1
|
Wimmi S, Fleck M, Helbig C, Brianceau C, Langenfeld K, Szymanski WG, Angelidou G, Glatter T, Diepold A. Pilotins are mobile T3SS components involved in assembly and substrate specificity of the bacterial type III secretion system. Mol Microbiol 2024; 121:304-323. [PMID: 38178634 DOI: 10.1111/mmi.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Witold G Szymanski
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georgia Angelidou
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Turton K, Parks HJ, Zarodkiewicz P, Hamad MA, Dwane R, Parau G, Ingram RJ, Coll RC, Bryant CE, Valvano MA. The Achromobacter type 3 secretion system drives pyroptosis and immunopathology via independent activation of NLRC4 and NLRP3 inflammasomes. Cell Rep 2023; 42:113012. [PMID: 37598340 PMCID: PMC7614980 DOI: 10.1016/j.celrep.2023.113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
How the opportunistic Gram-negative pathogens of the genus Achromobacter interact with the innate immune system is poorly understood. Using three Achromobacter clinical isolates from two species, we show that the type 3 secretion system (T3SS) is required to induce cell death in human macrophages by inflammasome-dependent pyroptosis. Macrophages deficient in the inflammasome sensors NLRC4 or NLRP3 undergo pyroptosis upon bacterial internalization, but those deficient in both NLRC4 and NLRP3 do not, suggesting either sensor mediates pyroptosis in a T3SS-dependent manner. Detailed analysis of the intracellular trafficking of one isolate indicates that the intracellular bacteria reside in a late phagolysosome. Using an intranasal mouse infection model, we observe that Achromobacter damages lung structure and causes severe illness, contingent on a functional T3SS. Together, we demonstrate that Achromobacter species can survive phagocytosis by promoting macrophage cell death and inflammation by redundant mechanisms of pyroptosis induction in a T3SS-dependent manner.
Collapse
Affiliation(s)
- Keren Turton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Hannah J Parks
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Paulina Zarodkiewicz
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Mohamad A Hamad
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rachel Dwane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Georgiana Parau
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; Department of Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
3
|
Gilzer D, Kowal JL, Flottmann F, Niemann HH. The type III secretion chaperone SctY may shield the hydrophobic export gate-binding C-terminus of its substrate SctX. Acta Crystallogr D Struct Biol 2023; 79:508-517. [PMID: 37204817 PMCID: PMC10233624 DOI: 10.1107/s2059798323003248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Gram-negative bacteria such as Aeromonas and Yersinia spp. have developed mechanisms to inhibit the immune defense of their host. Effector proteins are directly injected into the host cytoplasm from the bacterial cytosol via type III secretion systems (T3SSs), where they modulate the cytoskeleton and signaling of the cell. Assembly of, and secretion via, T3SSs is tightly regulated by a number of bacterial proteins, including SctX (AscX in Aeromonas), the secretion of which is essential for T3SS function. Here, crystal structures of AscX in complex with SctY chaperones from Yersinia or Photorhabdus spp. carrying homologous T3SSs are described. There are crystal pathologies in all cases, with one crystal form diffracting anisotropically and the other two exhibiting strong pseudotranslation. The new structures reveal that the positioning of the substrate is very similar on different chaperones. However, the two C-terminal SctX helices that cap the N-terminal tetratricopeptide repeat of SctY shift and tilt depending on the identity of the chaperone. Moreover, the C-terminus of the α3 helix of AscX exhibits an unprecedented kink in two of the structures. In previous structures, the C-terminus of SctX protrudes beyond the chaperone as a straight helix: a conformation that is required for binding to the nonameric export gate SctV but that is unfavorable for binary SctX-SctY complexes due to the hydrophobicity of helix α3 of SctX. A kink in helix α3 may allow the chaperone to shield the hydrophobic C-terminus of SctX in solution.
Collapse
Affiliation(s)
- Dominic Gilzer
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Julia L. Kowal
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Franziska Flottmann
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Hartmut H. Niemann
- Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Gupta A, Malwe AS, Srivastava GN, Thoudam P, Hibare K, Sharma VK. MP4: a machine learning based classification tool for prediction and functional annotation of pathogenic proteins from metagenomic and genomic datasets. BMC Bioinformatics 2022; 23:507. [PMID: 36443666 PMCID: PMC9703692 DOI: 10.1186/s12859-022-05061-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteria can exceptionally evolve and develop pathogenic features making it crucial to determine novel pathogenic proteins for specific therapeutic interventions. Therefore, we have developed a machine-learning tool that predicts and functionally classifies pathogenic proteins into their respective pathogenic classes. Through construction of pathogenic proteins database and optimization of ML algorithms, Support Vector Machine was selected for the model construction. The developed SVM classifier yielded an accuracy of 81.72% on the blind-dataset and classified the proteins into three classes: Non-pathogenic proteins (Class-1), Antibiotic Resistance Proteins and Toxins (Class-2), and Secretory System Associated and capsular proteins (Class-3). The classifier provided an accuracy of 79% on real dataset-1, and 72% on real dataset-2. Based on the probability of prediction, users can estimate the pathogenicity and annotation of proteins under scrutiny. Tool will provide accurate prediction of pathogenic proteins in genomic and metagenomic datasets providing leads for experimental validations. Tool is available at: http://metagenomics.iiserb.ac.in/mp4 .
Collapse
Affiliation(s)
- Ankit Gupta
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Aditya S. Malwe
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Gopal N. Srivastava
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Parikshit Thoudam
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Keshav Hibare
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| | - Vineet K. Sharma
- grid.462376.20000 0004 1763 8131MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh India
| |
Collapse
|
5
|
Wang LK, Sun SS, Zhang SY, Nie P, Xie HX. Orf1B controls secretion of T3SS proteins and contributes to Edwardsiella piscicida adhesion to epithelial cells. Vet Res 2022; 53:40. [PMID: 35692056 PMCID: PMC9190107 DOI: 10.1186/s13567-022-01057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
Edwardsiella piscicida is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish. The type III secretion system (T3SS) is one of its two most important virulence islands. T3SS protein EseJ inhibits E. piscicida adhesion to epithelioma papillosum cyprini (EPC) cells by negatively regulating type 1 fimbria. Type 1 fimbria helps E. piscicida to adhere to fish epithelial cells. In this study, we characterized a functional unknown protein (Orf1B) encoded within the T3SS gene cluster of E. piscicida. This protein consists of 122 amino acids, sharing structural similarity with YscO in Vibrio parahaemolyticus. Orf1B controls secretion of T3SS translocon and effectors in E. piscicida. By immunoprecipitation, Orf1B was shown to interact with T3SS ATPase EsaN. This interaction may contribute to the assembly of the ATPase complex, which energizes the secretion of T3SS proteins. Moreover, disruption of Orf1B dramatically decreased E. piscicida adhesion to EPC cells due to the increased steady-state protein level of EseJ within E. piscicida. Taken together, this study partially unraveled the mechanisms through which Orf1B promotes secretion of T3SS proteins and contributes to E. piscicida adhesion. This study helps to improve our understanding on molecular mechanism of E. piscicida pathogenesis.
Collapse
Affiliation(s)
- Long Kun Wang
- Dalian Ocean University, Dalian, 116023, Liaoning, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shu Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
6
|
Gilzer D, Schreiner M, Niemann HH. Direct interaction of a chaperone-bound type III secretion substrate with the export gate. Nat Commun 2022; 13:2858. [PMID: 35654781 PMCID: PMC9163089 DOI: 10.1038/s41467-022-30487-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Several gram-negative bacteria employ type III secretion systems (T3SS) to inject effector proteins into eukaryotic host cells directly from the bacterial cytoplasm. The export gate SctV (YscV in Yersinia) binds substrate:chaperone complexes such as YscX:YscY, which are essential for formation of a functional T3SS. Here, we present structures of the YscX:YscY complex alone and bound to nonameric YscV. YscX binds its chaperone YscY at two distinct sites, resembling the heterotrimeric complex of the T3SS needle subunit with its chaperone and co-chaperone. In the ternary complex the YscX N-terminus, which mediates YscX secretion, occupies a binding site within one YscV that is also used by flagellar chaperones, suggesting the interaction's importance for substrate recognition. The YscX C-terminus inserts between protomers of the YscV ring where the stalk protein binds to couple YscV to the T3SS ATPase. This primary YscV-YscX interaction is essential for the formation of a secretion-competent T3SS.
Collapse
Affiliation(s)
- Dominic Gilzer
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany
| | - Madeleine Schreiner
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitaetstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
The Regulatory Circuit Underlying Downregulation of a Type III Secretion System in Yersinia enterocolitica by Transcription Factor OmpR. Int J Mol Sci 2022; 23:ijms23094758. [PMID: 35563149 PMCID: PMC9100119 DOI: 10.3390/ijms23094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR negatively affects the level of over a dozen Ysc-Yop proteins, which constitute a type III secretion system (T3SS) that is essential for the pathogenicity of Y. enterocolitica. Here, we focused our analysis on the role of OmpR in the expression and secretion of Yops (translocators and effectors). Western blotting with anti-Yops antiserum and specific anti-YopD, -YopE and -YopH antibodies, confirmed that the production of Yops is down-regulated by OmpR with the greatest negative effect on YopD. The RT-qPCR analysis demonstrated that, while OmpR had a negligible effect on the activity of regulatory genes virF and yscM1, it highly repressed the expression of yopD. OmpR was found to bind to the promoter of the lcrGVsycD-yopBD operon, suggesting a direct regulatory effect. In addition, we demonstrated that the negative regulatory influence of OmpR on the Ysc-Yop T3SS correlated with its positive role in the expression of flhDC, the master regulator of the flagellar-associated T3SS.
Collapse
|
8
|
Adaptation Potential of Three Psychrotolerant Aquatic Bacteria in the Pan-Okhotsk Region. WATER 2022. [DOI: 10.3390/w14071107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Pan-Okhotsk region, which is part of the western North Pacific Ocean, is famous for its active volcanoes, which are part of the Pacific Ring of Fire and that enrich the surrounding waters with essential chemicals. Therefore, this region, including the Sea of Okhotsk and the Sea of Japan, is characterized by rich biota. Bacterioplankton plays a significant part in biological communities and is an indicator of ecosystem function. Analyzing the adaptability of three representatives of the microbiota of the Pan-Okhotsk region was the goal of our investigation. Marinomonas primoryensis KMM3633T (MP), Yersinia ruckeri KMM821 (YR), and Yersinia pseudotuberculosis 598 (YP) from the G.B. Elyakov Pacific Institute of Bioorganic Chemistry were studied by means of genomic and bioinformatic methods. The list of membrane translocator proteins, metabolism pathways, and cold shock and antifreeze proteins that were revealed in the genome of MP characterized this bacterium as being adaptable to free living in marine conditions, even at winter temperatures. The genomic potential of YR and YP makes not only survival in the environment of the Pan-Okhotsk region but also pathogenesis in eukaryotic organisms possible. The data obtained will serve as a basis for further ecosystem monitoring with the help of microbiota research.
Collapse
|
9
|
Gurung JM, Amer AAA, Chen S, Diepold A, Francis MS. Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain. Mol Microbiol 2022; 117:886-906. [PMID: 35043994 PMCID: PMC9303273 DOI: 10.1111/mmi.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remains unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified a N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signalless β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Mitrović B, Lezerovich S, Sal-Man N. The Role of the Membrane-Associated Domain of the Export Apparatus Protein, EscV (SctV), in the Activity of the Type III Secretion System. Front Microbiol 2021; 12:719469. [PMID: 34413845 PMCID: PMC8369761 DOI: 10.3389/fmicb.2021.719469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Diarrheal diseases remain a major public health concern worldwide. Many of the causative bacterial pathogens that cause these diseases have a specialized protein complex, the type III secretion system (T3SS), which delivers effector proteins directly into host cells. These effectors manipulate host cell processes for the benefit of the infecting bacteria. The T3SS structure resembles a syringe anchored within the bacterial membrane, projecting toward the host cell membrane. The entry port of the T3SS substrates, called the export apparatus, is formed by five integral membrane proteins. Among the export apparatus proteins, EscV is the largest, and as it forms a nonamer, it constitutes the largest portion of the export apparatus complex. While there are considerable data on the soluble cytoplasmic domain of EscV, our knowledge of its membrane-associated section and its transmembrane domains (TMDs) is still very limited. In this study, using an isolated genetic reporter system, we found that TMD5 and TMD6 of EscV mediate strong self-oligomerization. Substituting these TMDs within the full-length protein with a random hydrophobic sequence resulted in a complete loss of function of the T3SS, further suggesting that the EscV TMD5 and TMD6 sequences have a functional role in addition to their structural role as membrane anchors. As we observed only mild reduction in the ability of the TMD-exchanged variants to integrate into the full or intermediate T3SS complexes, we concluded that EscV TMD5 and TMD6 are not crucial for the global assembly or stability of the T3SS complex but are rather involved in promoting the necessary TMD–TMD interactions within the complex and the overall TMD orientation to allow channel opening for the entry of T3SS substrates.
Collapse
Affiliation(s)
- Boško Mitrović
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Shir Lezerovich
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
11
|
Developing Cyclic Peptomers as Broad-Spectrum Type III Secretion System Inhibitors in Gram-Negative Bacteria. Antimicrob Agents Chemother 2021; 65:e0169020. [PMID: 33875435 PMCID: PMC8373237 DOI: 10.1128/aac.01690-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from nonpathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs but do not inhibit bacterial growth. Here, we describe the identification of an isomer, 4EpDN, that is 2-fold more potent (50% inhibitory concentration [IC50] of 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injectisome T3SS. 4EpDN reduced the number of T3SS needles detected on the surface of Yersinia pseudotuberculosis as detected by microscopy. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.
Collapse
|
12
|
Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, Meuskens I, Linke D, Drescher K, Endesfelder U, Diepold A. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat Commun 2021; 12:1625. [PMID: 33712575 PMCID: PMC7954860 DOI: 10.1038/s41467-021-21863-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach. We show that in Yersinia enterocolitica, low external pH is detected in the periplasm and leads to a partial dissociation of the inner membrane injectisome component SctD, which in turn causes the dissociation of the cytosolic T3SS components. This effect is reversed upon restoration of neutral pH, allowing a fast activation of the T3SS at the native target regions within the host. These findings indicate that the cytosolic components form an adaptive regulatory interface, which regulates T3SS activity in response to environmental conditions.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Lisa Selinger
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitrios Lampaki
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Emma Eisemann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- James Madison University, Harrisonburg, VA, USA
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Endesfelder
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
13
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
14
|
A Reporter System for Fast Quantitative Monitoring of Type 3 Protein Secretion in Enteropathogenic E. coli. Microorganisms 2020; 8:microorganisms8111786. [PMID: 33202599 PMCID: PMC7696366 DOI: 10.3390/microorganisms8111786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The type 3 secretion system is essential for pathogenesis of several human and animal Gram-negative bacterial pathogens. The T3SS comprises a transmembrane injectisome, providing a conduit from the bacterial cytoplasm to the host cell cytoplasm for the direct delivery of effectors (including toxins). Functional studies of T3SS commonly monitor the extracellular secretion of proteins by SDS-PAGE and western blot analysis, which are slow and semi-quantitative in nature. Here, we describe an enzymatic reporter-based quantitative and rapid in vivo assay for T3SS secretion studies in enteropathogenic E. coli (EPEC). The assay monitors the secretion of the fusion protein SctA-PhoA through the injectisome based on a colorimetric assay that quantifies the activity of alkaline phosphatase. We validated the usage of this reporter system by following the secretion in the absence of various injectisome components, including domains of the gatekeeper essential for T3SS function. This platform can now be used for the isolation of mutations, functional analysis and anti-virulence compound screening.
Collapse
|
15
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
16
|
LITESEC-T3SS - Light-controlled protein delivery into eukaryotic cells with high spatial and temporal resolution. Nat Commun 2020; 11:2381. [PMID: 32404906 PMCID: PMC7221075 DOI: 10.1038/s41467-020-16169-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Many bacteria employ a type III secretion system (T3SS) injectisome to translocate proteins into eukaryotic host cells. Although the T3SS can efficiently export heterologous cargo proteins, a lack of target cell specificity currently limits its application in biotechnology and healthcare. In this study, we exploit the dynamic nature of the T3SS to govern its activity. Using optogenetic interaction switches to control the availability of the dynamic cytosolic T3SS component SctQ, T3SS-dependent effector secretion can be regulated by light. The resulting system, LITESEC-T3SS (Light-induced translocation of effectors through sequestration of endogenous components of the T3SS), allows rapid, specific, and reversible activation or deactivation of the T3SS upon illumination. We demonstrate the light-regulated translocation of heterologous reporter proteins, and induction of apoptosis in cultured eukaryotic cells. LITESEC-T3SS constitutes a new method to control protein secretion and translocation into eukaryotic host cells with unparalleled spatial and temporal resolution.
Collapse
|
17
|
Westerhausen S, Nowak M, Torres‐Vargas CE, Bilitewski U, Bohn E, Grin I, Wagner S. A NanoLuc luciferase‐based assay enabling the real‐time analysis of protein secretion and injection by bacterial type III secretion systems. Mol Microbiol 2020; 113:1240-1254. [DOI: 10.1111/mmi.14490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sibel Westerhausen
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Tübingen Germany
| | - Melanie Nowak
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Tübingen Germany
- Partner‐site Tübingen German Center for Infection Research (DZIF) Tübingen Germany
| | - Claudia E. Torres‐Vargas
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Tübingen Germany
| | | | - Erwin Bohn
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Tübingen Germany
| | - Iwan Grin
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Tübingen Germany
- Partner‐site Tübingen German Center for Infection Research (DZIF) Tübingen Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Tübingen Germany
- Partner‐site Tübingen German Center for Infection Research (DZIF) Tübingen Germany
| |
Collapse
|
18
|
Drehkopf S, Otten C, Hausner J, Seifert T, Büttner D. HrpB7 from
Xanthomonas campestris
pv.
vesicatoria
is an essential component of the type III secretion system and shares features of HrpO/FliJ/YscO family members. Cell Microbiol 2020; 22:e13160. [DOI: 10.1111/cmi.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Sabine Drehkopf
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Christian Otten
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Jens Hausner
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Tanja Seifert
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Daniela Büttner
- Department of Genetics, Institute of BiologyMartin Luther University Halle‐Wittenberg Halle (Saale) Germany
| |
Collapse
|
19
|
Singh N, Wagner S. Investigating the assembly of the bacterial type III secretion system injectisome by in vivo photocrosslinking. Int J Med Microbiol 2019; 309:151331. [DOI: 10.1016/j.ijmm.2019.151331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
|
20
|
Torres‐Vargas CE, Kronenberger T, Roos N, Dietsche T, Poso A, Wagner S. The inner rod of virulence‐associated type III secretion systems constitutes a needle adapter of one helical turn that is deeply integrated into the system's export apparatus. Mol Microbiol 2019; 112:918-931. [DOI: 10.1111/mmi.14327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claudia E. Torres‐Vargas
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Thales Kronenberger
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Nora Roos
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Tobias Dietsche
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Antti Poso
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
- Partner‐Site Tübingen German Center for Infection Research (DZIF) Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| |
Collapse
|
21
|
Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr Top Microbiol Immunol 2019; 427:35-66. [PMID: 31218503 DOI: 10.1007/82_2019_164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.
| |
Collapse
|
22
|
Verma SK, Gupta A, Batra L, Tuteja U. Escherichia coli expressed flagellin C (FliC) of Salmonella Typhi improved the protective efficacy of YopE against plague infection. Vaccine 2018; 37:19-24. [PMID: 30497835 DOI: 10.1016/j.vaccine.2018.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
In the current antibiotic resistance scenario, vaccines may provide best defense against lethal bacterial diseases. So far, there is no idealvaccine available against plague. Despite providing complete protection in small animal models, F1/LcrV based vaccine failed to provide ideal protection in non human primates. Here, we cloned, expressed and purified YopE of Yersinia pestis and flagellin C (FliC) of Salmonella Typhi. However the best possible protection needs the significant induction of IFN-γ and TNF-α. To determine the protective potential of the recombinant YopE alone or in formulation with FliC, Balb/C mice were immunized subcutaneously. The formulations were prepared with alum, a human compatible adjuvant. In our studies, the combination of YopE + FliC induced significantly strong humoral and cellular immune responses. A combination of YopE + FliC provided 83% protection whereas YopE alone provided only 50% against 100LD50 of Y. pestis in a mouse model.
Collapse
Affiliation(s)
- Shailendra K Verma
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Ankit Gupta
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Lalit Batra
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
23
|
Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:5068689. [PMID: 30107569 PMCID: PMC6140923 DOI: 10.1093/femsle/fny201] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20-150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
Collapse
Affiliation(s)
- Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nidhi Singh
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Claudia E Torres-Vargas
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Sibel Westerhausen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Gurung JM, Amer AAA, Francis MK, Costa TRD, Chen S, Zavialov AV, Francis MS. Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion. Front Cell Infect Microbiol 2018; 8:80. [PMID: 29616194 PMCID: PMC5864894 DOI: 10.3389/fcimb.2018.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/28/2018] [Indexed: 12/29/2022] Open
Abstract
Type III secretion systems harbored by several Gram-negative bacteria are often used to deliver host-modulating effectors into infected eukaryotic cells. About 20 core proteins are needed for assembly of a secretion apparatus. Several of these proteins are genetically and functionally conserved in type III secretion systems of bacteria associated with invertebrate or vertebrate hosts. In the Ysc family of type III secretion systems are two poorly characterized protein families, the YscX family and the YscY family. In the plasmid-encoded Ysc-Yop type III secretion system of human pathogenic Yersinia species, YscX is a secreted substrate while YscY is its non-secreted cognate chaperone. Critically, neither an yscX nor yscY null mutant of Yersinia is capable of type III secretion. In this study, we show that the genetic equivalents of these proteins produced as components of other type III secretion systems of Pseudomonas aeruginosa (PscX and PscY), Aeromonas species (AscX and AscY), Vibrio species (VscX and VscY), and Photorhabdus luminescens (SctX and SctY) all possess an ability to interact with its native cognate partner and also establish cross-reciprocal binding to non-cognate partners as judged by a yeast two-hybrid assay. Moreover, a yeast three-hybrid assay also revealed that these heterodimeric complexes could maintain an interaction with YscV family members, a core membrane component of all type III secretion systems. Despite maintaining these molecular interactions, only expression of the native yscX in the near full-length yscX deletion and native yscY in the near full-length yscY deletion were able to complement for their general substrate secretion defects. Hence, YscX and YscY must have co-evolved to confer an important function specifically critical for Yersinia type III secretion.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Tiago R D Costa
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, Wuhan, China
| | | | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun 2017; 8:15940. [PMID: 28653671 PMCID: PMC5490264 DOI: 10.1038/ncomms15940] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion ‘injectisome’. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in the cytosol. Binding to the injectisome stabilizes these cytosolic complexes, whereas the free cytosolic complexes, which include the type III secretion ATPase, constitute a highly dynamic and adaptive network. The extracellular calcium concentration, which triggers activation of the T3SS, directly influences the cytosolic complexes, possibly through the essential component SctK/YscK, revealing a potential mechanism involved in the regulation of type III secretion. Bacterial type III secretion systems (T3SS) play important roles in pathogenesis. Here, Diepold et al. show the dynamic nature of complexes formed of essential T3SS components in live bacteria, and that extracellular calcium concentrations influence these cytosolic complexes likely via SctK/YscK.
Collapse
|
26
|
Hausner J, Hartmann N, Jordan M, Büttner D. The Predicted Lytic Transglycosylase HpaH from Xanthomonas campestris pv. vesicatoria Associates with the Type III Secretion System and Promotes Effector Protein Translocation. Infect Immun 2017; 85:e00788-16. [PMID: 27895129 PMCID: PMC5278175 DOI: 10.1128/iai.00788-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/20/2016] [Indexed: 02/08/2023] Open
Abstract
The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which spans both bacterial membranes and translocates effector proteins into plant cells. The assembly of the T3S system presumably involves the predicted lytic transglycosylase (LT) HpaH, which is encoded adjacent to the T3S gene cluster. Bacterial LTs degrade peptidoglycan and often promote the formation of membrane-spanning macromolecular protein complexes. In the present study, we show that HpaH localizes to the bacterial periplasm and binds to peptidoglycan as well as to components of the T3S system, including the predicted periplasmic inner rod proteins HrpB1 and HrpB2 as well as the pilus protein HrpE. In vivo translocation assays revealed that HpaH promotes the translocation of various effector proteins and of early substrates of the T3S system, suggesting a general contribution of HpaH to type III-dependent protein export. Mutant studies and the analysis of reporter fusions showed that the N-terminal region of HpaH contributes to protein function and is proteolytically cleaved. The N-terminally truncated HpaH cleavage product is secreted into the extracellular milieu by a yet-unknown transport pathway, which is independent of the T3S system.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nadine Hartmann
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Jordan
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Francis MS, Amer AAA, Milton DL, Costa TRD. Site-Directed Mutagenesis and Its Application in Studying the Interactions of T3S Components. Methods Mol Biol 2017; 1531:11-31. [PMID: 27837478 DOI: 10.1007/978-1-4939-6649-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Type III secretion systems are a prolific virulence determinant among Gram-negative bacteria. They are used to paralyze the host cell, which enables bacterial pathogens to establish often fatal infections-unless an effective therapeutic intervention is available. However, as a result of a catastrophic rise in infectious bacteria resistant to conventional antibiotics, these bacteria are again a leading cause of worldwide mortality. Hence, this report describes a pDM4-based site-directed mutagenesis strategy that is assisting in our foremost objective to better understand the fundamental workings of the T3SS, using Yersinia as a model pathogenic bacterium. Examples are given that clearly document how pDM4-mediated site-directed mutagenesis has been used to establish clean point mutations and in-frame deletion mutations that have been instrumental in identifying and understanding the molecular interactions between components of the Yersinia type III secretion system.
Collapse
Affiliation(s)
- Matthew S Francis
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden.
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden.
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Debra L Milton
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Department of Biological and Environmental Sciences, Troy University, Troy, AL, USA
| | - Tiago R D Costa
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Umeå Centre for Microbial Research, Umeå University, 6K och 6L, Sjukhusområdet, Umeå, 901 87, Sweden
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, UK
| |
Collapse
|
28
|
Ho O, Rogne P, Edgren T, Wolf-Watz H, Login FH, Wolf-Watz M. Characterization of the Ruler Protein Interaction Interface on the Substrate Specificity Switch Protein in the Yersinia Type III Secretion System. J Biol Chem 2016; 292:3299-3311. [PMID: 28039361 DOI: 10.1074/jbc.m116.770255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/29/2016] [Indexed: 12/29/2022] Open
Abstract
Many pathogenic Gram-negative bacteria use the type III secretion system (T3SS) to deliver effector proteins into eukaryotic host cells. In Yersinia, the switch to secretion of effector proteins is induced first after intimate contact between the bacterium and its eukaryotic target cell has been established, and the T3SS proteins YscP and YscU play a central role in this process. Here we identify the molecular details of the YscP binding site on YscU by means of nuclear magnetic resonance (NMR) spectroscopy. The binding interface is centered on the C-terminal domain of YscU. Disrupting the YscU-YscP interaction by introducing point mutations at the interaction interface significantly reduced the secretion of effector proteins and HeLa cell cytotoxicity. Interestingly, the binding of YscP to the slowly self-cleaving YscU variant P264A conferred significant protection against autoproteolysis. The YscP-mediated inhibition of YscU autoproteolysis suggests that the cleavage event may act as a timing switch in the regulation of early versus late T3SS substrates. We also show that YscUC binds to the inner rod protein YscI with a dissociation constant (Kd ) of 3.8 μm and with 1:1 stoichiometry. The significant similarity among different members of the YscU, YscP, and YscI families suggests that the protein-protein interactions discussed in this study are also relevant for other T3SS-containing Gram-negative bacteria.
Collapse
Affiliation(s)
- Oanh Ho
- Department of Chemistry, Chemical Biological Centre
| | - Per Rogne
- Department of Chemistry, Chemical Biological Centre
| | - Tomas Edgren
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, S-901 87 Umeå, Sweden
| | - Hans Wolf-Watz
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, S-901 87 Umeå, Sweden
| | - Frédéric H Login
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|
29
|
Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0020. [PMID: 26370933 DOI: 10.1098/rstb.2015.0020] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
30
|
McNally RR, Zeng Q, Sundin GW. HrcU and HrpP are pathogenicity factors in the fire blight pathogen Erwinia amylovora required for the type III secretion of DspA/E. BMC Microbiol 2016; 16:88. [PMID: 27206522 PMCID: PMC4875606 DOI: 10.1186/s12866-016-0702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Background Many Gram-negative bacterial pathogens mediate host-microbe interactions via utilization of the type III secretion (T3S) system. The T3S system is a complex molecular machine consisting of more than 20 proteins. Collectively, these proteins translocate effectors across extracellular space and into the host cytoplasm. Successful translocation requires timely synthesis and allocation of both structural and secreted T3S proteins. Based on amino acid conservation in animal pathogenic bacteria, HrcU and HrpP were examined for their roles in regulation of T3S hierarchy. Results Both HrcU and HrpP were shown to be required for disease development in an immature pear infection model and respective mutants were unable to induce a hypersensitive response in tobacco. Using in vitro western blot analyses, both proteins were also shown to be required for the secretion of DspA/E, a type 3 effector and an important pathogenicity factor. Via yeast-two hybridization (Y2H), HrpP and HrcU were revealed to exhibit protein-protein binding. Finally, all HrcU and HrpP phenotypes identified were shown to be dependent on a conserved amino acid motif in the cytoplasmic tail of HrcU. Conclusions Collectively, these data demonstrate roles for HrcU and HrpP in regulating T3S and represent the first attempt in understanding T3S heirarchy in E. amylovora. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0702-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Ryan McNally
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.,Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Quan Zeng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
31
|
Phillips AM, Calvo RA, Kearns DB. Functional Activation of the Flagellar Type III Secretion Export Apparatus. PLoS Genet 2015; 11:e1005443. [PMID: 26244495 PMCID: PMC4526659 DOI: 10.1371/journal.pgen.1005443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/15/2015] [Indexed: 11/18/2022] Open
Abstract
Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize.
Collapse
Affiliation(s)
- Andrew M. Phillips
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Rebecca A. Calvo
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival. Infect Immun 2015; 83:2672-85. [PMID: 25895974 DOI: 10.1128/iai.02922-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.
Collapse
|
33
|
Monlezun L, Liebl D, Fenel D, Grandjean T, Berry A, Schoehn G, Dessein R, Faudry E, Attree I. PscI is a type III secretion needle anchoring protein within vitropolymerization capacities. Mol Microbiol 2015; 96:419-36. [DOI: 10.1111/mmi.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Monlezun
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - David Liebl
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Daphna Fenel
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
| | - Teddy Grandjean
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Alice Berry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Guy Schoehn
- Université Grenoble Alpes; Institut de Biologie Structurale (IBS); 71 avenue des Martyrs 38044 Grenoble France
- CNRS; IBS; F-38044 Grenoble France
- CEA; IBS; F-38044 Grenoble France
- Unit for Virus Host Cell Interactions UMI 3265 (UJF-EMBL-CNRS); 38027 Grenoble France
| | - Rodrigue Dessein
- Groupe de Recherche Translationnelle de la Relation Hôte-Pathogène; Faculté de Médecine de l'Université de Lille; 59000 Lille France
| | - Eric Faudry
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| | - Ina Attree
- INSERM; UMR-S 1036; Biology of Cancer and Infection; Grenoble France
- CNRS; Bacterial Pathogenesis and Cellular Responses; ERL 5261 Grenoble France
- Université Grenoble Alpes; F-38041 Grenoble France
- CEA; DSV/iRTSV; F-38054 Grenoble France
| |
Collapse
|
34
|
Plano GV, Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 2014; 57:237-45. [PMID: 24198067 DOI: 10.1007/s12026-013-8454-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Yersinia pestis, the etiologic agent of plague, utilizes a type III secretion system (T3SS) to subvert the defenses of its mammalian hosts. T3SSs are complex nanomachines that allow bacterial pathogens to directly inject effector proteins into eukaryotic cells. The Y. pestis T3SS is not expressed during transit through the flea vector, but T3SS gene expression is rapidly thermoinduced upon entry into a mammalian host. Assembly of the T3S apparatus is a highly coordinated process that requires the homo- and hetero-oligomerization over 20 Yersinia secretion (Ysc) proteins, several assembly intermediates and the T3S process to complete the assembly of the rod and external needle structures. The activation of effector secretion is controlled by the YopN/TyeA/SycN/YscB complex, YscF and LcrG in response to extracellular calcium and/or contact with a eukaryotic cell. Cell contact triggers the T3S process including the secretion and assembly of a pore-forming translocon complex that facilitates the translocation of effector proteins, termed Yersinia outer proteins (Yops), across the eukaryotic membrane. Within the host cell, the Yop effector proteins function to inhibit bacterial phagocytosis and to suppress the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL, 33136, USA,
| | | |
Collapse
|
35
|
EscO, a functional and structural analog of the flagellar FliJ protein, is a positive regulator of EscN ATPase activity of the enteropathogenic Escherichia coli injectisome. J Bacteriol 2014; 196:2227-41. [PMID: 24706741 DOI: 10.1128/jb.01551-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Type III secretion systems (T3SSs) are multiprotein molecular devices used by many Gram-negative bacterial pathogens to translocate effector proteins into eukaryotic cells. A T3SS is also used for protein export in flagellar assembly, which promotes bacterial motility. The two systems are evolutionarily related, possessing highly conserved components in their export apparatuses. Enteropathogenic Escherichia coli (EPEC) employs a T3SS, encoded by genes in the locus of enterocyte effacement (LEE) pathogenicity island, to colonize the human intestine and cause diarrheal disease. In the present work, we investigated the role of the LEE-encoded EscO protein (previously Orf15 or EscA) in T3SS biogenesis. We show that EscO shares similar properties with the flagellar FliJ and the Yersinia YscO protein families. Our findings demonstrate that EscO is essential for secretion of all categories of T3SS substrates. Consistent with its central role in protein secretion, it was found to interact with the ATPase EscN and its negative regulator, EscL, of the export apparatus. Moreover, we show that EscO stimulates EscN enzymatic activity; however, it is unable to upregulate ATP hydrolysis in the presence of EscL. Remarkably, EscO partially restored the swimming defect of a Salmonella flagellar fliJ mutant and was able to stimulate the ATPase activity of FliI. Overall, our data indicate that EscO is the virulence counterpart of the flagellar FliJ protein.
Collapse
|
36
|
Singh AK, Kingston JJ, Murali HS, Batra HV. A recombinant bivalent fusion protein rVE confers active and passive protection against Yersinia enterocolitica infection in mice. Vaccine 2014; 32:1233-9. [DOI: 10.1016/j.vaccine.2014.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/10/2014] [Accepted: 01/15/2014] [Indexed: 01/30/2023]
|
37
|
Diepold A, Wagner S. Assembly of the bacterial type III secretion machinery. FEMS Microbiol Rev 2014; 38:802-22. [PMID: 24484471 DOI: 10.1111/1574-6976.12061] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022] Open
Abstract
Many bacteria that live in contact with eukaryotic hosts, whether as symbionts or as pathogens, have evolved mechanisms that manipulate host cell behaviour to their benefit. One such mechanism, the type III secretion system, is employed by Gram-negative bacterial species to inject effector proteins into host cells. This function is reflected by the overall shape of the machinery, which resembles a molecular syringe. Despite the simplicity of the concept, the type III secretion system is one of the most complex known bacterial nanomachines, incorporating one to more than hundred copies of up to twenty different proteins into a multi-MDa transmembrane complex. The structural core of the system is the so-called needle complex that spans the bacterial cell envelope as a tripartite ring system and culminates in a needle protruding from the bacterial cell surface. Substrate targeting and translocation are accomplished by an export machinery consisting of various inner membrane embedded and cytoplasmic components. The formation of such a multimembrane-spanning machinery is an intricate task that requires precise orchestration. This review gives an overview of recent findings on the assembly of type III secretion machines, discusses quality control and recycling of the system and proposes an integrated assembly model.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
38
|
Cherradi Y, Hachani A, Allaoui A. Spa13 of Shigella flexneri has a dual role: chaperone escort and export gate-activator switch of the type III secretion system. Microbiology (Reading) 2014; 160:130-141. [DOI: 10.1099/mic.0.071712-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type III secretion apparatus (T3SA) is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. The Shigella flexneri T3SA spans the bacterial envelope and its assembly requires the products of ~20 mxi and spa genes. Despite progress made in understanding how the T3SA is assembled, the role of several predicted soluble components, such as Spa13, remains elusive. Here, we show that the secretion defect of the spa13 mutant is associated with lack of T3SA assembly which is partly due to the instability of the needle component MxiH. In contrast to its Yersinia counterpart, Spa13 is not a secreted protein. We identified a network of interactions between Spa13 and the ATPase Spa47, the C-ring protein Spa33, and the inner-membrane protein Spa40. Moreover, we revealed a Spa13 interaction with the inner-membrane MxiA and showed that overexpression of the large cytoplasmic domain of MxiA in the WT background shuts off secretion. Lastly, we demonstrated that Spa13 interacts with the cleaved form of Spa40 and with the translocator chaperone IpgC, suggesting that Spa13 intervenes during the secretion hierarchy switch process. Collectively, our results support a dual role of Spa13 as a chaperone escort and as an export gate-activator switch.
Collapse
Affiliation(s)
- Youness Cherradi
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Abderrahman Hachani
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Abdelmounaaïm Allaoui
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| |
Collapse
|
39
|
Li Y, Li L, Huang L, Francis MS, Hu Y, Chen S. Yersinia Ysc-Yop type III secretion feedback inhibition is relieved through YscV-dependent recognition and secretion of LcrQ. Mol Microbiol 2013; 91:494-507. [PMID: 24344819 DOI: 10.1111/mmi.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 12/29/2022]
Abstract
Human pathogenic Yersinia species share a virulence plasmid encoding the Ysc-Yop type III secretion system (T3SS). A plasmid-encoded anti-activator, LcrQ, negatively regulates the expression of this secretion system. Under inducible conditions, LcrQ is secreted outside of bacterial cells and this activates the T3SS, but the mechanism of targeting LcrQ for type III secretion remains largely unknown. In this study, we characterized the regulatory role of the export apparatus component YscV. Depletion or overexpression of YscV compromised Yop synthesis and this primarily prevented secretion of LcrQ. It followed that a lcrQ deletion reversed the repressive effects of excessive YscV. Further characterization demonstrated that the YscV residues 493-511 located within the C-terminal soluble cytoplasmic domain directly bound with LcrQ. Critically, YscV-LcrQ complex formation was a requirement for LcrQ secretion, since YscVΔ493-511 failed to secrete LcrQ. This forced a cytoplasmic accumulation of LcrQ, which predictably caused the feedback inhibition of Yops synthesis. Based on these observations, we proposed a model for the YscV-dependent secretion of LcrQ and its role in regulating Yop synthesis in Yersinia.
Collapse
Affiliation(s)
- Yunlong Li
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | |
Collapse
|
40
|
Zhou Z, Pang H, Ding Y, Cai J, Huang Y, Jian J, Wu Z. VscO, a putative T3SS chaperone escort of Vibrio alginolyticus, contributes to virulence in fish and is a target for vaccine development. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1523-1531. [PMID: 23994282 DOI: 10.1016/j.fsi.2013.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
Type III secretion system (T3SS) in Vibrio alginolyticus is essential for its pathogenesis. VscO's homologous proteins FliJ, InvI and YscO have been suggested to be putative chaperone escorts although its function in V. alginolyticus is unclear. To investigate the physiological role of VscO, a mutant strain of V. alginolyticus with an in-frame deletion of the vscO gene was constructed in the present study. One finding was that the mRNA expression levels of SycD, VopB and VopD proteins decreased in the ΔvscO mutant. In addition, the ΔvscO mutant showed an attenuated swarming ability and a ten-fold decrease in the virulence to fish. However, the ΔvscO mutant showed no difference in the biofilm formation and ECPase activity. Complementation of the mutant strain with the vscO gene could restore the phenotypes of the wild-type strain. Finally, the recombinant VscO protein caused a high antibody titer and an effective protection against lethal challenge with the wild-type strain V. alginolyticus. These results indicated that VscO protein has a specific role in the pathogenesis of V. alginolyticus and it may be a candidate antigen for development of a subunit vaccine against vibriosis.
Collapse
Affiliation(s)
- Zejun Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Vanden Bergh P, Frey J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol 2013; 7:381-400. [PMID: 24119189 PMCID: PMC4229320 DOI: 10.1111/1751-7915.12091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | |
Collapse
|
42
|
The Aeromonas salmonicida subsp. salmonicida exoproteome: determination of the complete repertoire of Type-Three Secretion System effectors and identification of other virulence factors. Proteome Sci 2013; 11:42. [PMID: 24073886 PMCID: PMC3852671 DOI: 10.1186/1477-5956-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
Background Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. Results Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. Conclusions We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.
Collapse
|
43
|
Functionally essential interaction between Yersinia YscO and the T3S4 domain of YscP. J Bacteriol 2013; 195:4631-8. [PMID: 23935040 DOI: 10.1128/jb.00876-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The type III secretion (T3S) system is essential to the virulence of a large number of Gram-negative bacterial pathogens, including Yersinia. YscO is required for T3S in Yersinia and is known to interact with several other T3S proteins, including the chaperone SycD and the needle length regulator YscP. To define which interactions of YscO are required for T3S, we pursued model-guided mutagenesis: three conserved and surface-exposed regions of modeled YscO were targeted for multiple alanine substitutions. Most of the mutations abrogated T3S and did so in a recessive manner, consistent with a loss of function. Both functional and nonfunctional YscO mutant proteins interacted with SycD, indicating that the mutations had not affected protein stability. Likewise, both functional and nonfunctional versions of YscO were exclusively intrabacterial. Functional and nonfunctional versions of YscO were, however, distinguishable with respect to interaction with YscP. This interaction was observed only for wild-type YscO and a T3S-proficient mutant of YscO but not for the several T3S-deficient mutants of YscO. Evidence is presented that the YscO-YscP interaction is direct and that the type III secretion substrate specificity switch (T3S4) domain of YscP is sufficient for this interaction. These results provide evidence that the interaction of YscO with YscP, and in particular the T3S4 domain of YscP, is essential to type III secretion.
Collapse
|
44
|
Chen L, Ai X, Portaliou AG, Minetti CASA, Remeta DP, Economou A, Kalodimos CG. Substrate-activated conformational switch on chaperones encodes a targeting signal in type III secretion. Cell Rep 2013; 3:709-15. [PMID: 23523349 DOI: 10.1016/j.celrep.2013.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/27/2013] [Accepted: 02/22/2013] [Indexed: 02/07/2023] Open
Abstract
The targeting of type III secretion (TTS) proteins at the injectisome is an important process in bacterial virulence. Nevertheless, how the injectisome specifically recognizes TTS substrates among all bacterial proteins is unknown. A TTS peripheral membrane ATPase protein located at the base of the injectisome has been implicated in the targeting process. We have investigated the targeting of the EspA filament protein and its cognate chaperone, CesAB, to the EscN ATPase of the enteropathogenic E. coli (EPEC). We show that EscN selectively engages the EspA-loaded CesAB but not the unliganded CesAB. Structure analysis revealed that the targeting signal is encoded in a disorder-order structural transition in CesAB that is elicited only upon the binding of its physiological substrate, EspA. Abrogation of the interaction between the CesAB-EspA complex and EscN resulted in severe secretion and infection defects. Additionally, we show that the targeting and secretion signals are distinct and that the two processes are likely regulated by different mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Center of Integrative Proteomics Research and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Dewoody RS, Merritt PM, Marketon MM. Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol 2013; 3:4. [PMID: 23390616 PMCID: PMC3565153 DOI: 10.3389/fcimb.2013.00004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/16/2013] [Indexed: 01/03/2023] Open
Abstract
Yersinia species, as well as many other Gram-negative pathogens, use a type III secretion system (T3SS) to translocate effector proteins from the bacterial cytoplasm to the host cytosol. This T3SS resembles a molecular syringe, with a needle-like shaft connected to a basal body structure, which spans the inner and outer bacterial membranes. The basal body of the injectisome shares a high degree of homology with the bacterial flagellum. Extending from the T3SS basal body is the needle, which is a polymer of a single protein, YscF. The distal end of the needle serves as a platform for the assembly of a tip complex composed of LcrV. Though never directly observed, prevailing models assume that LcrV assists in the insertion of the pore-forming proteins YopB and YopD into the host cell membrane. This completes a bridge between the bacterium and host cell to provide a continuous channel through which effectors are delivered. Significant effort has gone into understanding how the T3SS is assembled, how its substrates are recognized and how substrate delivery is controlled. Arguably the latter topic is the least understood; however, recent advances have provided new insight, and therefore, this review will focus primarily on summarizing the current state of knowledge regarding the control of substrate delivery by the T3SS. Specifically, we will discuss the roles of YopK, as well as YopN and YopE, which have long been linked to regulation of translocation. We also propose models whereby the YopK regulator communicates with the basal body of the T3SS to control translocation.
Collapse
|
46
|
Abstract
Yersinia pestis, the causative agent of plague, uses a type III secretion system (T3SS) to inject cytotoxic Yop proteins directly into the cytosol of mammalian host cells. The T3SS can also be activated in vitro at 37°C in the absence of calcium. The chromosomal gene rfaL (waaL) was recently identified as a virulence factor required for proper function of the T3SS. RfaL functions as a ligase that adds the terminal N-acetylglucosamine to the lipooligosaccharide core of Y. pestis. We previously showed that deletion of rfaL prevents secretion of Yops in vitro. Here we show that the divalent cations calcium, strontium, and magnesium can partially or fully rescue Yop secretion in vitro, indicating that the secretion phenotype of the rfaL mutant may be due to structural changes in the outer membrane and the corresponding feedback inhibition on the T3SS. In support of this, we found that the defect can be overcome by deleting the regulatory gene lcrQ. Consistent with a defective T3SS, the rfaL mutant is less virulent than the wild type. We show here that the virulence defect of the mutant correlates with a decrease in both T3SS gene expression and ability to inject innate immune cells, combined with an increased sensitivity to cationic antimicrobial peptides.
Collapse
|
47
|
Dewoody R, Merritt PM, Marketon MM. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol 2013; 87:301-17. [PMID: 23205707 PMCID: PMC3545096 DOI: 10.1111/mmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/27/2022]
Abstract
Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to intoxicate host cells. The injection of T3SS substrates must be carefully controlled, and dysregulation leads to altered infection kinetics and early clearance of Y. pestis. While the sequence of events leading up to cell contact and initiation of translocation has received much attention, the regulatory events that take place after effector translocation is less understood. Here we show that the regulator YopK is required to maintain fidelity of substrate specificity, in addition to controlling translocation rate. YopK was found to interact with YopD within targeted cells during Y. pestis infection, suggesting that YopK's regulatory mechanism involves a direct interaction with the translocation pore. In addition, we identified a single amino acid in YopK that is essential for translocation rate regulation but is dispensable for maintaining fidelity of translocation. Furthermore, we found that expression of YopK within host cells was sufficient to downregulate translocation rate, but it did not affect translocation fidelity. Together, our data support a model in which YopK is a bifunctional protein whose activities are genetically and spatially distinct such that fidelity control occurs within bacteria and rate control occurs within host cells.
Collapse
|
48
|
Abstract
LcrV, the type III needle cap protein of pathogenic Yersinia, has been proposed to function as a tether between YscF, the needle protein, and YopB-YopD to constitute the injectisome, a conduit for the translocation of effector proteins into host cells. Further, insertion of LcrV-capped needles from a calcium-rich environment into host cells may trigger the low-calcium signal for effector translocation. Here, we used a genetic approach to test the hypothesis that the needle cap responds to the low-calcium signal by promoting injectisome assembly. Growth restriction of Yersinia pestis in the absence of calcium (low-calcium response [LCR(+)] phenotype) was exploited to isolate dominant negative lcrV alleles with missense mutations in its amber stop codon (lcrV(*327)). The addition of at least four amino acids or the eight-residue Strep tag to the C terminus was sufficient to generate an LCR(-) phenotype, with variant LcrV capping type III needles that cannot assemble the YopD injectisome component. The C-terminal Strep tag appears buried within the cap structure, blocking effector transport even in Y. pestis yscF variants that are otherwise calcium blind, a constitutive type III secretion phenotype. Thus, LcrV(*327) mutants arrest the needle cap in a state in which it cannot respond to the low-calcium signal with either injectisome assembly or the activation of type III secretion. Insertion of the Strep tag at other positions of LcrV produced variants with wild-type LCR(+), LCR(-), or dominant negative LCR(-) phenotypes, thereby allowing us to identify discrete sites within LcrV as essential for its attributes as a secretion substrate, needle cap, and injectisome assembly factor.
Collapse
|