitope/affinity tagged archaeal strain libraries.
Collapse
Affiliation(s)
- Travis H Hileman
- Department of Microbiology, Center for RNA Biology, Ohio State University Columbus, OH, USA
| | | |
Collapse
|
42
|
Genome sequencing of a genetically tractable Pyrococcus furiosus strain reveals a highly dynamic genome. J Bacteriol 2012; 194:4097-106. [PMID: 22636780 DOI: 10.1128/jb.00439-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The model archaeon Pyrococcus furiosus grows optimally near 100°C on carbohydrates and peptides. Its genome sequence (NCBI) was determined 12 years ago. A genetically tractable strain, COM1, was very recently reported, and here we describe its genome sequence. Of 1,909,827 bp in size, it is 1,571 bp longer (0.1%) than the reference NCBI sequence. The COM1 genome contains numerous chromosomal rearrangements, deletions, and single base changes. COM1 also has 45 full or partial insertion sequences (ISs) compared to 35 in the reference NCBI strain, and these have resulted in the direct deletion or insertional inactivation of 13 genes. Another seven genes were affected by chromosomal deletions and are predicted to be nonfunctional. In addition, the amino acid sequences of another 102 of the 2,134 predicted gene products are different in COM1. These changes potentially impact various cellular functions, including carbohydrate, peptide, and nucleotide metabolism; DNA repair; CRISPR-associated defense; transcriptional regulation; membrane transport; and growth at 72°C. For example, the IS-mediated inactivation of riboflavin synthase in COM1 resulted in a riboflavin requirement for growth. Nevertheless, COM1 grew on cellobiose, malto-oligosaccharides, and peptides in complex and minimal media at 98 and 72°C to the same extent as did both its parent strain and a new culture collection strain (DSMZ 3638). This was in spite of COM1 lacking several metabolic enzymes, including nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase and beta-glucosidase. The P. furiosus genome is therefore of high plasticity, and the availability of the COM1 sequence will be critical for the future studies of this model hyperthermophile.
Collapse
|
43
|
Moon YJ, Kwon J, Yun SH, Lim HL, Kim MS, Kang SG, Lee JH, Choi JS, Kim SI, Chung YH. Proteome analyses of hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1 in different one-carbon substrate culture conditions. Mol Cell Proteomics 2012; 11:M111.015420. [PMID: 22232491 DOI: 10.1074/mcp.m111.015420] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H(2)-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H(2)-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MS(E). A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H(2) production via an electron transport mechanism and that CO(2) produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1.
Collapse
Affiliation(s)
- Yoon-Jung Moon
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|