1
|
Pigolev AV, Miroshnichenko DN, Dolgov SV, Alekseeva VV, Pushin AS, Degtyaryova VI, Klementyeva A, Gorbach D, Leonova T, Basnet A, Frolov AA, Savchenko TV. Endogenously Produced Jasmonates Affect Leaf Growth and Improve Osmotic Stress Tolerance in Emmer Wheat. Biomolecules 2023; 13:1775. [PMID: 38136646 PMCID: PMC10742046 DOI: 10.3390/biom13121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop's tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.
Collapse
Affiliation(s)
- Alexey V. Pigolev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (D.N.M.)
| | - Dmitry N. Miroshnichenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (D.N.M.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.V.D.); (V.V.A.); (A.S.P.); (V.I.D.); (A.K.)
| | - Sergey V. Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.V.D.); (V.V.A.); (A.S.P.); (V.I.D.); (A.K.)
| | - Valeria V. Alekseeva
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.V.D.); (V.V.A.); (A.S.P.); (V.I.D.); (A.K.)
| | - Alexander S. Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.V.D.); (V.V.A.); (A.S.P.); (V.I.D.); (A.K.)
| | - Vlada I. Degtyaryova
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.V.D.); (V.V.A.); (A.S.P.); (V.I.D.); (A.K.)
| | - Anna Klementyeva
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.V.D.); (V.V.A.); (A.S.P.); (V.I.D.); (A.K.)
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (D.G.); (T.L.); (A.A.F.)
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (D.G.); (T.L.); (A.A.F.)
| | - Aditi Basnet
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (D.G.); (T.L.); (A.A.F.)
| | - Andrej A. Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (D.G.); (T.L.); (A.A.F.)
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Tatyana V. Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.V.P.); (D.N.M.)
| |
Collapse
|
2
|
Chieb M, Gachomo EW. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC PLANT BIOLOGY 2023; 23:407. [PMID: 37626328 PMCID: PMC10464363 DOI: 10.1186/s12870-023-04403-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Climate change has exacerbated the effects of abiotic stresses on plant growth and productivity. Drought is one of the most important abiotic stress factors that interfere with plant growth and development. Plant selection and breeding as well as genetic engineering methods used to improve crop drought tolerance are expensive and time consuming. Plants use a myriad of adaptative mechanisms to cope with the adverse effects of drought stress including the association with beneficial microorganisms such as plant growth promoting rhizobacteria (PGPR). Inoculation of plant roots with different PGPR species has been shown to promote drought tolerance through a variety of interconnected physiological, biochemical, molecular, nutritional, metabolic, and cellular processes, which include enhanced plant growth, root elongation, phytohormone production or inhibition, and production of volatile organic compounds. Therefore, plant colonization by PGPR is an eco-friendly agricultural method to improve plant growth and productivity. Notably, the processes regulated and enhanced by PGPR can promote plant growth as well as enhance drought tolerance. This review addresses the current knowledge on how drought stress affects plant growth and development and describes how PGPR can trigger plant drought stress responses at the physiological, morphological, and molecular levels.
Collapse
Affiliation(s)
- Maha Chieb
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA
| | - Emma W Gachomo
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
3
|
Mahmud S, Ullah C, Kortz A, Bhattacharyya S, Yu P, Gershenzon J, Vothknecht UC. Constitutive expression of JASMONATE RESISTANT 1 induces molecular changes that prime the plants to better withstand drought. PLANT, CELL & ENVIRONMENT 2022; 45:2906-2922. [PMID: 35864601 DOI: 10.1111/pce.14402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated Arabidopsis thaliana plants with altered levels of the enzyme JASMONATE RESISTANT 1 (JAR1), which converts jasmonic acid (JA) to jasmonoyl-l-isoleucine (JA-Ile). Analysis of a newly generated overexpression line (35S::JAR1) revealed that constitutively increased JA-Ile production in 35S::JAR1 alters plant development, resulting in stunted growth and delayed flowering. Under drought-stress conditions, 35S::JAR1 plants showed reduced wilting and recovered better from desiccation than the wild type. By contrast, jar1-11 plants with a strong reduction in JA-Ile content were hypersensitive to drought. RNA-sequencing analysis and hormonal profiling of plants under normal and drought conditions provided insights into the molecular reprogramming caused by the alteration in JA-Ile content. Especially 35S::JAR1 plants displayed changes in expression of developmental genes related to growth and flowering. Further transcriptional differences pertained to drought-related adaptive systems, including stomatal density and aperture, but also reactive oxygen species production and detoxification. Analysis of wild type and jar1-11 plants carrying the roGFP-Orp1 sensor support a role of JA-Ile in the alleviation of methyl viologen-induced H2 O2 production. Our data substantiate a role of JA-Ile in abiotic stress response and suggest that JAR1-mediated increase in JA-Ile content primes Arabidopsis towards improved drought stress tolerance.
Collapse
Affiliation(s)
- Sakil Mahmud
- Plant Cell Biology, Institute of Cellular and Moleculara Botany, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Annika Kortz
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sabarna Bhattacharyya
- Plant Cell Biology, Institute of Cellular and Moleculara Botany, University of Bonn, Bonn, Germany
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ute C Vothknecht
- Plant Cell Biology, Institute of Cellular and Moleculara Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Wu Y, Li J, Wang J, Dawuda MM, Liao W, Meng X, Yuan H, Xie J, Tang Z, Lyu J, Yu J. Heme is involved in the exogenous ALA-promoted growth and antioxidant defense system of cucumber seedlings under salt stress. BMC PLANT BIOLOGY 2022; 22:329. [PMID: 35804328 PMCID: PMC9264505 DOI: 10.1186/s12870-022-03717-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/27/2022] [Indexed: 05/23/2023]
Abstract
A biosynthetic precursor of tetrapyrrol, 5-aminolevulinic acid (ALA), is widely used in agricultural production, as an exogenous regulatory substance that effectively regulates plant growth. Previous studies have shown that heme and chlorophyll accumulate in plants under salt stress, when treated with exogenous ALA. In this study, we explored the regulatory role of heme in plants, by spraying 25 mg L-1 ALA onto the leaves of cucumber seedlings treated with heme synthesis inhibitor (2,2'-dipyridyl, DPD) and heme scavenger (hemopexin, Hx), under 50 mmol L-1 NaCl stress. The results showed that NaCl alone and DPD + Hx treatments to cucumber seedlings subjected to salt stress adversely affected their growth, by decreasing biomass accumulation, root activity, and root morphology. In addition, these treatments induced an increase in membrane lipid oxidation, as well as enhancement of anti-oxidase activities, proline content, and glutamate betaine. However, exogenous ALA application increased the plant growth and root architecture indices under NaCl stress, owing to a lack of heme in the seedlings. In addition, cucumber seedlings treated with DPD and Hx showed inhibition of growth under salt stress, but exogenous ALA effectively improved cucumber seedling growth as well as the physiological characteristics; moreover, the regulation of ALA in plants was weakened when heme synthesis was inhibited. Heme biosynthesis and metabolism genes, HEMH and HO1, which are involved in the ALA metabolic pathway, were upregulated under salinity conditions, when ferrochelatase activity was inhibited. Application of exogenous ALA increased the heme content in the leaves. Thus, exogenous ALA may supplement the substrates for heme synthesis. These results indicated that heme plays a vital role in the response of plants to salinity stress. In conclusion, heme is involved in ALA-mediated alleviation of damage caused to cucumber seedlings and acts as a positive regulator of plant adaption.
Collapse
Affiliation(s)
- Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Horticulture, University for Development Studies, Tamale, Ghana
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Yuan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Arid-Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Kućko A, Florkiewicz AB, Wolska M, Miętki J, Kapusta M, Domagalski K, Wilmowicz E. Jasmonate-Dependent Response of the Flower Abscission Zone Cells to Drought in Yellow Lupine. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040527. [PMID: 35214860 PMCID: PMC8877524 DOI: 10.3390/plants11040527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 05/31/2023]
Abstract
Lipid membranes, as primary places of the perception of environmental stimuli, are a source of various oxygenated polyunsaturated fatty acids-oxylipins-functioning as modulators of many signal transduction pathways, e.g., phytohormonal. Among exogenous factors acting on plant cells, special attention is given to drought, especially in highly sensitive crop species, such as yellow lupine. Here, we used this species to analyze the contribution of lipid-related enzymes and lipid-derived plant hormones in drought-evoked events taking place in a specialized group of cells-the flower abscission zone (AZ)-which is responsible for organ detachment from the plant body. We revealed that water deficits in the soil causes lipid peroxidation in these cells and the upregulation of phospholipase D, lipoxygenase, and, concomitantly, jasmonic acid (JA) strongly accumulates in AZ tissue. Furthermore, we followed key steps in JA conjugation and signaling under stressful conditions by monitoring the level and tissue localization of enzyme providing JA derivatives (JASMONATE RESISTANT1) and the JA receptor (CORONATINE INSENSITIVE1). Collectively, drought-triggered AZ activation during the process of flower abscission is closely associated with the lipid modifications, leading to the formation of JA, its conjugation, and induction of signaling pathways.
Collapse
Affiliation(s)
- Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159 Street, 02-776 Warsaw, Poland
| | - Aleksandra Bogumiła Florkiewicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Magdalena Wolska
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Jakub Miętki
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59 Wita Stwosza, 80-308 Gdańsk, Poland;
| | - Krzysztof Domagalski
- Department of Immunology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland;
| | - Emilia Wilmowicz
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Toruń, Poland; (A.B.F.); (M.W.); (J.M.); (E.W.)
| |
Collapse
|
6
|
Bali S, Jamwal VL, Kohli SK, Kaur P, Tejpal R, Bhalla V, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. CHEMOSPHERE 2019; 235:734-748. [PMID: 31280042 DOI: 10.1016/j.chemosphere.2019.06.188] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/15/2019] [Accepted: 06/24/2019] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA) is an important phytohormone associated in defense responses against stress. Crop plants experience heavy metal toxicity and needs to be explored to enhance the crop production. Lead (Pb) is one of the dangerous heavy metal that pollutes soil and water bodies and is released from various sources like discharge from batteries, automobile exhaust, and paints. The present study was designed to evaluate the role of JA (100 nM) on photosynthetic pigments, secondary metabolites, organic acids, and metal ligation compounds in tomato seedlings under different concentrations of Pb (0.25, 0.50, and 0.75 mM). It was observed that Pb treatment declined pigment content, relative water content, and heavy metal tolerance index. Expression of chlorophyllase was also enhanced in Pb-treated seedlings. Seeds primed with JA lowered the expression of chlorophyllase under Pb stress. JA application enhanced the contents of secondary metabolites (total phenols, polyphenols, flavonoids, and anthocyanin) which were confirmed with enhanced expression of chalcone synthase and phenylalanine ammonia lyase in Pb-exposed seedlings. Treatment of JA further elevated the levels of organic acids and metal chelating compounds under Pb toxicity. JA up-regulated the expression of succinate dehydrogenase and fumarate hydratase in Pb-exposed seedlings. Results revealed that seeds primed with JA reduced Pb toxicity by elevating, the levels of photosynthetic pigments, secondary metabolites, osmolytes, metal ligation compounds, organic acids, and polyamine accumulation in tomato seedlings.
Collapse
Affiliation(s)
- Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vijay Lakshmi Jamwal
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu 180 001, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Parminder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ruchi Tejpal
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu 180 001, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hayssam M Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Saudi Arabia; Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
7
|
Asghari M. Impact of jasmonates on safety, productivity and physiology of food crops. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Bali S, Kaur P, Kohli SK, Ohri P, Thukral AK, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P. Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1344-1360. [PMID: 30248858 DOI: 10.1016/j.scitotenv.2018.07.164] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 05/25/2023]
Abstract
Lead (Pb) is one of most toxic heavy metals that adversely affect growth and developmental in plants. It becomes necessary to explore environment safe strategies to ameliorate its toxic effects. Phytohormones play an imperative role in regulating stress protection in plants. Jasmonic acid (JA) is recognized as a potential phytohormone which mediates immune and growth responses to enhance plant survival under stressful environment. The present study was undertaken to evaluate the effect of JA on the growth, metal uptake, gaseous exchange parameters, and on the contents of pigments, osmolytes, and metal chelating compounds in tomato plants under Pb stress during different stages of growth (in 30-, 45-, and 60-day-old plants). We observed a decrease in shoot and root lengths under Pb stress. Treatment of JA improved the shoot and root lengths in the Pb-treated plants. The Pb uptake was increased with the increasing concentrations of Pb, however, seeds pretreated with JA reduced the Pb uptake by the plants. The chlorophyll and carotenoid contents increased by JA treatment in plants under Pb stress. Pre-soaking of seeds in JA, improved gaseous exchange parameters, such as internal CO2 concentration, net photosynthetic rate, stomatal conductance, and transpiration rate under Pb stress. JA enhanced the enzyme activity of ascorbate-glutathione cycle and reduced H2O2 concentration in Pb-treated plants. The contents of osmolyte and metal chelating compounds (total thiols, and non-protein and protein-bound thiols) were increased with the increase in Pb stress. In seeds primed with JA, the contents of osmolytes and metal chelating compounds were further increased in the Pb-treated plants. Our results suggested that treatment of JA ameliorated the toxic effects of Pb stress by reducing the Pb uptake and improving the growth, photosynthetic attributes, activity of ascorbate-glutathione cycle and increasing the contents of osmolytes and metal chelating compounds in the tomato plants.
Collapse
Affiliation(s)
- Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Parminder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ashwani Kumar Thukral
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Leonard Wijaya
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Botany, S.P. College, Srinagar 190001, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Xu Z, Sun M, Jiang X, Sun H, Dang X, Cong H, Qiao F. Glycinebetaine Biosynthesis in Response to Osmotic Stress Depends on Jasmonate Signaling in Watermelon Suspension Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:1469. [PMID: 30369936 PMCID: PMC6194323 DOI: 10.3389/fpls.2018.01469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 05/02/2023]
Abstract
Glycinebetaine is an important non-toxic osmoprotectant, which is accumulated in higher plants under various stresses. The biosynthesis of glycinebetaine achieved via is a two-step oxidation from choline and betaine aldehyde, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Up-regulated gene expression of BADH and CMO induced by stress is clearly observed, but the signal transduction is poorly understood. Here, glycinebetaine accumulation in response to osmotic stress and growth recovery induced by exogenous glycinebetaine were observed in a watermelon cell line. When tracing back to the genome sequence of watermelon, it shows that there exists only one member of ClCMO or ClBADH corresponding to glycinebetaine biosynthesis. Both genes harbor a CGTCA-motif in their promoter region which is involved in methyl jasmonate (MeJA)-responsiveness. Amongst MeJA, Ethephon, abscisic acid (ABA), and salicylic acid (SA), MeJA was most effective in gene inducing the expression of ClCMO and ClBADH, and the accumulation of glycinebetaine could also reach an amount comparable to that after osmotic stress by mannitol. Moreover, when ibuprofen (IBU), a JA biosynthesis inhibitor, was pre-perfused into the cells before osmotic stress, glycinebetaine accumulation was suppressed significantly. Interestingly, newly grown cells can keep a high content of glycinebetaine when they are sub-cultured from osmotic stressed cells. This study suggests that osmotic stress induced glycinebetaine biosynthesis occurs via JA signal transduction and not only plays a key role in osmotic stress resistance but also contributes to osmotic stress hardening.
Collapse
Affiliation(s)
- Zijian Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Mengli Sun
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xuefei Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Xuanmin Dang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| |
Collapse
|
10
|
Zuo C, Tang Y, Fu H, Liu Y, Zhang X, Zhao B, Xu Y. Elucidation and analyses of the regulatory networks of upland and lowland ecotypes of switchgrass in response to drought and salt stresses. PLoS One 2018; 13:e0204426. [PMID: 30248119 PMCID: PMC6152977 DOI: 10.1371/journal.pone.0204426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/09/2018] [Indexed: 02/02/2023] Open
Abstract
Switchgrass is an important bioenergy crop typically grown in marginal lands, where the plants must often deal with abiotic stresses such as drought and salt. Alamo is known to be more tolerant to both stress types than Dacotah, two ecotypes of switchgrass. Understanding of their stress response and adaptation programs can have important implications to engineering more stress tolerant plants. We present here a computational study by analyzing time-course transcriptomic data of the two ecotypes to elucidate and compare their regulatory systems in response to drought and salt stresses. A total of 1,693 genes (target genes or TGs) are found to be differentially expressed and possibly regulated by 143 transcription factors (TFs) in response to drought stress together in the two ecotypes. Similarly, 1,535 TGs regulated by 110 TFs are identified to be involved in response to salt stress. Two regulatory networks are constructed to predict their regulatory relationships. In addition, a time-dependent hidden Markov model is derived for each ecotype responding to each stress type, to provide a dynamic view of how each regulatory network changes its behavior over time. A few new insights about the response mechanisms are predicted from the regulatory networks and the time-dependent models. Comparative analyses between the network models of the two ecotypes reveal key commonalities and main differences between the two regulatory systems. Overall, our results provide new information about the complex regulatory mechanisms of switchgrass responding to drought and salt stresses.
Collapse
Affiliation(s)
- Chunman Zuo
- College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Yuhong Tang
- Noble Research Institute, LLC., Ardmore, OK, United States of America
| | - Hao Fu
- North Automatic Control Technology Institute, Taiyuan, China
| | - Yiming Liu
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xunzhong Zhang
- Department of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Bingyu Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ying Xu
- College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
11
|
Bali S, Kaur P, Sharma A, Ohri P, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P. Jasmonic acid-induced tolerance to root-knot nematodes in tomato plants through altered photosynthetic and antioxidative defense mechanisms. PROTOPLASMA 2018; 255:471-484. [PMID: 28905119 DOI: 10.1007/s00709-017-1160-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/28/2017] [Indexed: 05/04/2023]
Abstract
Plant parasitic nematodes cause severe damage to cultivated crops globally. Management of nematode population is a major concern as chemicals used as nematicides have negative impact on the environment. Natural plant products can be safely used for the control of nematodes. Among various plant metabolites, plant hormones play an essential role in developmental and physiological processes and also assist the plants to encounter stressful conditions. Keeping this in mind, the present study was designed to evaluate the effect of jasmonic acid (JA) on the growth, pigments, polyphenols, antioxidants, osmolytes, and organic acids under nematode infection in tomato seedlings. It was observed that nematode inoculation reduced the growth of seedlings. Treatment with JA improved root growth (32.79%), total chlorophylls (71.51%), xanthophylls (94.63%), anthocyanins (37.5%), and flavonoids content (21.11%) when compared to inoculated seedlings alone. The JA application enhanced the total antioxidant capacity (lipid- and water-soluble antioxidants) by 38.23 and 34.37%, respectively, in comparison to infected seedlings. Confocal studies revealed that there was higher accumulation of glutathione in hormone-treated seedlings under nematode infection. Treatment with JA increased total polyphenols content (74.56%) in comparison to nematode-infested seedlings. JA-treated seedlings also enhanced osmolyte and organic acid contents under nematode stress. Overall, treatment with JA improved growth, enhanced pigment levels, modulated antioxidant content, and enhanced osmolyte and organic acid content in nematode-infected seedlings.
Collapse
Affiliation(s)
- Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Parminder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anket Sharma
- Department of Botany, DAV University, Sarmastpur, Jalandhar, 144012, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - M N Alyemeni
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Leonard Wijaya
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
12
|
Huang SC, Chu SJ, Guo YM, Ji YJ, Hu DQ, Cheng J, Lu GH, Yang RW, Tang CY, Qi JL, Yang YH. Novel mechanisms for organic acid-mediated aluminium tolerance in roots and leaves of two contrasting soybean genotypes. AOB PLANTS 2017; 9:plx064. [PMID: 29302304 PMCID: PMC5739043 DOI: 10.1093/aobpla/plx064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Aluminium (Al) toxicity is one of the most important limiting factors for crop yield in acidic soils. However, the mechanisms that confer Al tolerance still remain largely unknown. To understand the molecular mechanism that confers different tolerance to Al, we performed global transcriptome analysis to the roots and leaves of two contrasting soybean genotypes, BX10 (Al-tolerant) and BD2 (Al-sensitive) under 0 and 50 μM Al3+ treatments, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the expression levels of the genes involved in lipid/carbohydrate metabolism and jasmonic acid (JA)-mediated signalling pathway were highly induced in the roots and leaves of both soybean genotypes. The gene encoding enzymes, including pyruvate kinase, phosphoenolpyruvate carboxylase, ATP-citrate lyase and glutamate-oxaloacetate transaminase 2, associated with organic acid metabolism were differentially expressed in the BX10 roots. In addition, the genes involved in citrate transport were differentially expressed. Among these genes, FRD3b was down-regulated only in BD2, whereas the other two multidrug and toxic compound extrusion genes were up-regulated in both soybean genotypes. These findings confirmed that BX10 roots secreted more citrate than BD2 to withstand Al stress. The gene encoding enzymes or regulators, such as lipoxygenase, 12-oxophytodienoate reductase, acyl-CoA oxidase and jasmonate ZIM-domain proteins, involved in JA biosynthesis and signalling were preferentially induced in BD2 leaves. This finding suggests that the JA defence response was activated, possibly weakening the growth of aerial parts because of excessive resource consumption and ATP biosynthesis deficiency. Our results suggest that the Al sensitivity in some soybean varieties could be attributed to the low level of citrate metabolism and exudation in the roots and the high level of JA-mediated defence response in the leaves.
Collapse
Affiliation(s)
- Shou-Cheng Huang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
- College of Life Science, Anhui Science and Technology University, Fengyang, China
| | - Shu-Juan Chu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Yu-Min Guo
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Ya-Jing Ji
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Dong-Qing Hu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Jing Cheng
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Gui-Hua Lu
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Rong-Wu Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Yi Tang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Jin-Liang Qi
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| | - Yong-Hua Yang
- Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K, Gadzinowska J. Wheat and rye genome confer specific phytohormone profile features and interplay under water stress in two phenotypes of triticale. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:494-509. [PMID: 28756347 DOI: 10.1016/j.plaphy.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 05/04/2023]
Abstract
The aim of the experiment was to determine phytohormone profile of triticale and quality-based relationships between the analyzed groups of phytohormones. The study involved two triticale phenotypes, a long-stemmed one and a semi-dwarf one with Dw1 gene, differing in mechanisms of acclimation to drought and controlled by wheat or rye genome. Water deficit in the leaves triggered a specific phytohormone response in both winter triticale phenotypes attributable to the dominance of wheat (semi-dwarf cultivar) or rye (long-stemmed cultivar) genome. Rye genome in long-stemmed triticale was responsible for specific increase (tillering: gibberellic acid; heading: N6-isopentenyladenine, trans-zeatin-9-riboside, cis-zeatin-9-riboside; flowering: N6-isopentenyladenine, indolebutyric acid, salicylic acid) or decrease (heading: trans-zeatin) in the content of some phytohormones. Wheat genome in semi-dwarf triticale controlled a specific increase in trans-zeatin content at heading and anthesis in gibberellin A1 during anthesis. The greatest number of changes in the phytohormone levels was observed in the generative phase. In both triticale types, the pool of investigated phytohormones was dominated by abscisic acid and gibberellins. The semi-dwarf cultivar with Dw1 gene was less sensitive to gibberellins and its mechanisms of acclimation to water stress were mainly ABA-dependent. An increase in ABA and gibberellins during drought and predominance of these hormones in the total pool of analyzed phytohormones indicated their equal share in drought acclimation mechanisms in long-stemmed cultivar.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland.
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| | - Kinga Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| | - Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| |
Collapse
|
14
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
15
|
Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:591. [PMID: 27242811 PMCID: PMC4864666 DOI: 10.3389/fpls.2016.00591] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/18/2016] [Indexed: 05/19/2023]
Abstract
In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression.
Collapse
Affiliation(s)
| | | | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany, S. P. CollegeSrinagar, India
- *Correspondence: Parvaiz Ahmad,
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
16
|
Kurepin LV, Ivanov AG, Zaman M, Pharis RP, Allakhverdiev SI, Hurry V, Hüner NPA. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. PHOTOSYNTHESIS RESEARCH 2015; 126:221-35. [PMID: 25823797 DOI: 10.1007/s11120-015-0125-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 05/03/2023]
Abstract
Plants subjected to abiotic stresses such as extreme high and low temperatures, drought or salinity, often exhibit decreased vegetative growth and reduced reproductive capabilities. This is often associated with decreased photosynthesis via an increase in photoinhibition, and accompanied by rapid changes in endogenous levels of stress-related hormones such as abscisic acid (ABA), salicylic acid (SA) and ethylene. However, certain plant species and/or genotypes exhibit greater tolerance to abiotic stress because they are capable of accumulating endogenous levels of the zwitterionic osmolyte-glycinebetaine (GB). The accumulation of GB via natural production, exogenous application or genetic engineering, enhances plant osmoregulation and thus increases abiotic stress tolerance. The final steps of GB biosynthesis occur in chloroplasts where GB has been shown to play a key role in increasing the protection of soluble stromal and lumenal enzymes, lipids and proteins, of the photosynthetic apparatus. In addition, we suggest that the stress-induced GB biosynthesis pathway may well serve as an additional or alternative biochemical sink, one which consumes excess photosynthesis-generated electrons, thus protecting photosynthetic apparatus from overreduction. Glycinebetaine biosynthesis in chloroplasts is up-regulated by increases in endogenous ABA or SA levels. In this review, we propose and discuss a model describing the close interaction and synergistic physiological effects of GB and ABA in the process of cold acclimation of higher plants.
Collapse
Affiliation(s)
- Leonid V Kurepin
- Department of Biology and The Biotron Center for Experimental Climate Change Research, University of Western Ontario (Western University), 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden.
| | - Alexander G Ivanov
- Department of Biology and The Biotron Center for Experimental Climate Change Research, University of Western Ontario (Western University), 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
| | - Mohammad Zaman
- Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400, Vienna, Austria
| | - Richard P Pharis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia
- Department of Plant Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
| | - Vaughan Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Norman P A Hüner
- Department of Biology and The Biotron Center for Experimental Climate Change Research, University of Western Ontario (Western University), 1151 Richmond Street N., London, ON, N6A 5B7, Canada
| |
Collapse
|
17
|
Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P. Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. FRONTIERS IN PLANT SCIENCE 2015; 6:1077. [PMID: 26648959 PMCID: PMC4665137 DOI: 10.3389/fpls.2015.01077] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
Present and future food security is a critical issue compounded by the consequences of climate change on agriculture. Stress perception and signal transduction in plants causes changes in gene or protein expression which lead to metabolic and physiological responses. Phytohormones play a central role in the integration of different upstream signals into different adaptive outputs such as changes in the activity of ion-channels, protein modifications, protein degradation, and gene expression. Phytohormone biosynthesis and signaling, and recently also phytohormone crosstalk have been investigated intensively, but the function of jasmonates under abiotic stress is still only partially understood. Although most aspects of jasmonate biosynthesis, crosstalk and signal transduction appear to be similar for biotic and abiotic stress, novel aspects have emerged that seem to be unique for the abiotic stress response. Here, we review the knowledge on the role of jasmonates under drought and salinity. The crosstalk of jasmonate biosynthesis and signal transduction pathways with those of abscisic acid (ABA) is particularly taken into account due to the well-established, central role of ABA under abiotic stress. Likewise, the accumulating evidence of crosstalk of jasmonate signaling with other phytohormones is considered as important element of an integrated phytohormonal response. Finally, protein post-translational modification, which can also occur without de novo transcription, is treated with respect to its implications for phytohormone biosynthesis, signaling and crosstalk. To breed climate-resilient crop varieties, integrated understanding of the molecular processes is required to modulate and tailor particular nodes of the network to positively affect stress tolerance.
Collapse
Affiliation(s)
- Michael Riemann
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rohit Dhakarey
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Hazman
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Berta Miro
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Ajay Kohli
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Makati, Philippines
| | - Peter Nick
- Molecular Cell Biology, Institute of Botany, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
18
|
Savchenko TV, Zastrijnaja OM, Klimov VV. Oxylipins and plant abiotic stress resistance. BIOCHEMISTRY (MOSCOW) 2015; 79:362-75. [PMID: 24910209 DOI: 10.1134/s0006297914040051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.
Collapse
Affiliation(s)
- T V Savchenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
19
|
Bandurska H, Niedziela J, Chadzinikolau T. Separate and combined responses to water deficit and UV-B radiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:98-105. [PMID: 24157212 DOI: 10.1016/j.plantsci.2013.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/08/2013] [Accepted: 09/01/2013] [Indexed: 05/22/2023]
Abstract
Crops and other plants in natural conditions are routinely affected by several stresses acting simultaneously or in sequence. In areas affected by drought, plants may also be exposed to enhanced UV-B radiation (280-315nm). Each of these stress factors differently affects cellular metabolism. A common consequence of plant exposure to the separate action of water deficit and UV-B radiation is the enhanced generation of reactive oxygen species (ROS) causing damage to proteins, lipids, carbohydrates and DNA. Despite this destructive activity, ROS also act as signalling molecules in cellular processes responsible for defence responses. Plants have evolved many physiological and biochemical mechanisms that avoid or tolerate the effects of stress factors. Water deficit avoidance leads to stomatal closure, stimulation of root growth, and accumulation of free proline and other osmolytes. Secondary metabolites (flavonols, flavones and anthocyanins) that accumulate in epidermal cells effectively screen UV-B irradiation and reduce its penetration to mesophyll tissue. The coordinated increased activity of the enzymatic antioxidant defence system such as up-regulation of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase and glutathione reductase is an important mechanism of tolerance to water deficit and UV-B radiation. The accumulation of low molecular antioxidants (proline, glycine betaine, ascorbate and glutathione) can also contribute to tolerance to water deficit. Polyamines, tocopherol, carotenoids, alkaloids, flavonoids and other secondary metabolites participate in the removal of ROS under conditions of increased UV-B radiation. The combination of water deficit and UV-B radiation induces responses that can be antagonistic, additive or synergistic in comparison with the action of single stresses. UV-B radiation may enhance resistance to water deficit and vice versa. Hydrogen peroxide, nitric oxide (NO), abscisic acid (ABA), jasmonic acid, ethylene, and salicylic acid participate in the activation of defence mechanisms. The involvement of these molecules in cross-resistance may rely on activation of enzymatic and non-enzymatic antioxidant systems, enzymes of flavonoid biosynthesis and the accumulation of low-molecular-weight osmolytes as well as regulation of stomatal closure. However, under the conditions of prolonged action of stressors or in the case where one of them is severe, the capacity of the defence system becomes exhausted, leading to damage and even death.
Collapse
Affiliation(s)
- Hanna Bandurska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | | | | |
Collapse
|
20
|
Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 2013; 14:662. [PMID: 24074255 PMCID: PMC3849779 DOI: 10.1186/1471-2164-14-662] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
Background Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Results Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Conclusions Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars.
Collapse
Affiliation(s)
- Yanjie Xu
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumari A, Sairam RK. Moisture stress induced increases in the activity of enzymes of osmolytes biosynthesis are associated with stress tolerance in wheat genotypes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40502-013-0032-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Chen Q, Tao S, Bi X, Xu X, Wang L, Li X. Research progress in physiological and molecular biology mechanism of drought resistance in rice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajmb.2013.32014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Poonam S, Kaur H, Geetika S. Effect of Jasmonic Acid on Photosynthetic Pigments and Stress Markers in <i>Cajanus cajan</i> (L.) Millsp. Seedlings under Copper Stress. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.44100] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Yang D, Ma P, Liang X, Wei Z, Liang Z, Liu Y, Liu F. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots. PHYSIOLOGIA PLANTARUM 2012; 146:173-83. [PMID: 22356467 DOI: 10.1111/j.1399-3054.2012.01603.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tanshinones, a group of active ingredients in Salvia miltiorrhiza, are derived from at least two biosynthetic pathways, which are the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Abscisic acid (ABA) and methyl jasmonate (MJ) are two well-known plant hormones induced by water stress. In this study, effects of polyethylene glycol (PEG), ABA and MJ on tanshinone production in S. miltiorrhiza hairy roots were investigated, and the role of MJ in PEG- and ABA-induced tanshinone production was further elucidated. The results showed that tanshinone production was significantly enhanced by treatments with PEG, ABA and MJ. The mRNA levels of 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS), as well as the enzyme activities of HMGR and DXS were stimulated by all three treatments. PEG and ABA triggered MJ accumulation. Effects of PEG and ABA on tanshinone production were completely abolished by the ABA biosynthesis inhibitor [tungstate (TUN)] and the MJ biosynthesis inhibitor [ibuprofen (IBU)], while effects of MJ were almost unaffected by TUN. In addition, MJ-induced tanshinone production was completely abolished by the MEP pathway inhibitor [fosmidomycin (FOS)], but was just partially arrested by the MVA pathway inhibitor [mevinolin (MEV)]. In conclusion, a signal transduction model was proposed that exogenous applications of PEG and ABA triggered endogenous MJ accumulation by activating ABA signaling pathway to stimulate tanshinone production, while exogenous MJ could directly induce tanshinone production mainly via the MEP pathway in S. miltiorrhiza hairy roots.
Collapse
Affiliation(s)
- Dongfeng Yang
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Portal O, Izquierdo Y, De Vleesschauwer D, Sánchez-Rodríguez A, Mendoza-Rodríguez M, Acosta-Suárez M, Ocaña B, Jiménez E, Höfte M. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis-banana interaction. PLANT CELL REPORTS 2011; 30:913-28. [PMID: 21279642 DOI: 10.1007/s00299-011-1008-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/14/2023]
Abstract
Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.
Collapse
Affiliation(s)
- Orelvis Portal
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5, 54 830, Santa Clara, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li X, Shen X, Li J, Eneji AE, Li Z, Tian X, Duan L. Coronatine alleviates water deficiency stress on winter wheat seedlings. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:616-625. [PMID: 20590992 DOI: 10.1111/j.1744-7909.2010.00958.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With the aim to determine whether coronatine (COR) alleviates drought stress on wheat, two winter wheat (Triticum aestivum L.) cultivars, ChangWu134 (drought-tolerant) and Shan253 (drought-sensitive) were studied under hydroponic conditions. Seedlings at the three-leaf stage were cultured in a Hoagland solution containing COR at 0.1 microM for 24 h, and then exposed to 20% polyethylene glycol 6000 (PEG-6000). Under simulated drought (SD), COR increased the dry weight of shoots and roots of the two cultivars significantly; the root/shoot ratio also increased by 30% for Shan253 and 40% for ChangWu134. Both cultivars treated with COR under SD (0.1COR+PEG) maintained significantly higher relative water content, photosynthesis, transpiration, intercellular concentration of CO(2) and stomatal conductance in leaves than those not treated with PEG. Under drought, COR significantly decreased the relative conductivity and malondialdehyde production, and the loss of 1,1-diphenyl-2-picrylhydrazyl scavenging activity in leaves was significantly alleviated in COR-treated plants. The activity of peroxidase, catalase, glutathione reductase and ascorbate peroxidase were adversely affected by drought. Leaves of plants treated with COR under drought produced less abscisic acid (ABA) than those not treated. Thus, COR might alleviate drought effects on wheat by reducing active oxygen species production, activating antioxidant enzymes and changing the ABA level.
Collapse
Affiliation(s)
- Xiangwen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Filella I, Peñuelas J, Llusià J. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. THE NEW PHYTOLOGIST 2006; 169:135-44. [PMID: 16390425 DOI: 10.1111/j.1469-8137.2005.01570.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses.
Collapse
Affiliation(s)
- Iolanda Filella
- Unitat Ecofisiologia CSIC-CEAB-CREAF, Center for Ecological Research and Forestry Applications (CREAF), Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | |
Collapse
|