1
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, Kamrani S, Modarressi MH, Khani P. DNA vaccines as promising immuno-therapeutics against cancer: a new insight. Front Immunol 2025; 15:1498431. [PMID: 39872522 PMCID: PMC11769820 DOI: 10.3389/fimmu.2024.1498431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention. DNA cancer vaccines are made of plasmid molecules that encode tumor-associated or tumor-specific antigens (TAAs or TSAs), and possibly some other immunomodulatory adjuvants such as pro-inflammatory interleukins. Following the internalization of plasmids into cells, their genes are expressed and the tumor antigens are loaded on major histocompatibility molecules to be presented to T-cells. After the T-cells have been activated, they will look for tumor antigens and destroy the tumor cells upon encountering them. As with any other treatment, there are pros and cons associated with using these vaccines. They are relatively safe, usually well-tolerated, stable, easily mass-produced, cost-effective, and easily stored and transported. They can induce a systemic immune response effective on both the primary tumor and metastases. The main disadvantage of DNA vaccines is their poor immunogenicity. Several approaches including structural modification, combination therapy with conventional and novel cancer treatments (such as chemotherapy, radiotherapy, and immune checkpoint blockade (ICB)), and the incorporation of adjuvants into the plasmid structure have been studied to enhance the vaccine's immunogenicity and improve the clinical outcome of cancer patients. In this review, we will discuss some of the most promising optimization strategies and examine some of the important trials regarding these vaccines.
Collapse
Affiliation(s)
- Alireza Shariati
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arya Khezrpour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Shariati
- Department of Genetics, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
3
|
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther 2023; 8:450. [PMID: 38086815 PMCID: PMC10716479 DOI: 10.1038/s41392-023-01674-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
With the development and regulatory approval of immune checkpoint inhibitors and adoptive cell therapies, cancer immunotherapy has undergone a profound transformation over the past decades. Recently, therapeutic cancer vaccines have shown promise by eliciting de novo T cell responses targeting tumor antigens, including tumor-associated antigens and tumor-specific antigens. The objective was to amplify and diversify the intrinsic repertoire of tumor-specific T cells. However, the complete realization of these capabilities remains an ongoing pursuit. Therefore, we provide an overview of the current landscape of cancer vaccines in this review. The range of antigen selection, antigen delivery systems development the strategic nuances underlying effective antigen presentation have pioneered cancer vaccine design. Furthermore, this review addresses the current status of clinical trials and discusses their strategies, focusing on tumor-specific immunogenicity and anti-tumor efficacy assessment. However, current clinical attempts toward developing cancer vaccines have not yielded breakthrough clinical outcomes due to significant challenges, including tumor immune microenvironment suppression, optimal candidate identification, immune response evaluation, and vaccine manufacturing acceleration. Therefore, the field is poised to overcome hurdles and improve patient outcomes in the future by acknowledging these clinical complexities and persistently striving to surmount inherent constraints.
Collapse
Affiliation(s)
- Ting Fan
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Mingna Zhang
- Postgraduate Training Base, Shanghai East Hospital, Jinzhou Medical University, Shanghai, 200120, China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanlu Cao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
5
|
Aparicio B, Repáraz D, Ruiz M, Llopiz D, Silva L, Vercher E, Theunissen P, Tamayo I, Smerdou C, Igea A, Santisteban M, Gónzalez-Deza C, Lasarte JJ, Hervás-Stubbs S, Sarobe P. Identification of HLA class I-restricted immunogenic neoantigens in triple negative breast cancer. Front Immunol 2022; 13:985886. [PMID: 36405725 PMCID: PMC9666480 DOI: 10.3389/fimmu.2022.985886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/14/2022] [Indexed: 07/20/2023] Open
Abstract
Immune checkpoint inhibitor (ICI)-based immunotherapy in triple negative breast cancer (TNBC) is achieving limited therapeutic results, requiring the development of more potent strategies. Combination of ICI with vaccination strategies would enhance antitumor immunity and response rates to ICI in patients having poorly infiltrated tumors. In heavily mutated tumors, neoantigens (neoAgs) resulting from tumor mutations have induced potent responses when used as vaccines. Thus, our aim was the identification of immunogenic neoAgs suitable as vaccines in TNBC patients. By using whole exome sequencing, RNAseq and HLA binding algorithms of tumor samples from a cohort of eight TNBC patients, we identified a median of 60 mutations/patient, which originated a putative median number of 98 HLA class I-restricted neoAgs. Considering a group of 27 predicted neoAgs presented by HLA-A*02:01 allele in two patients, peptide binding to HLA was experimentally confirmed in 63% of them, whereas 55% were immunogenic in vivo in HLA-A*02:01+ transgenic mice, inducing T-cells against the mutated but not the wild-type peptide sequence. Vaccination with peptide pools or DNA plasmids expressing these neoAgs induced polyepitopic T-cell responses, which recognized neoAg-expressing tumor cells. These results suggest that TNBC tumors harbor neoAgs potentially useful in therapeutic vaccines, opening the way for new combined immunotherapies.
Collapse
Affiliation(s)
- Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Enric Vercher
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Patrick Theunissen
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Ibon Tamayo
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristian Smerdou
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Ana Igea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Santisteban
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Oncología Médica, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Juan J. Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
6
|
Epitope-based minigene vaccine targeting fibroblast activation protein α induces specific immune responses and anti-tumor effects in 4 T1 murine breast cancer model. Int Immunopharmacol 2022; 112:109237. [PMID: 36152535 DOI: 10.1016/j.intimp.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022]
Abstract
Fibroblast activation protein (FAPα) is a tumor stromal antigen expressed by cancer-associated fibroblasts (CAFs) in more than 90 % of malignant epithelial carcinomas. FAPα-based immunotherapy has been reported and showed that FAPα-specific immune response can remold immune microenvironment and contribute to tumor regression. Many FAPα-based vaccines have been investigated in preclinical trials, which can elicit strong and durable cytolytic T lymphocytes (CTL) with good safety. However, epitope-based FAPα vaccines are rarely reported. To break tolerance against self-antigens, analogue epitopes with modified peptides at the anchor residues are typically used to improve epitope immunogenicity. To investigate the feasibility of a FAPα epitope-based vaccine for cancer immunotherapy in vivo, we conducted a preclinical study to identify a homologous CTL epitope of human and mouse FAPα and obtained its analogue epitope in BALB/c mice, and explored the anti-tumor activity of their minigene vaccines in 4 T1 tumor-bearing mice. By using in silico epitope prediction tools and immunogenicity assays, immunodominant epitope FAP.291 (YYFSWLTWV) and its analogue epitope FAP.291I9 (YYFSWLTWI) were identified. The FAP.291-based epitope minigene vaccine successfully stimulated CTLs targeting CAFs and exhibited anti-tumor activity in a 4 T1 murine breast cancer model. Furthermore, although the analogue epitope FAP.291I9 enhanced FAP.291-specific immune responses, improvement of anti-tumor immunity effects was not observed. Check of immunosuppressive factors revealed that the high levels of IL-10, IL-13, myeloid-derived suppressor cells and iNOS induced by FAP.291I9 increased, which considered the main cause of the failure of the analogue epitope-based vaccine. Thus, we demonstrated for the first time that the FAP.291 minigene vaccine could induce mouse CTLs and also function as a tumor regression antigen, providing the basis for future studies of FAPα epitope-based vaccines. This study may also be valuable for further improvement of the immunogenicity of analogue epitope vaccines.
Collapse
|
7
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38:146. [PMID: 30953535 PMCID: PMC6449928 DOI: 10.1186/s13046-019-1154-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| |
Collapse
|
9
|
Abstract
The past several years can be considered a renaissance era in the treatment of metastatic melanoma. Following a 30-year stretch in which oncologists barely put a dent in a very grim overall survival (OS) rate for these patients, things have rapidly changed course with the recent approval of three new melanoma drugs by the FDA. Both oncogene-targeted therapy and immune checkpoint blockade approaches have shown remarkable efficacy in a subset of melanoma patients and have clearly been game-changers in terms of clinical impact. However, most patients still succumb to their disease, and thus, there remains an urgent need to improve upon current therapies. Fortunately, innovations in molecular medicine have led to many silent gains that have greatly increased our understanding of the nature of cancer biology as well as the complex interactions between tumors and the immune system. They have also allowed for the first time a detailed understanding of an individual patient's cancer at the genomic and proteomic level. This information is now starting to be employed at all stages of cancer treatment, including diagnosis, choice of drug therapy, treatment monitoring, and analysis of resistance mechanisms upon recurrence. This new era of personalized medicine will foreseeably lead to paradigm shifts in immunotherapeutic treatment approaches such as individualized cancer vaccines and adoptive transfer of genetically modified T cells. Advances in xenograft technology will also allow for the testing of drug combinations using in vivo models, a truly necessary development as the number of new drugs needing to be tested is predicted to skyrocket in the coming years. This chapter will provide an overview of recent technological developments in cancer research, and how they are expected to impact future diagnosis, monitoring, and development of novel treatments for metastatic melanoma.
Collapse
Affiliation(s)
| | | | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gregory Lizée
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Cancer vaccines. Any future? Arch Immunol Ther Exp (Warsz) 2011; 59:249-59. [PMID: 21644030 DOI: 10.1007/s00005-011-0129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/02/2011] [Indexed: 12/22/2022]
Abstract
The idea that vaccination can be used to fight cancer is not new. Approximately 100 years ago, researchers attempted to stimulate a tumor-specific, therapeutic immune response to tumors by injecting patients with cells and extracts from their own tumors, or tumors of the same type from different individuals. During the last decade, great efforts have been made to develop immunotherapeutic approaches for the treatment of malignant diseases as alternatives to traditional chemo- and radiotherapy. A quintessential goal of immunotherapy in cancer is treatment with vaccines that elicit potent anti-tumor immune responses without side effects. In this article, we have attempted to review some of the most problematic issues facing the development of cancer vaccines. With the prospect of immunosuppression, an ill-designed cancer vaccine can be more harmful than a no-benefit therapy. We have noted that "immunoediting" and "immunodominance" are the premier setbacks in peptide-based vaccines and therefore it appears necessary not only to manipulate the activity of a vast number of principal components but also to finely tune their concentrations in time and space. In the face of all these quandaries, it is at least doubtful that any reliable anti-cancer vaccine strategy will emerge in the near future.
Collapse
|
11
|
TAA polyepitope DNA-based vaccines: a potential tool for cancer therapy. J Biomed Biotechnol 2010; 2010:102758. [PMID: 20617190 PMCID: PMC2896612 DOI: 10.1155/2010/102758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/27/2010] [Indexed: 11/18/2022] Open
Abstract
DNA-based cancer vaccines represent an attractive strategy for inducing immunity to tumor associated antigens (TAAs) in cancer patients. The demonstration that the delivery of a recombinant plasmid encoding epitopes can lead to epitope production, processing, and presentation to CD8+ T-lymphocytes, and the advantage of using a single DNA construct encoding multiple epitopes of one or more TAAs to elicit a broad spectrum of cytotoxic T-lymphocytes has encouraged the development of a variety of strategies aimed at increasing immunogenicity of TAA polyepitope DNA-based vaccines. The polyepitope DNA-based cancer vaccine approach can (a) circumvent the variability of peptide presentation by tumor cells, (b) allow the introduction in the plasmid construct of multiple immunogenic epitopes including heteroclitic epitope versions, and (c) permit to enroll patients with different major histocompatibility complex (MHC) haplotypes. This review will discuss the rationale for using the TAA polyepitope DNA-based vaccination strategy and recent results corroborating the usefulness of DNA encoding polyepitope vaccines as a potential tool for cancer therapy.
Collapse
|
12
|
Mansilla C, Gorraiz M, Martinez M, Casares N, Arribillaga L, Rudilla F, Echeverria I, Riezu-Boj JI, Sarobe P, Borrás-Cuesta F, Prieto J, Lasarte JJ. Immunization against hepatitis C virus with a fusion protein containing the extra domain A from fibronectin and the hepatitis C virus NS3 protein. J Hepatol 2009; 51:520-7. [PMID: 19596480 DOI: 10.1016/j.jhep.2009.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/15/2009] [Accepted: 06/01/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Vaccination strategies able to induce strong T-cell responses might contribute to eradicate hepatitis C virus (HCV) infection. We previously demonstrated that fusion of an antigen to the extra domain A from fibronectin (EDA) targets the antigen to TLR4-expressing dendritic cells (DC) and improves its immunogenicity. Here, we studied if fusion of EDA with the non-structural HCV protein NS3 might constitute an effective immunogen against HCV. METHODS Recombinant NS3 and the fusion protein EDA-NS3 were produced and purified from E. coli, and tested in vitro for their capacity to activate maturation of DC and to favour antigen presentation. HHD transgenic mice expressing the human HLA-A2 molecule were immunized with recombinant proteins in the absence or presence of poly(I:C) and anti-CD40 agonistic antibodies and responses elicited by vaccination were tested in vitro, and in vivo, by their capacity to downregulate intrahepatic expression of HCV-NS3 RNA. RESULTS EDA-NS3, but not NS3 alone, upregulated the expression of maturation markers, as well as Delta-like 1 and Delta-like 4 Notch ligands in DC and induced the production of IL-12. Mice immunized with EDA-NS3 had strong and long lasting NS3-specific CD4+ and CD8+ T-cell responses and, in combination with poly(I:C) and anti-CD40, downregulated intrahepatic expression of HCV-NS3 RNA. CONCLUSIONS Recombinant EDA-NS3 may be considered for the development of vaccines against HCV infection.
Collapse
Affiliation(s)
- Cristina Mansilla
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|