1
|
Lu Y, Lin Y, Wang J. Progress on functions of intracellular domain of trimeric ligand-gated ion channels. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:221-230. [PMID: 38310082 PMCID: PMC11057991 DOI: 10.3724/zdxbyxb-2023-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/11/2023] [Indexed: 02/05/2024]
Abstract
Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including N-methyl-D-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.
Collapse
Affiliation(s)
- Yan Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiyu Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Neff R, Kambara K, Bertrand D. Ligand gated receptor interactions: A key to the power of neuronal networks. Biochem Pharmacol 2021; 190:114653. [PMID: 34129858 DOI: 10.1016/j.bcp.2021.114653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The discovery of the chemical synapse was a seminal finding in Neurobiology but the large body of microscopic interactions involved in synaptic transmission could hardly have been foreseen at the time of these first discoveries. Characterization of the molecular players at work at synapses and the increased granularity at which we can now analyze electrical and chemical signal processing that occur in even the simplest neuronal system are shining a new light on receptor interactions. The aim of this review is to discuss the complexity of some representative interactions between excitatory and inhibitory ligand-gated ion channels and/or G protein coupled receptors, as well as other key machinery that can impact neurotransmission and to explain how such mechanisms can be an important determinant of nervous system function.
Collapse
Affiliation(s)
- R Neff
- Janssen R&D, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - K Kambara
- HiQScreen Sàrl, 6 rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - D Bertrand
- HiQScreen Sàrl, 6 rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| |
Collapse
|
3
|
Purinergic Signalling in the Gut. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:91-112. [PMID: 27379638 DOI: 10.1007/978-3-319-27592-5_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5'-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.
Collapse
|
4
|
Li Q, Michel K, Annahazi A, Demir IE, Ceyhan GO, Zeller F, Komorowski L, Stöcker W, Beyak MJ, Grundy D, Farrugia G, De Giorgio R, Schemann M. Anti-Hu antibodies activate enteric and sensory neurons. Sci Rep 2016; 6:38216. [PMID: 27905561 PMCID: PMC5131267 DOI: 10.1038/srep38216] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
IgG of type 1 anti-neuronal nuclear antibody (ANNA-1, anti-Hu) specificity is a serological marker of paraneoplastic neurological autoimmunity (including enteric/autonomic) usually related to small-cell lung carcinoma. We show here that IgG isolated from such sera and also affinity-purified anti-HuD label enteric neurons and cause an immediate spike discharge in enteric and visceral sensory neurons. Both labelling and activation of enteric neurons was prevented by preincubation with the HuD antigen. Activation of enteric neurons was inhibited by the nicotinic receptor antagonists hexamethonium and dihydro-β-erythroidine and reduced by the P2X antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid (PPADS) but not by the 5-HT3 antagonist tropisetron or the N-type Ca-channel blocker ω-Conotoxin GVIA. Ca++ imaging experiments confirmed activation of enteric neurons but not enteric glia. These findings demonstrate a direct excitatory action of ANNA-1, in particular anti-HuD, on visceral sensory and enteric neurons, which involves nicotinic and P2X receptors. The results provide evidence for a novel link between nerve activation and symptom generation in patients with antibody-mediated gut dysfunction.
Collapse
Affiliation(s)
- Qin Li
- Human Biology, Technical University of Munich, Freising, Germany.,Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Klaus Michel
- Human Biology, Technical University of Munich, Freising, Germany
| | - Anita Annahazi
- Human Biology, Technical University of Munich, Freising, Germany
| | - Ihsan E Demir
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich; Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich; Munich, Germany
| | | | - Lars Komorowski
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Michael J Beyak
- GI Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | - Roberto De Giorgio
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research, University of Bologna, Bologna, Italy
| | - Michael Schemann
- Human Biology, Technical University of Munich, Freising, Germany
| |
Collapse
|
5
|
Elnozahi NA, AlQot HE, Mohy El-Din MM, Bistawroos AE, Abou Zeit-Har MS. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors. Neuroscience 2016; 326:45-55. [PMID: 27060487 DOI: 10.1016/j.neuroscience.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/28/2022]
Abstract
This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction.
Collapse
Affiliation(s)
- Neveen A Elnozahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| | - Hadir E AlQot
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt.
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| | - Azza E Bistawroos
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| | - Mohamed S Abou Zeit-Har
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Azarita, P.O. Box: 21521, Alexandria, Egypt
| |
Collapse
|
6
|
Rodrigues RJ, Almeida T, Díaz-Hernández M, Marques JM, Franco R, Solsona C, Miras-Portugal MT, Ciruela F, Cunha RA. Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology 2016; 105:241-257. [PMID: 26801076 DOI: 10.1016/j.neuropharm.2016.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/20/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Abstract
Previous studies documented a cross-talk between purinergic P2X (P2XR) and nicotinic acetylcholine receptors (nAChR) in heterologous expression systems and peripheral preparations. We now investigated if this occurred in native brain preparations and probed its physiological function. We found that P2XR and nAChR were enriched in hippocampal terminals, where both P2X1-3R and α3, but not α4, nAChR subunits were located in the active zone and in dopamine-β-hydroxylase-positive hippocampal terminals. Notably, P2XR ligands displaced nAChR binding and nAChR ligands displaced P2XR binding to hippocampal synaptosomes. In addition, a negative P2XR/nAChR cross-talk was observed in the control of the evoked release of noradrenaline from rat hippocampal synaptosomes, characterized by a less-than-additive facilitatory effect upon co-activation of both receptors. This activity-dependent cross-inhibition was confirmed in Xenopus oocytes transfected with P2X1-3Rs and α3β2 (but not α4β2) nAChR. Besides, P2X2 co-immunoprecipitated α3β2 (but not α4β2) nAChR, both in HEK cells and rat hippocampal membranes indicating that this functional interaction is supported by a physical association between P2XR and nAChR. Moreover, eliminating extracellular ATP with apyrase in hippocampal slices promoted the inhibitory effect of the nAChR antagonist tubocurarine on noradrenaline release induced by high- but not low-frequency stimulation. Overall, these results provide integrated biochemical, pharmacological and functional evidence showing that P2X1-3R and α3β2 nAChR are physically and functionally interconnected at the presynaptic level to control excessive noradrenergic terminal activation upon intense synaptic firing in the hippocampus.
Collapse
Affiliation(s)
- Ricardo J Rodrigues
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal.
| | - Teresa Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL, University of Barcelona, 08907, Spain
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, 28040, Spain
| | - Joana M Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028, Spain; CIBERNED, Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Solsona
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL, University of Barcelona, 08907, Spain
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, Complutense University of Madrid, 28040, Spain
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL, University of Barcelona, 08907, Spain; Department of Physiology, Faculty of Sciences, University of Ghent, B-9000, Belgium
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Portugal; Faculty of Medicine, University of Coimbra, 3004-504, Portugal
| |
Collapse
|
7
|
Wieskopf JS, Mathur J, Limapichat W, Post MR, Al-Qazzaz M, Sorge RE, Martin LJ, Zaykin DV, Smith SB, Freitas K, Austin JS, Dai F, Zhang J, Marcovitz J, Tuttle AH, Slepian PM, Clarke S, Drenan RM, Janes J, Al Sharari S, Segall SK, Aasvang EK, Lai W, Bittner R, Richards CI, Slade GD, Kehlet H, Walker J, Maskos U, Changeux JP, Devor M, Maixner W, Diatchenko L, Belfer I, Dougherty DA, Su AI, Lummis SCR, Imad Damaj M, Lester HA, Patapoutian A, Mogil JS. The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Sci Transl Med 2015; 7:287ra72. [PMID: 25972004 PMCID: PMC5018401 DOI: 10.1126/scitranslmed.3009986] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6's role in analgesia is at least partially due to direct interaction and cross-inhibition of α6* nAChRs with P2X2/3 receptors in DRG nociceptors. Finally, we establish the relevance of our results to humans by the observation of genetic association in patients suffering from chronic postsurgical and temporomandibular pain.
Collapse
Affiliation(s)
- Jeffrey S Wieskopf
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Jayanti Mathur
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Walrati Limapichat
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael R Post
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mona Al-Qazzaz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Robert E Sorge
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Loren J Martin
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Dmitri V Zaykin
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shad B Smith
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelen Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Jean-Sebastien Austin
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Feng Dai
- Departments of Anesthesiology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jie Zhang
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jaclyn Marcovitz
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Alexander H Tuttle
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Peter M Slepian
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Sarah Clarke
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Ryan M Drenan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jeff Janes
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Shakir Al Sharari
- Department of Pharmacology, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Samantha K Segall
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eske K Aasvang
- Section for Surgical Pathophysiology, Rigshospitalet, Copenhagen University, 2100 Copenhagen, Denmark
| | - Weike Lai
- Departments of Anesthesiology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Reinhard Bittner
- Department of Surgery, Marienhospital Stuttgart, 70199 Stuttgart, Germany
| | | | - Gary D Slade
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik Kehlet
- Section for Surgical Pathophysiology, Rigshospitalet, Copenhagen University, 2100 Copenhagen, Denmark
| | - John Walker
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Département de Neuroscience, Institute Pasteur, 75724 Paris, France
| | - Jean-Pierre Changeux
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Département de Neuroscience, Institute Pasteur, 75724 Paris, France
| | - Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences and Center for Research on Pain, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William Maixner
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luda Diatchenko
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Faculty of Dentistry, Department of Anesthesia, and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Inna Belfer
- Departments of Anesthesiology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ardem Patapoutian
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, and Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Jeffrey S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada.
| |
Collapse
|
8
|
Limapichat W, Dougherty DA, Lester HA. Subtype-specific mechanisms for functional interaction between α6β4* nicotinic acetylcholine receptors and P2X receptors. Mol Pharmacol 2014; 86:263-74. [PMID: 24966348 PMCID: PMC4152909 DOI: 10.1124/mol.114.093179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 11/22/2022] Open
Abstract
P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between α6β4-containing (α6β4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing α6β4 nAChRs and P2X2, P2X3, or P2X2/3 receptors. A novel form of crosstalk occurs between α6β4 nAChRs and P2X2 receptors. P2X2 receptors were forced into a prolonged desensitized state upon activation by ATP through a mechanism that does not depend on the intracellular C terminus of the P2X2 receptors. Coexpression of α6β4 nAChRs with P2X3 receptors shifts the ATP dose-response relation to the right, even in the absence of acetylcholine (ACh). Moreover, currents become nonadditive when ACh and ATP are coapplied, as previously reported for other Cys-loop receptors interacting with P2X receptors, and this crosstalk is dependent on the presence of the P2X3 C-terminal domain. P2X2 receptors also functionally interact with α6β4β3 but through a different mechanism from α6β4. The interaction with P2X3 receptors is less pronounced for the α6β4β3 nAChR than the α6β4 nAChR. We also measured a functional interaction between the α6β4 nAChRs and the heteromeric P2X2/3 receptor. Experiments with the nAChR channel blocker mecamylamine on P2X2-α6β4 oocytes point to the loss of P2X2 channel activity during the crosstalk, whereas the ion channel pores of the P2X receptors were fully functional and unaltered by the receptor interaction for P2X2-α6β4β3, P2X2/3-α6β4, and P2X2/3-α6β4β3. These results may be relevant to dorsal root ganglion cells and to other neurons that coexpress these receptor subunits.
Collapse
Affiliation(s)
- Walrati Limapichat
- Divisions of Chemistry and Chemical Engineering (W.L., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California
| | - Dennis A Dougherty
- Divisions of Chemistry and Chemical Engineering (W.L., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California
| | - Henry A Lester
- Divisions of Chemistry and Chemical Engineering (W.L., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California
| |
Collapse
|
9
|
Hexamethonium-induced augmentation of the electrical twitch response in the guinea-pig ileum longitudinal muscle–myenteric plexus strip. Neurosci Lett 2014; 577:34-7. [DOI: 10.1016/j.neulet.2014.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/21/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022]
|
10
|
Neuronal P2X2 receptors are mobile ATP sensors that explore the plasma membrane when activated. J Neurosci 2012; 31:16716-30. [PMID: 22090499 DOI: 10.1523/jneurosci.3362-11.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ATP-gated ionotropic P2X2 receptors are widely expressed in neurons. Although the electrophysiological properties of P2X2 receptors have been extensively studied, little is known about the plasma membrane lateral mobility of P2X2 receptors or whether receptor mobility is regulated by ATP. Here we used single-molecule imaging with simultaneous whole-cell voltage-clamp recordings to track quantum dot-labeled P2X2 receptors in the dendrites of rat hippocampal neurons to explore P2X2 receptor mobility and its regulation. We find that plasma membrane P2X2 receptor lateral mobility in dendrites is heterogeneous but mostly Brownian in nature, consisting of mobile and slowly mobile receptor pools. Moreover, lateral mobility is P2X2 subunit and cell specific, is increased in an activation-dependent manner, and is regulated by cytosolic VILIP1, a calcium binding protein. Our data provide the first direct measures of P2X receptor mobility and show that P2X2 receptors are mobile ATP sensors, sampling more of the dendritic plasma membrane in response to ATP.
Collapse
|
11
|
Abstract
In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.
Collapse
|