1
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
2
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
3
|
Italiano CJ, Pu L, Violi JP, Duggin IG, Rodgers KJ. Cysteine biosynthesis contributes to β-methylamino-l-alanine tolerance in Escherichia coli. Res Microbiol 2021; 172:103852. [PMID: 34246779 DOI: 10.1016/j.resmic.2021.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin β-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 μg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.
Collapse
Affiliation(s)
- Carly J Italiano
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Lisa Pu
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Jake P Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Iain G Duggin
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
4
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
5
|
Scott LL, Downing TG. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases. Toxins (Basel) 2017; 10:E22. [PMID: 29286334 PMCID: PMC5793109 DOI: 10.3390/toxins10010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Although cyanobacterial β-N-methylamino-l-alanine (BMAA) has been implicated in the development of Alzheimer's Disease (AD), Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS), no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.
Collapse
Affiliation(s)
- Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| | - Timothy Grant Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| |
Collapse
|
6
|
Scott LL, Downing TG. Β-N-Methylamino-L-Alanine (BMAA) Toxicity Is Gender and Exposure-Age Dependent in Rats. Toxins (Basel) 2017; 10:E16. [PMID: 29280981 PMCID: PMC5793103 DOI: 10.3390/toxins10010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022] Open
Abstract
Cyanobacterial β-N-methylamino-L-alanine (BMAA) has been suggested as a causative or contributory factor in the development of several neurodegenerative diseases. However, no BMAA animal model has adequately shown clinical or behavioral symptoms that correspond to those seen in either Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS) or Parkinson's Disease (PD). We present here the first data that show that when neonatal rats were exposed to BMAA on postnatal days 3, 4 and 5, but not on gestational day 14 or postnatally on days 7 or 10, several AD and/or PD-related behavioral, locomotor and cognitive deficits developed. Male rats exhibited severe unilateral hindlimb splay while whole body tremors could be observed in exposed female rats. BMAA-exposed rats failed to identify and discriminate a learned odor, an early non-motor symptom of PD, and exhibited decreased locomotor activity, decreased exploration and increased anxiety in the open field test. Alterations were also observed in the rats' natural passive defense mechanism, and potential memory deficits and changes to the rat's natural height avoidance behavior could be observed as early as PND 30. Spatial learning, short-term working, reference and long-term memory were also impaired in 90-day-old rats that had been exposed to a single dose of BMAA on PND 3-7. These data suggest that BMAA is a developmental neurotoxin, with specific target areas in the brain and spinal cord.
Collapse
Affiliation(s)
- Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| | - Timothy Grant Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| |
Collapse
|
7
|
Nunn PB. 50 years of research on α-amino-β-methylaminopropionic acid (β-methylaminoalanine). PHYTOCHEMISTRY 2017; 144:271-281. [PMID: 29102875 DOI: 10.1016/j.phytochem.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The isolation of α-amino-β-methylaminopropionic acid from seeds of Cycas circinalis (now C. micronesica Hill) resulted from a purposeful attempt to establish the cause of the profound neurological disease, amyotrophic lateral sclerosis/parkinsonism/dementia, that existed in high frequency amongst the inhabitants of the western Pacific island of Guam (Guam ALS/PD). In the 50 years since its discovery the amino acid has been a stimulus, and sometimes a subject of mockery, for generations of scientists in a remarkably diverse range of subject areas. The number of citations of the original paper has risen in the five decades from a few to 120 within the decade 2007-2016 and continues at a high rate into the next decade. The reasons for this remarkable outcome are discussed and examples from the literature are used to illustrate the wide range of scientific interest that the original paper generated.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, Hampshire PO1 2DT, UK.
| |
Collapse
|
8
|
Chernoff N, Hill DJ, Diggs DL, Faison BD, Francis BM, Lang JR, Larue MM, Le TT, Loftin KA, Lugo JN, Schmid JE, Winnik WM. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:1-47. [PMID: 28598725 PMCID: PMC6503681 DOI: 10.1080/10937404.2017.1297592] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer's disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.
Collapse
Affiliation(s)
- N. Chernoff
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. J. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. L. Diggs
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - B. D. Faison
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC, USA
| | - B. M. Francis
- Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - J. R Lang
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - M. M. Larue
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - T.-T. Le
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | | | - J. N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - J. E. Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - W. M. Winnik
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Scott LL, Downing S, Downing TG. The Evaluation of BMAA Inhalation as a Potential Exposure Route Using a rat Model. Neurotox Res 2017; 33:6-14. [DOI: 10.1007/s12640-017-9742-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
|
10
|
Popova AA, Koksharova OA. Neurotoxic Non-proteinogenic Amino Acid β-N-Methylamino-L-alanine and Its Role in Biological Systems. BIOCHEMISTRY (MOSCOW) 2017; 81:794-805. [PMID: 27677549 DOI: 10.1134/s0006297916080022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer's and Parkinson's diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms.
Collapse
Affiliation(s)
- A A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
11
|
Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model. J Toxicol 2015; 2015:739746. [PMID: 26604922 PMCID: PMC4641925 DOI: 10.1155/2015/739746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is considered to be an “excitotoxin,” and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups.
Collapse
|
12
|
de Munck E, Muñoz-Sáez E, Miguel BG, Solas MT, Martínez A, Arahuetes RM. Morphometric and neurochemical alterations found in l-BMAA treated rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1232-45. [PMID: 26002186 DOI: 10.1016/j.etap.2015.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle paralysis that reflects the motoneurons' degeneration. Several studies support the relationship between β-N-methylamino-l-alanine (l-BMAA), a neurotoxic amino acid produced by cyanobacteria and diatoms, and the sporadic occurrence of ALS and other neurodegenerative diseases. Therefore, the study of its neurotoxicity mechanisms has assumed great relevance in recent years. Recently, our research team has proposed a sporadic ALS animal model by l-BMAA administration in rats, which displays many pathophysiological features of human ALS. In this paper, we deepen the characterization of this model corroborating the occurrence of alterations present in ALS patients such as decreased muscle volume, thinning of the motor cortex, enlarged brain's lateral ventricles, and alteration of both bulbar nuclei and neurotransmitters' levels. Therefore, we conclude that l-BMAA treated rats could be a good model which mimics degenerative features that ALS causes in humans.
Collapse
Affiliation(s)
- Estefanía de Munck
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Emma Muñoz-Sáez
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Begoña G Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - M Teresa Solas
- Departamento de Biología Celular (Morfología Microscópica), Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Ana Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.
| | - Rosa M Arahuetes
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Muñoz-Sáez E, de Munck García E, Arahuetes Portero RM, Martínez A, Solas Alados MT, Miguel BG. Analysis of β-N-methylamino-L-alanine (L-BMAA) neurotoxicity in rat cerebellum. Neurotoxicology 2015; 48:192-205. [PMID: 25898785 DOI: 10.1016/j.neuro.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
Due to its structural similarity to glutamate, L-BMAA could be a trigger for neurodegenerative disorders caused by changes in the intracellular medium, such as increased oxidative stress, mitochondrial dysfunction, impaired synthesis and protein degradation and the imbalance of some enzymes. It is also important to note that according to some published studies, L-BMAA will be incorporated into proteins, causing the alteration of protein homeostasis. Neuronal cells are particularly prone to suffer damage in protein folding and protein accumulation because they have not performed cellular division. In this work, we will analyse the cerebellum impairment triggered by L-BMAA in treated rats. The cerebellum is one of the most important subcortical motor centres and ensures that movements are performed with spatial and temporal precision. Cerebellum damage caused by L-BMAA can contribute to motor impairment. To characterize this neurodegenerative pathology, we first carried out ultrastructure analysis in Purkinje cells showing altered mitochondria, endoplasmic reticulum (ER), and Golgi apparatus (GA). We then performed biochemical assays of GSK3 and TDP-43 in cerebellum, obtaining an increase of both biomarkers with L-BMAA treatment and, finally, performed autophagy studies that revealed a higher level of these processes after treatment. This work provides evidence of cerebellar damage in rats after treatment with L-BMAA. Three months after treatment, affected rats cannot restore the normal functions of the cerebellum regarding motor coordination and postural control.
Collapse
Affiliation(s)
- Emma Muñoz-Sáez
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | | | - Ana Martínez
- Instituto de Química Médica - Centro Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Ma Teresa Solas Alados
- Departamento de Biología Celular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Begoña Gómez Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Delzor A, Couratier P, Boumédiène F, Nicol M, Druet-Cabanac M, Paraf F, Méjean A, Ploux O, Leleu JP, Brient L, Lengronne M, Pichon V, Combès A, El Abdellaoui S, Bonneterre V, Lagrange E, Besson G, Bicout DJ, Boutonnat J, Camu W, Pageot N, Juntas-Morales R, Rigau V, Masseret E, Abadie E, Preux PM, Marin B. Searching for a link between the L-BMAA neurotoxin and amyotrophic lateral sclerosis: a study protocol of the French BMAALS programme. BMJ Open 2014; 4:e005528. [PMID: 25180055 PMCID: PMC4156816 DOI: 10.1136/bmjopen-2014-005528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is the most common motor neurone disease. It occurs in two forms: (1) familial cases, for which several genes have been identified and (2) sporadic cases, for which various hypotheses have been formulated. Notably, the β-N-methylamino-L-alanine (L-BMAA) toxin has been postulated to be involved in the occurrence of sporadic ALS. The objective of the French BMAALS programme is to study the putative link between L-BMAA and ALS. METHODS AND ANALYSIS The programme covers the period from 1 January 2003 to 31 December 2011. Using multiple sources of ascertainment, all the incident ALS cases diagnosed during this period in the area under study (10 counties spread over three French regions) were collected. First, the standardised incidence ratio will be calculated for each municipality under concern. Then, by applying spatial clustering techniques, overincidence and underincidence zones of ALS will be sought. A case-control study, in the subpopulation living in the identified areas, will gather information about patients' occupations, leisure activities and lifestyle habits in order to assess potential risk factors to which they are or have been exposed. Specimens of drinking water, food and biological material (brain tissue) will be examined to assess the presence of L-BMAA in the environment and tissues of ALS cases and controls. ETHICS AND DISSEMINATION The study has been reviewed and approved by the French ethical committee of the CPP SOOM IV (Comité de Protection des Personnes Sud-Ouest & Outre-Mer IV). The results will be published in peer-reviewed journals and presented at national and international conferences.
Collapse
Affiliation(s)
- Aurélie Delzor
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Philippe Couratier
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Farid Boumédiène
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Marie Nicol
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Michel Druet-Cabanac
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - François Paraf
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Annick Méjean
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Olivier Ploux
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Jean-Philippe Leleu
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Luc Brient
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Marion Lengronne
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Saïda El Abdellaoui
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Vincent Bonneterre
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
| | - Emmeline Lagrange
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Gérard Besson
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Dominique J Bicout
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
- Biomathematics and Epidemiology, Environment and Health Prediction in Populations (EPSP), VetAgro Sup, Marcy-l'Etoile, France
| | - Jean Boutonnat
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - William Camu
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Nicolas Pageot
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Raul Juntas-Morales
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Valérie Rigau
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Estelle Masseret
- UMR 5119 ECOSYM, Ecology of Coastal Marine Systems, UM2-CNRS-IRD-Ifremer-UM1, University Montpellier II, Montpellier, France
| | - Eric Abadie
- Environment Resources Laboratory/Languedoc-Roussillon, Ifremer, Sète, France
| | - Pierre-Marie Preux
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Benoît Marin
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| |
Collapse
|
15
|
Non-protein amino acids and neurodegeneration: the enemy within. Exp Neurol 2013; 253:192-6. [PMID: 24374297 DOI: 10.1016/j.expneurol.2013.12.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Animals, in common with plants and microorganisms, synthesise proteins from a pool of 20 protein amino acids (plus selenocysteine and pyrolysine) (Hendrickson et al., 2004). This represents a small proportion (~2%) of the total number of amino acids known to exist in nature (Bell, 2003). Many 'non-protein' amino acids are synthesised by plants, and in some cases constitute part of their chemical armoury against pathogens, predators or other species competing for the same resources (Fowden et al., 1967). Microorganisms can also use selectively toxic amino acids to gain advantage over competing organisms (Nunn et al., 2010). Since non-protein amino acids (and imino acids) are present in legumes, fruits, seeds and nuts, they are ubiquitous in the diets of human populations around the world. Toxicity to humans is unlikely to have been the selective force for their evolution, but they have the clear potential to adversely affect human health. In this review we explore the links between exposure to non-protein amino acids and neurodegenerative disorders in humans. Environmental factors play a major role in these complex disorders which are predominantly sporadic (Coppede et al., 2006). The discovery of new genes associated with neurodegenerative diseases, many of which code for aggregation-prone proteins, continues at a spectacular pace but little progress is being made in identifying the environmental factors that impact on these disorders. We make the case that insidious entry of non-protein amino acids into the human food chain and their incorporation into protein might be contributing significantly to neurodegenerative damage.
Collapse
|
16
|
de Munck E, Muñoz-Sáez E, Miguel BG, Solas MT, Ojeda I, Martínez A, Gil C, Arahuetes RM. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): the first step towards an experimental model for sporadic ALS. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:243-255. [PMID: 23688553 DOI: 10.1016/j.etap.2013.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 05/03/2023]
Abstract
β-N-methylamino-l-alanine (L-BMAA) is a neurotoxic amino acid that has been related to various neurodegenerative diseases. The aim of this work was to analyze the biotoxicity produced by L-BMAA in vivo in rats, trying to elucidate its physiopathological mechanisms and to search for analogies between the found effects and pathologies like Amyotrophic Lateral Sclerosis (ALS). Our data demonstrated that the neurotoxic effects in vivo were dosage-dependent. For evaluating the state of the animals, a neurological evaluation scale was developed as well as a set of functional tests. Ultrastructural cell analysis of spinal motoneurons has revealed alterations both in endoplasmic reticulum and mitochondria. Since GSK3β could play a role in some neuropathological processes, we analyzed the alterations occurring in GSK3β levels in L-BMAA treated rats, we have observed an increase in the active form of GSK3β levels in lumbar spinal cord and motor cerebral cortex. On the other hand, (TAR)-DNA-binding protein 43 (TDP-43) increased in L-BMAA treated animals. Our results indicated that N-acetylaspartate (NAA) declined in animals treated with L-BMAA, and the ratio of N-acetylaspartate/choline (NAA/Cho), N-acetylaspartate/creatine (NAA/Cr) and N-acetylaspartate/choline+creatine (NAA/Cho+Cr) tended to decrease in lumbar spinal cord and motor cortex. This project offers some encouraging results that could help establishing the progress in the development of an animal model of sporadic ALS and L-BMAA could be a useful tool for this purpose.
Collapse
Affiliation(s)
- Estefanía de Munck
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Emma Muñoz-Sáez
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Begoña G Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M Teresa Solas
- Departamento de Biología Celular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Irene Ojeda
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Martínez
- Instituto de Química Médica - Centro Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Carmen Gil
- Instituto de Química Médica - Centro Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Rosa Mª Arahuetes
- Departamento de Biología Animal II, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
17
|
de Munck E, Muñoz-Sáez E, Antonio MT, Pineda J, Herrera A, Miguel BG, Arahuetes RM. Effect of β-N-methylamino-L-alanine on oxidative stress of liver and kidney in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:193-9. [PMID: 23328118 DOI: 10.1016/j.etap.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 05/03/2023]
Abstract
β-N-methylamino-(L)-alanine (L)-BMAA) is a neurotoxic amino acid, found in the majority of cyanbacterial genera tested. Evidence for implication of (L)-BMAA in neurodegenerative disorders, like amyotrophic lateral sclerosis (ALS), relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. The involvement of (L)-BMAA in oxidative stress was demonstrated in several studies in the central nervous system. In the present study, we investigated the effect of (L)-BMAA on the oxidative stress responses of liver and kidney in rats treated by intraperitoneal administration with this amino acid. Oxidative stress was demonstrated by the quantification of lipid peroxidation, the measurement of both catalase and glutathione peroxidase activities, as well as the quantification of glutathione (GSH) levels and the total antioxidant capacity. It was observed that (L)-BMAA caused a significant increase in the degree of lipid peroxidation and catalase activity in both organs. A significant increase in glutathione peroxidase activity was obtained only in liver, whereas glutathione levels were also increased in both organs. The total antioxidant capacity decreased in liver and increased in kidney. These results suggest that the oxidative stress was higher in liver than in kidney, and might be crucial for (L)-BMAA toxicological action.
Collapse
Affiliation(s)
- Estefanía de Munck
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Holtcamp W. The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A110-6. [PMID: 22382274 PMCID: PMC3295368 DOI: 10.1289/ehp.120-a110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
19
|
Is neurodegenerative disease a long-latency response to early-life genotoxin exposure? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:3889-921. [PMID: 22073019 PMCID: PMC3210588 DOI: 10.3390/ijerph8103889] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 01/03/2023]
Abstract
Western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex, a disappearing neurodegenerative disease linked to use of the neurotoxic cycad plant for food and/or medicine, is intensively studied because the neuropathology (tauopathy) is similar to that of Alzheimer's disease. Cycads contain neurotoxic and genotoxic principles, notably cycasin and methylazoxymethanol, the latter sharing chemical relations with nitrosamines, which are derived from nitrates and nitrites in preserved meats and fertilizers, and also used in the rubber and leather industries. This review includes new data that influence understanding of the neurobiological actions of cycad and related genotoxins and the putative mechanisms by which they might trigger neurodegenerative disease.
Collapse
|
20
|
Prado A, Ledezma J, Cubilla-Rios L, Bede JC, Windsor DM. Two Genera of Aulacoscelinae Beetles Reflexively Bleed Azoxyglycosides Found in Their Host Cycads. J Chem Ecol 2011; 37:736-40. [DOI: 10.1007/s10886-011-9977-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
21
|
Excitatory amino acid beta-N-methylamino-L-alanine is a putative environmental neurotoxin. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc100629047l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The amino acid beta-N-methylamino-L-alanine (L-BMAA) has been associated with
the amyotrophic lateral sclerosis/parkinsonismdementia complex in three
distinct western Pacific populations. The putative neurotoxin is produced by
cyanobacteria, which live symbiotically in the roots of cycad trees. L-BMAA
was thought to be a threat only to those few populations whose diet and
medicines rely heavily on cycad seeds. However, the recent discovery that
cyanobacteria from diverse terrestrial, freshwater, and saltwater ecosystems
around the world produce the toxin requires a reassessment of whether it
poses a larger health threat. Therefore, it is proposed that monitoring
L-BMAA levels in cyanobacteria-contaminated water supplies might be prudent.
Collapse
|
22
|
Nunn PB. Three phases of research on beta-N-methylamino-L-alanine (BMAA)--a neurotoxic amino acid. ACTA ACUST UNITED AC 2010; 10 Suppl 2:26-33. [PMID: 19929728 DOI: 10.3109/17482960903272975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This paper discusses various aspects of the research that lead from the discovery of beta-N-methylamino-L-alanine (BMAA) to consider a variety of mechanisms that might explain the acute and chronic toxicities of this non-protein amino acid. Such is the fashion of science that current work represents the third phase of research on this compound over a period of more than 40 years. BMAA is now known to exist not only in the plant genus Cycas, where it is synthesized by symbiotic cyanobacteria in the coralloid roots of the plants, but to be widely distributed in the many sites at which free living cyanobacteria abound.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, UK.
| |
Collapse
|
23
|
Bradley WG, Mash DC. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. ACTA ACUST UNITED AC 2010; 10 Suppl 2:7-20. [PMID: 19929726 DOI: 10.3109/17482960903286009] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excitement about neurogenetics in the last two decades has diverted attention from environmental causes of sporadic ALS. Fifty years ago endemic foci of ALS with a frequency one hundred times that in the rest of the world attracted attention since they offered the possibility of finding the cause for non-endemic ALS throughout the world. Research on Guam suggested that ALS, Parkinson's disease and dementia (the ALS/PDC complex) was due to a neurotoxic non-protein amino acid, beta-methylamino-L-alanine (BMAA), in the seeds of the cycad Cycas micronesica. Recent discoveries that found that BMAA is produced by symbiotic cyanobacteria within specialized roots of the cycads; that the concentration of protein-bound BMAA is up to a hundred-fold greater than free BMAA in the seeds and flour; that various animals forage on the seeds (flying foxes, pigs, deer), leading to biomagnification up the food chain in Guam; and that protein-bound BMAA occurs in the brains of Guamanians dying of ALS/PDC (average concentration 627 microg/g, 5 mM) but not in control brains have rekindled interest in BMAA as a possible trigger for Guamanian ALS/PDC. Perhaps most intriguing is the finding that BMAA is present in brain tissues of North American patients who had died of Alzheimer's disease (average concentration 95 microg/g, 0.8mM); this suggests a possible etiological role for BMAA in non-Guamanian neurodegenerative diseases. Cyanobacteria are ubiquitous throughout the world, so it is possible that all humans are exposed to low amounts of cyanobacterial BMAA, that protein-bound BMAA in human brains is a reservoir for chronic neurotoxicity, and that cyanobacterial BMAA is a major cause of progressive neurodegenerative diseases including ALS worldwide. Though Montine et al., using different HPLC method and assay techniques from those used by Cox and colleagues, were unable to reproduce the findings of Murch et al., Mash and colleagues using the original techniques of Murch et al. have recently confirmed the presence of protein-bound BMAA in the brains of North American patients dying with ALS and Alzheimer's disease (concentrations >100 microg/g) but not in the brains of non-neurological controls or Huntington's disease. We hypothesize that individuals who develop neurodegenerations may have a genetic susceptibility because of inability to prevent BMAA accumulation in brain proteins and that the particular pattern of neurodegeneration that develops depends on the polygenic background of the individual.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, 1120 NW 14 Street, Miami, FL 33136, USA.
| | | |
Collapse
|
24
|
Nunn PB, Bell EA, Watson AA, Nash RJ. Toxicity of Non-protein Amino Acids to Humans and Domestic Animals. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500329] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Non-protein amino acids are common in plants and are present in widely consumed animal feeds and human foods such as alfalfa ( Medicago sativa), which contains canavanine, and lentil ( Lens culinaris), which contains homoarginine. Some occur in wild species that are inadvertently harvested with crop species. Some nonprotein amino acids and metabolites can be toxic to humans, e.g. Lathyrus species contain a neurotoxic oxalyl-amino acid. Some potential toxins may be passed along a food chain via animal intermediates. The increased interest in herbal medicines in the Western countries will increase exposure to such compounds.
Collapse
Affiliation(s)
- Peter B. Nunn
- School of Pharmacy and Biomedical Sciences, St Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - E. Arthur Bell
- Formerly at the School of Biomedical Sciences, King's College London, WC2R 2LS, England, UK
| | - Alison A. Watson
- Phytoquest Limited, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Robert J. Nash
- Phytoquest Limited, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
25
|
Lopicic S, Nedeljkov V, Cemerikic D. Augmentation and ionic mechanism of effect of beta-N-methylamino-L-alanine in presence of bicarbonate on membrane potential of Retzius nerve cells of the leech Haemopis sanguisuga. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:284-92. [PMID: 19272457 DOI: 10.1016/j.cbpa.2009.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022]
Abstract
The role of neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (L-BMAA) as a putative causative agent of Western pacific amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC) has recently been reinvigorated. In view of this data we have investigated the strength and mechanism of effect of L-BMAA in presence of 20 mmol/L bicarbonate (a cofactor for BMAA) on membrane potential of the Leech Haemopis sanguisuga. Our results show that L-BMAA has excitatory effect in bicarbonate containing solution, which is more potent than in nominally bicarbonate free solution. This potentiation by bicarbonate is L-BMAA specific, as it was not exhibited by beta-N-oxalylamino-L-alanine. The effect of L-BMAA was partially blocked by non-NMDA receptor antagonist CNQX. Application of L-BMAA caused a decrease in input membrane resistance, an increase of intracellular sodium activity, and a decrease of intracellular potassium activity. Present findings indicate that BMAA could initiate excitotoxicity through activation of non-NMDA ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Institute for Pathological Physiology, Medical faculty Belgrade, Belgrade, Serbia.
| | | | | |
Collapse
|
26
|
Pegram RA, Nichols T, Etheridge S, Humpage A, LeBlanc S, Love A, Neilan B, Pflugmacher S, Runnegar M, Thacker R. Cyanotoxins Workgroup report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:317-81. [PMID: 18461775 DOI: 10.1007/978-0-387-75865-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Toxin types, toxicokinetics and toxicodynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:383-415. [DOI: 10.1007/978-0-387-75865-7_16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
Karamyan VT, Speth RC. Animal models of BMAA neurotoxicity: a critical review. Life Sci 2007; 82:233-46. [PMID: 18191417 DOI: 10.1016/j.lfs.2007.11.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 01/26/2023]
Abstract
Of all the molecules reported to have toxicological effects, BMAA (beta-methylamino alanine) stands out as having the most checkered past. In the late 1960's it was reported to be a toxic component of the cycad flour consumed by Chamorros on Guam which caused the high incidence of amyotrophic lateral sclerosis (ALS) in Guam, that was associated with a Parkinson's disease-like dementia complex (ALS-PDC). However, because ALS-PDC is a slow onset disease, manifesting itself as long as 30 years following exposure to the putative neurotoxin, and only acute toxic effects of BMAA were observed in animal studies, interest in BMAA waned. A seminal study by Spencer et al., in 1987 showing neurological impairments with long-term BMAA-fed monkeys revived the hypothesis that BMAA could cause ALS-PDC. However, the amounts of BMAA used in that study were viewed as being the equivalent of a person consuming their body weight of cycad flour every day. Again, the BMAA hypothesis was discarded. Recently a third iteration of the BMAA hypothesis has been proposed. It is based on the discovery of a novel dietary source of BMAA via biomagnification of BMAA in flying foxes, once consumed in great amounts by Chamorros. Also, reports that BMAA can be incorporated into plant and animal proteins, a heretofore unrecognized dietary source of BMAA, further solidified this new hypothesis. However, once again this hypothesis has its detractors and it remains controversial. This manuscript critically evaluates in vivo studies directed at establishing an animal model of BMAA-induced ALS-PDC and their implications for this hypothesis.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmacology, School of Pharmacy, University of Mississippi, MS 38677, USA
| | | |
Collapse
|
29
|
Santiago M, Matarredona ER, Machado A, Cano J. Acute perfusion of BMAA in the rat's striatum by in vivo microdialysis. Toxicol Lett 2006; 167:34-9. [PMID: 16979309 DOI: 10.1016/j.toxlet.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/18/2006] [Indexed: 11/27/2022]
Abstract
The present study is concerned with the hypothetical toxicity of beta-N-methylamino-L-alanine (BMAA), a compound that has been hypothesized to produce amyotrophic lateral sclerosis/Parkinson-dementia complex. We have used the microdialysis technique to perfused different concentrations of BMAA in the rat's striatum 24h after the implantation of a microdialysis probe (day 1). BMAA perfusion produced a dose-response increase in the extracellular output of dopamine. Forty-eight hours after implantation of the probe (day 2), we have perfused MPP+ 1 mM to check the integrity of the dopaminergic terminals present around the cannula. Only the highest concentration of BMAA studied, 50mM, produced a clear decrease in the extracellular output of dopamine after MPP+ perfusion. However, this decrease was very similar, even smaller, to that obtained in a previous study carried out by us with MPP+ 1 mM, a dose much lower than that used for BMAA. Our model to study toxicity in the striatal dopaminergic terminal did not show that acute perfusion of BMAA at high doses produces a clear damage to the dopaminergic terminals.
Collapse
Affiliation(s)
- M Santiago
- Departamento de Bioquímica, Facultad de Farmacia, Sevilla, Spain.
| | | | | | | |
Collapse
|
30
|
Cruz-Aguado R, Winkler D, Shaw CA. Lack of behavioral and neuropathological effects of dietary beta-methylamino-L-alanine (BMAA) in mice. Pharmacol Biochem Behav 2006; 84:294-9. [PMID: 16808967 DOI: 10.1016/j.pbb.2006.05.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 11/16/2022]
Abstract
Beta-methylamino-L-alanine (BMAA) is an excitotoxin allegedly involved in ALS-parkinsonism-dementia complex (ALS-PDC), a neurological disorder found in Guam and its surrounding islands, in which motor neuron disease symptoms can present alone or can co-occur with parkinsonism and dementia. Although in vitro experiments have shown BMAA's neurotoxic properties, studies using adult animals and systemic administration which better model the case of environmentally-induced human neurodegenerative diseases have not supported the involvement of BMAA in these disorders. In order to better test the hypothesized role of BMAA in neurodegeneration, we fed adult mice BMAA at a dose (28 mg/kg body weight, daily for 30 days) that reproduces the natural levels and tested the animals with a battery of behavioural tests, the latter including the evaluation of motor coordination, motor neuron-mediated reflexes, locomotion, muscular strength and memory. We also assessed whether BMAA exposure triggers cell death in the central nervous system (CNS) of mice by examining neuronal numbers and glial response in the spinal cord and the brain. No motor, cognitive or neuropathological outcome resulted from this feeding paradigm. Our findings support neither the causal role of BMAA in neurodegeneration nor the specific involvement of this amino acid in ALS-PDC.
Collapse
|
31
|
Stipa G, Taiuti R, de Scisciolo G, Arnetoli G, Tredici MR, Biondi N, Barsanti L, Lolli F. Sporadic amyotrophic lateral sclerosis as an infectious disease: A possible role of cyanobacteria? Med Hypotheses 2006; 67:1363-71. [PMID: 16890380 DOI: 10.1016/j.mehy.2006.04.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 12/14/2022]
Abstract
The available epidemiological data for amyotrophic lateral sclerosis (ALS) support an infectious etiology and lead us to propose a new hypothesis. We examined older epidemiological data concerning categories of the population with increased incidence (aged people, people living in rural areas, farmers, breeders), more recent epidemiological reports regarding Italian soccer players, AIDS patients, people living in highly polluted areas, and reports of cases of conjugal and pregnancy-associated ALS. The toxic and infectious hypotheses lead us to suggest a role for cyanobacteria in the production of endogenous beta-N-methylamino-L-alanine. Infection from a cyanobacterium, or another ubiquitous bacterium having similar characteristics, may be the missing clue to the etiology of ALS. We speculate that ubiquitous bacteria secreting toxic amino acids and "colonizing" tissues and organs in the human body might be the common element linking motor neuron diseases in Guam to sporadic ALS in the rest of the world.
Collapse
Affiliation(s)
- Giuseppe Stipa
- Dipartimento di Scienze Neurologiche e Psichiatriche, Università degli Studi di Firenze, and Neurofisiopatologia-Unità Spinale, Azienda Ospedaliero Universitaria Careggi, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cavanagh JB, Holton JL, Nolan CC. Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability. Neuropathol Appl Neurobiol 2003. [DOI: 10.1111/j.1365-2990.1997.tb01309.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J. B. Cavanagh
- Department of Clinical Neurosciences, Institute of Psychiatry, London and ,
| | - J. L. Holton
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - C. C. Nolan
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| |
Collapse
|
33
|
Bell EA. Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:2854-65. [PMID: 12720365 DOI: 10.1021/jf020880w] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Those nonprotein amino acids found in food and fodder plants and known to be toxic to man and domestic animals are described. These include toxins from many legume genera including Lathyrus, from other higher plant families, from seaweeds, and from fungi. Some inhibit protein synthesis, while others are incorporated into proteins with toxic effects. Basic processes such as urea synthesis and neurotransmission may be disrupted. The probable roles of nonprotein amino acids in protecting plants against predators, pathogens, and competing plant species are considered. The need to learn more of the nutritive value of nontoxic nonprotein amino acids and to explore the potential of others either as drugs or as leads to drugs in human and veterinary medicine is emphasized.
Collapse
Affiliation(s)
- E Arthur Bell
- Neurodegenerative Diseases Research Centre, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, U.K
| |
Collapse
|
34
|
Brownson DM, Mabry TJ, Leslie SW. The cycad neurotoxic amino acid, beta-N-methylamino-L-alanine (BMAA), elevates intracellular calcium levels in dissociated rat brain cells. JOURNAL OF ETHNOPHARMACOLOGY 2002; 82:159-167. [PMID: 12241991 DOI: 10.1016/s0378-8741(02)00170-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Seeds of the Guam cycad Cycas micronesica K.D. Hill (Cycadaceae), which contain ss-methylamino-L-alanine (BMAA), have been implicated in the etiology of the devastating neurodisease ALS-PDC that is found among the native Chamorros on Guam. The disease also occurs in the native populations on Irian Jaya and the Kii Peninsula of Japan, and in all three areas the cycad seeds are used either dietarily or medically. ALS-PDC is a complex of amyotrophic lateral sclerosis and parkinsonism dementia complex with additional symptoms of Alzheimer's. It is well known that Ca(2+) elevations in brain cells can lead to cell death and neurodiseases. Therefore, we evaluated the ability of the cycad toxin BMAA to elevate the intracellular calcium concentration ([Ca(2+)](i)) in dissociated newborn rat brain cells loaded with fura-2 dye. BMAA produced an increase in intracellular calcium levels in a concentration-dependent manner. The increases were dependent not only on extracellular calcium concentrations, but also significantly on the presence of bicarbonate ion. Increasing concentrations of sodium bicarbonate resulted in a potentiation of the BMAA-induced [Ca(2+)](i) elevation. The bicarbonate dependence did not result from the increased sodium concentration or alkalinization of the buffer. Our results support the hypothesis that the neurotoxicity of BMAA is due to an excitotoxic mechanism, involving elevated intracellular calcium levels and bicarbonate. Furthermore, since BMAA alone produced no increase in Ca(2+) levels, these results suggest the involvement of a product of BMAA and CO(2), namely a beta-carbamate, which has a structure similar to other excitatory amino acids (EAA) such as glutamate; thus, the causative agent for ALS-PDC on Guam and elsewhere may be the beta-carbamate of BMAA. These findings support the theory that some forms of other neurodiseases may also involve environmental toxins.
Collapse
Affiliation(s)
- Delia M Brownson
- Department of Botany, School of Biological Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
35
|
Garthwaite G, Garthwaite J. AMPA Neurotoxicity in Rat Cerebellar and Hippocampal Slices: Histological Evidence for Three Mechanisms. Eur J Neurosci 2002; 3:715-728. [PMID: 12106458 DOI: 10.1111/j.1460-9568.1991.tb01668.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitatory amino acid-induced death of central neurons may be mediated by at least two receptor types, the so-called NMDA (N-methyl-d-aspartate) and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors. We have studied the neurodegenerative mechanisms set in motion by AMPA receptor activation using incubated slices of 8-day-old rat cerebellum and hippocampus. In both preparations, AMPA induced a pattern of degeneration that differed markedly from the one previously shown to be elicited by NMDA. In cerebellar slices, AMPA induced the degeneration of most Purkinje cells together with a population of Golgi cells; in hippocampal slices the neurons were affected in the order CA3 > CA1 > dentate granule cells. Three mechanisms could be discerned: an acute one in which neurons (e.g. cerebellar Golgi cells) underwent a rapid degeneration; a delayed one in which the neurons (Purkinje cells and hippocampal neurons) appeared to be only mildly affected immediately after a 30 min exposure but then underwent a protracted degeneration during the postincubation period (1.5 - 3 h); and finally a slow toxicity, which took place during long (2 h) exposures to AMPA (3 - 30 microM). Although Purkinje cells were vulnerable in both cases, the efficacy of AMPA was higher for the delayed mechanism than for the slow one. The pathology displayed by the acutely destroyed Golgi neurons was a classical oedematous necrosis, whereas most neurons vulnerable to the delayed and slow mechanisms displayed a 'dark cell degeneration', whose cytological features bore a close resemblance to those of neurons irreversibly damaged by ischaemia, hypoglycaemia or status epilepticus in vivo.
Collapse
Affiliation(s)
- Giti Garthwaite
- Department of Physiology, University of Liverpool, Brownlow Hill, P.O. Box 147, Liverpool L69 3BX, UK
| | | |
Collapse
|
36
|
Mabry TJ. Selected topics from forty years of natural products research: betalains to flavonoids, antiviral proteins, and neurotoxic nonprotein amino acids. JOURNAL OF NATURAL PRODUCTS 2001; 64:1596-604. [PMID: 11754626 DOI: 10.1021/np010524s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The elucidation by NMR and chemical methods of the unique structure of betanidin, the aglycon of the red-violet beet pigment betanin, forty years ago at the University of Zürich, Switzerland, was the beginning of my plant chemistry research program. Many of the same chemical and spectral techniques developed in Zürich have been used at The University of Texas at Austin for the structure analysis of members of many other classes of natural products including especially flavonoids, terpenoids, and alkaloids. Investigations at UT-Austin have concerned many topics such as biochemical and molecular systematics, biosynthetic pathways, structure-activity relationships, and the medicinal importance of natural products and included studies of antiviral proteins in the genus Phytolacca and neurotoxic nonprotein amino acids from cycads and other sources. Following the betalain story and an account of the early development of my UT-Austin biochemical systematic program, the Phytolacca and neurotoxin investigations are discussed herein.
Collapse
Affiliation(s)
- T J Mabry
- Phytochemical Laboratories, Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
37
|
Abstract
It is generally agreed that ALS/PDC is triggered by a disappearing environmental factor peculiar to the lifestyle of people of the western Pacific (i.e., Guam, Irian Jaya, Indonesia, and the Kii Peninsula of Japan). A strong candidate is the cycad plant genotoxin cycasin, the beta-D-glucoside of methylazoxymethanol (MAM). We propose that prenatal or postnatal exposure to low levels of cycasin/MAM may damage neuronal DNA, compromise DNA repair, perturb neuronal gene expression, and irreversibly alter cell function to precipitate a slowly evolving disease ("slow-toxin" hypothesis). In support of our hypothesis, we have demonstrated the following: 1. DNA from postmitotic rodent central nervous system neurons is particularly sensitive to damage by MAM. 2. MAM reduces DNA repair in human and rodent neurons, whereas DNA-repair inhibitors potentiate MAM-induced DNA damage and toxicity in mature rodent nervous tissue. 3. Human neurons (SY5Y neuroblastoma) that are deficient in DNA repair are susceptible to MAM-induced cytotoxicity and DNA damage, whereas overexpression of DNA repair in similar cells is protective. 4. MAM alters gene expression in SY5Y human neuroblastoma cells and, in the presence of DNA damage and reduced DNA repair, enhances glutamate-modulated expression of tau mRNA in rat primary neurons; the corresponding protein (TAU) is elevated in ALS/PDC and Alzheimer's disease. These findings support a direct relationship between MAM-induced DNA damage and neurotoxicity and suggest the genotoxin may operate in a similar manner in vivo. More broadly, a combination of genotoxin-induced DNA damage (via exogenous and/or endogenous agents) and disturbed DNA repair may be important contributing factors in the slow and progressive degeneration of neurons that is characteristic of sporadic neurodegenerative disease. Preliminary studies demonstrate that DNA repair is reduced in the brain of subjects with western Pacific ALS/PDC, ALS, and Alzheimer's disease, which would increase the susceptibility of brain tissue to DNA damage by endogenous/exogenous genotoxins. Interindividual differences in the extent of prior exposure to DNA-damaging agents and/or the efficiency of its repair might produce population variety in the rate of damage accumulation and explain the susceptibility of certain individuals to sporadic neurodegenerative disease. Studies are underway using DNA-repair proficient and deficient neuronal cell cultures and mutant mice to explore gene-environment interplay with respect to MAM treatment, DNA damage, and DNA repair, and the age-related appearance of neurobehavioral and neuropathological compromise.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology, School of Medicine, Oregon Health Sciences University, Portland 97201, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Glutamic acid is the principal excitatory neurotransmitter in the mammalian central nervous system. Glutamic acid binds to a variety of excitatory amino acid receptors, which are ligand-gated ion channels. It is activation of these receptors that leads to depolarisation and neuronal excitation. In normal synaptic functioning, activation of excitatory amino acid receptors is transitory. However, if, for any reason, receptor activation becomes excessive or prolonged, the target neurones become damaged and eventually die. This process of neuronal death is called excitotoxicity and appears to involve sustained elevations of intracellular calcium levels. Impairment of neuronal energy metabolism may sensitise neurones to excitotoxic cell death. The principle of excitotoxicity has been well-established experimentally, both in in vitro systems and in vivo, following administration of excitatory amino acids into the nervous system. A role for excitotoxicity in the aetiology or progression of several human neurodegenerative diseases has been proposed, which has stimulated much research recently. This has led to the hope that compounds that interfere with glutamatergic neurotransmission may be of clinical benefit in treating such diseases. However, except in the case of a few very rare conditions, direct evidence for a pathogenic role for excitotoxicity in neurological disease is missing. Much attention has been directed at obtaining evidence for a role for excitotoxicity in the neurological sequelae of stroke, and there now seems to be little doubt that such a process is indeed a determining factor in the extent of the lesions observed. Several clinical trials have evaluated the potential of antiglutamate drugs to improve outcome following acute ischaemic stroke, but to date, the results of these have been disappointing. In amyotrophic lateral sclerosis, neurolathyrism, and human immunodeficiency virus dementia complex, several lines of circumstantial evidence suggest that excitotoxicity may contribute to the pathogenic process. An antiglutamate drug, riluzole, recently has been shown to provide some therapeutic benefit in the treatment of amyotrophic lateral sclerosis. Parkinson's disease and Huntington's disease are examples of neurodegenerative diseases where mitochondrial dysfunction may sensitise specific populations of neurones to excitotoxicity from synaptic glutamic acid. The first clinical trials aimed at providing neuroprotection with antiglutamate drugs are currently in progress for these two diseases.
Collapse
Affiliation(s)
- A Doble
- Neuroscience Dept. Rhŏne-Poulenc Rorer S.A., Antony, France
| |
Collapse
|
39
|
Contreras C, Saavedra M, Martinez-Mota L, Ortiz M, Vázquez-Torres M. Crude preparations of Dioon spinulosum dyer neurotoxicity: methylazoxymethanol produces petil mal seizures in susceptible individuals. PHYTOMEDICINE 1998; 5:227-233. [DOI: 10.1016/s0944-7113(98)80033-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
|
40
|
Dawson R, Marschall EG, Chan KC, Millard WJ, Eppler B, Patterson TA. Neurochemical and neurobehavioral effects of neonatal administration of beta-N-methylamino-L-alanine and 3,3'-iminodipropionitrile. Neurotoxicol Teratol 1998; 20:181-92. [PMID: 9536463 DOI: 10.1016/s0892-0362(97)00078-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by a loss of motor neurons in the spinal cord, brain stem, and cortex. The present study examined the neurochemical and neurobehavioral consequences of the neonatal administration of IDPN and BMAA, two neurotoxins previously considered as experimental models of ALS. Sprague-Dawley rat pups (male and female) were injected SC with IDPN or BMAA. The following treatment groups (n = 5-14 per group) were studied; IDPN [100 mg/kg on postnatal days (PNDs) 2, 4, and 6], BMAA-A (500 mg/kg PND 5 only), BMAA-B (500 mg/kg PND 2 and 5), and BMAA-C (100 mg/kg PND 2 and 5). Neurobehavioral testing was performed and the rats were sacrificed at 101 days of age. Monoamine and amino acid content was measured by HPLC in brain regions and the spinal cord. IDPN treatment impaired the righting reflex and decreased forepaw suspension times. BMAA-A and BMAA-B males exhibited an increase in open field behavior. The hindlimb splay of BMAA-A females was increased. Other significant behavioral and endocrine effects were also seen with neonatal IDPN or BMAA treatment. IDPN females had increased spinal cord content of norepinephrine (NE), serotonin, and 5-hydroxyindoleacetic acid (5-HIAA). IDPN males had no alterations in spinal cord content of NE or Glu, but serotonin and 5-HIAA content were increased. BMAA-A and BMAA-B males also had elevated spinal cord 5-HIAA content whereas females were unaffected. Glu and Asp content in the spinal cord was elevated in the female BMAA-C group. Monoamines were also altered in the cerebellum, mediobasal hypothalamus, and hippocampus by IDPN and BMAA treatment. alpha 2-Adrenergic binding sites were increased in the spinal cord by IDPN and in the cerebellum by BMAA treatment. The results of this study clearly demonstrated that both IDPN and BMAA given neonatally can produce changes in motor function and spinal cord neurochemistry, although the pattern of the effects is both treatment and sex dependent. Neonatal exposure to either IDPN or BMAA resulted in permanent changes in adult neurochemistry that may be related to reorganizational effects induced by toxin-mediated neuroplasticity in developing neurons.
Collapse
Affiliation(s)
- R Dawson
- Department of Pharmacodynamics, College of Pharmacy, JHMHC, University of Florida, Gainesville 32610, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Cavanagh JB, Holton JL, Nolan CC, Ray DE, Naik JT, Mantle PG. The effects of the tremorgenic mycotoxin penitrem A on the rat cerebellum. Vet Pathol 1998; 35:53-63. [PMID: 9545135 DOI: 10.1177/030098589803500105] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Within 10 minutes of intraperitoneal injection of penitrem A (3 mg/kg), rats develop severe generalized tremors and ataxia that persist for up to 48 hours. These are accompanied by a three- to fourfold increase in cerebellar cortical blood flow. Mitochondrial swelling occurs in cerebellar stellate and basket cells within 30 minutes of dosing and persists for more than 12 hours without leading to cell death. From 2 hours, Purkinje cell dendrites show early cytoplasmic condensation accompanied by fine vacuolation of smooth endoplasmic reticulum and enlargement of perikaryal mitochondria. From 6 hours, many Purkinje cells develop intense cytoplasmic condensation with eosinophilia that resembles "ischemic cell change," and from 12 hours, many other Purkinje cells show marked watery swelling. Astrocytes begin to swell from 0.5 hours after injection and show hypertrophy of organelles from 6 hours. Also from 6 hours onward, discrete foci of necrosis appear in the granule cell layer, while permeability of overlying meningeal vessels to horseradish peroxidase becomes evident at 8 hours. All changes are more severe in vermis and paravermis. Despite widespread loss of Purkinje cells, the animals' behavior becomes almost normal within a week. While tremor occurs with doses of 1.5 and 0.5 mg/kg, cellular damage is minimal. The tremor mechanism differs from that of harmaline since destruction of inferior olivary nuclei abolishes neither the tremor response to penitrem A nor the cellular damage. No morphological changes are found in other brain regions. The affinities of penitrem A for high-conductance calcium-dependent potassium channels and for gamma-aminobutyric acid receptors with the probability of resultant excitotoxity are considered to be important underlying factors for these changes.
Collapse
Affiliation(s)
- J B Cavanagh
- Department of Clinical Neurosciences, Institute of Psychiatry, London, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
New discoveries are expanding our knowledge of mechanisms involved in amyotrophic lateral sclerosis (ALS) pathogenesis. Some recent advances in our understanding of motoneuron death in familial ALS (fALS) and sporadic ALS (sALS) are reviewed, with emphasis on molecular similarities that may further unite these phenotypically linked diseases.
Collapse
Affiliation(s)
- R G Smith
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
43
|
Seawright AA. Directly toxic effects of plant chemicals which may occur in human and animal foods. NATURAL TOXINS 1995; 3:227-32; discussion 242. [PMID: 7582621 DOI: 10.1002/nt.2620030411] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrrolizidine alkaloids are among the most significant plant chemicals causing disease in animals and humans. After absorption from the gut, the compounds are converted to electrophilic pyrroles in the liver which, apart from causing damage to this organ, may escape to cause injury to extraheptic tissues such as the lungs, heart, and kidneys. A group of compounds more recently found to be associated with neurotoxicity are various polyhydroxyalkaloids which are able to interfere with polysaccharide metabolism. They are able to inhibit lysosomal monosaccharidases by virtue of their structural resemblance to the transition state of particular sugar molecules. The resulting lysosomal storage diseases have pathology identical to that of the respective congenital and heritable lysosomal storage diseases which occur in animals and humans. Consumption of cycad plants by cattle may cause a neurotoxicity characterised mainly by a posterior sensory ataxia. In recent years, cycads are considered to be a risk factor for a spectrum of progressive neuro degenerative diseases of humans in the Western Pacific region. The known toxins in the plant are the methylazoxymethanol glycosides which are hepatotoxic and carcinogenic, and the neurotoxic non-protein amino acid beta-methylaminoalanine. A plant carcinogen which can be of great abundance in the nutritional environment is the illudine norsesquiterpene glucoside ptaquiloside which is found in bracken fern. This is the only plant carcinogen which causes natural outbreaks of bladder and/or intestinal cancer in livestock. Many legumes contain phytooestrogens, notably isoflavones. Consumption of these compounds at high levels by sheep can cause extensive lesions of the genitalia of females and castrated males.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A A Seawright
- National Research Centre for Environmental Toxicology, Coopers Plains, Queensland, Australia
| |
Collapse
|
44
|
Neurotoxins and Neurodegenerative Diseases. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Osborne R, Grove A, Oh P, Mabry TJ, Ng JC, Seawright AA. The magical and medicinal usage of Stangeria eriopus in South Africa. JOURNAL OF ETHNOPHARMACOLOGY 1994; 43:67-72. [PMID: 7967657 DOI: 10.1016/0378-8741(94)90005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The underground caudex of the cycad Stangeria eriopus is used extensively by several ethnic groups in South Africa, mainly as an ingredient in magical potions but also as an emetic. An assessment of two main outlets showed that 3410 plants were sold in the month of July 1992; continued usage of this material now threatens the remaining plant populations. A proximate analysis of the caudex material gives high carbohydrate content with only small percentages of fat, protein, fibre and ash. An unusually high content of sodium sulphate may explain the efficacy of Stangeria-containing preparations as an emetic. The phytosterols sitosterol and stigmasterol are present in a 4:1 ratio while the fatty acid component comprises palmitic, oleic, stearic and arachidic acids. Twelve amino acids were identified in the material, including the non-protein amino acids beta-alanine, gamma-aminobutyric acid and pyroglutamic acid. The candidate neurotoxin beta-N-methylamino-L-alanine could not be detected but cycasin is present at the levels of 0.17% and 0.21% in fresh and dry caudex material, respectively and appears to be accompanied by the related toxin, macrozamin.
Collapse
Affiliation(s)
- R Osborne
- Department of Chemistry, University of Natal, Durban, South Africa
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Excitatory amino acids (EAA) serve important physiological functions in the vertebrate CNS, including participation in fast excitatory synaptic transmission, modulation of synaptic plasticity and regulation of neuronal morphology during development. However, paradoxically they also harbor neurotoxic (excitotoxic) potential, which, if unleashed, can cause widespread degeneration of CNS neurons. Accumulating evidence suggests a role for excitotoxins in a variety of human neuropsychiatric disorders. This paper reviews the classes of EAA receptors in the CNS, the mechanisms underlying EAA-mediated neuronal damage and the role of EAA in specific human disorders.
Collapse
Affiliation(s)
- C F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110
| | | |
Collapse
|
47
|
An Update of the Epidemiology of Western Pacific Amyotrophic Lateral Sclerosis. Neuroepidemiology 1993. [DOI: 10.1016/b978-0-12-504220-8.50009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
48
|
Nitsch R, Frotscher M. Reduction of posttraumatic transneuronal "early gene" activation and dendritic atrophy by the N-methyl-D-aspartate receptor antagonist MK-801. Proc Natl Acad Sci U S A 1992; 89:5197-200. [PMID: 1534412 PMCID: PMC49257 DOI: 10.1073/pnas.89.11.5197] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The removal of a major hippocampal afferent system, the glutamatergic fibers from the entorhinal cortex, results in transneuronal changes in postsynaptic inhibitory neurons using gamma-aminobutyric acid (GABA) as a neurotransmitter. This study shows that these transneuronal alterations are reduced by the selective N-methyl-D-aspartate (NMDA) receptor antagonist (+)-MK-801. Thus, systemic injection of (+)-MK-801 prior to and after entorhinal lesion abolishes the retraction of distal dendrites from the termination zones of degenerating entorhinal fibers and reduces the swelling of their distal segments. Also, entorhinal lesion results in the appearance of c-fos protein-like immunoreactivity in hippocampal neurons and glial cells, which again is blocked by (+)-MK-801 administration. These data suggest that NMDA receptor-mediated neurotoxicity due to postlesional glutamate elevation results in early gene expression and in transneuronal dendritic changes. Similar processes may play a role in Alzheimer's disease, since there is a severe degeneration of the glutamatergic entorhino-hippocampal projection in this neurodegenerative disorder.
Collapse
Affiliation(s)
- R Nitsch
- Institute of Anatomy, University of Freiburg, Federal Republic of Germany
| | | |
Collapse
|
49
|
Spencer PS, Ludolph AC, Kisby GE. Are human neurodegenerative disorders linked to environmental chemicals with excitotoxic properties? Ann N Y Acad Sci 1992; 648:154-60. [PMID: 1322079 DOI: 10.1111/j.1749-6632.1992.tb24533.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
At the present time, it seems unlikely that progressive neurodegenerative diseases, such as ALS, Parkinson's disease, and dementia of the Alzheimer type, are triggered by environmental agents with excitotoxic potential. These include excitotoxic agents that behave as glutamate agonists or disrupt energy metabolism: both types elicit permanent but self-limiting neuronal diseases with patterns of neuronal deficit that reflect selective chemical exposure (MPP+ and parkinsonism), differential susceptibility to energy dysmetabolism (NPA and dystonia), or the distribution of glutamate-receptors (domoic acid and memory loss). If environmental agents play an etiologic role in progressive neurodegenerative diseases, they are likely to target a critical, irreplaceable neuronal molecule that is required to maintain long-term neuronal integrity.
Collapse
Affiliation(s)
- P S Spencer
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland 97201
| | | | | |
Collapse
|
50
|
Duncan MW. beta-Methylamino-L-alanine (BMAA) and amyotrophic lateral sclerosis-parkinsonism dementia of the western Pacific. Ann N Y Acad Sci 1992; 648:161-8. [PMID: 1637043 DOI: 10.1111/j.1749-6632.1992.tb24534.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M W Duncan
- Faculty of Medicine, University of New South Wales, Kensington, Australia
| |
Collapse
|