1
|
Shushtari A, Ashayeri H, Salmannezhad A, Seyedmirzaei H, Rezaei N. Pro-inflammatory cytokines in myasthenia gravis: a systematic review and meta-analysis. Neurol Sci 2025:10.1007/s10072-025-08218-3. [PMID: 40347402 DOI: 10.1007/s10072-025-08218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/27/2025] [Indexed: 05/12/2025]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune neuromuscular disorder impacting muscle endplate components. Pro-inflammatory cytokines, particularly, might play pivotal roles in MG pathogenesis, influencing regulatory T cells and contributing to chronic inflammation. We did this systematic review and meta-analysis to address the conflicting results about pro-inflammatory cytokine profiles in MG. METHODS A thorough search was conducted in PubMed, Scopus, and Embase to find studies measuring interleukin (IL)-1 family (IL-1β, IL-18, IL-33, IL-36, IL-37), IL-6, and tumor necrosis factor-alpha (TNF-α) levels in MG patients' serum and controls. Selection criteria encompassed various MG types, including ocular and generalized, with and without thymoma, and acetylcholine receptor (AChR) antibody-positive and negative. RESULTS Of the 1843 identified studies, 16 met the inclusion criteria. The meta-analysis revealed a significant increase in serum TNF-α, IL-1β, and IL-33 level in MG patients compared to controls. The included studies also implied elevated levels of IL-18 in people with MG compared to controls and elevated levels of IL-18 and IL-33 in generalized MG compared to ocular MG. CONCLUSION Our study highlights the altered profiles of pro-inflammatory cytokines in MG.
Collapse
Affiliation(s)
- Ali Shushtari
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Ashayeri
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Salmannezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Homa Seyedmirzaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center Hospital, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran.
| |
Collapse
|
2
|
Zhang S, Wen Q, Su S, Wang Y, Wang J, Xie N, Zhu W, Wen X, Di L, Lu Y, Xu M, Wang M, Chen H, Duo J, Huang Y, Wan D, Tao Z, Zhao S, Chai G, Hao J, Da Y. Peripheral immune profiling highlights a dynamic role of low-density granulocytes in myasthenia gravis. J Autoimmun 2025; 152:103395. [PMID: 40043622 DOI: 10.1016/j.jaut.2025.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune neuromuscular disease marked by dysregulation of several immune cell populations. Here we explored peripheral immune landscape, particularly the role of low-density granulocytes (LDGs). METHODS Single-cell and bulk RNA sequencing analyzed peripheral immune cells from MG patients pre- (n = 4) and after treatment (n = 2), as well as healthy controls (n = 3). Flow cytometry was employed for validating LDG subsets, and various functional assays were conducted to assess their impact on T cell proliferation and differentiation, NET formation, and ROS production. RESULTS Single-cell analysis highlighted a shift towards inflammatory Th1/Th17/Tfh subsets, an intense interferon-mediated immune response, and an expansion of immature myeloid subsets in MG. Flow cytometry showed increased LDGs correlated with disease severity. Unlike myeloid-derived suppressor cells, MG LDGs do not restrict T cell proliferation but induce a pro-inflammatory Th1/Th17 response. They also display enhanced spontaneous neutrophil extracellular traps (NETs) formation and basal reactive oxygen species (ROS) production. LDGs decreased after intravenous immunoglobulin and increased after prolonged immunotherapy in minimal manifestation status (MM), with reduced pro-inflammatory activity. Bulk RNA sequencing revealed significant transcriptional differences in LDGs, especially in cell cycle and granule protein genes. CONCLUSION Peripheral immune profiling sheds light on the intricate role of LDGs in MG. These cells, as a distinct subtype of neutrophils with a proinflammatory phenotype, are notable increased in MG, exacerbating chronic inflammation. Furthermore, immunotherapy expanded LDGs but reduced their proinflammatory capacities. The complex interplay of LDGs in MG underscores their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Nairong Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongshan Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Tao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shufang Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Nakano Y, Takeshima K, Furukawa Y, Morita S, Sakata M, Matsuoka TA. Concomitant Exacerbation of Graves Orbitopathy and Double-Seronegative Myasthenia Gravis after SARS-CoV-2 Infection. JCEM CASE REPORTS 2025; 3:luaf019. [PMID: 39882352 PMCID: PMC11775584 DOI: 10.1210/jcemcr/luaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 01/31/2025]
Abstract
SARS-CoV-2 infection could trigger autoimmune disease. We report a case of concomitant exacerbation of Graves orbitopathy (GO) and myasthenia gravis (MG) after SARS-CoV-2 infection. A 43-year-old woman had diplopia, proptosis, and swollen eyelids. Blood tests showed thyrotoxicosis and positive thyroid-stimulating hormone receptor antibodies, and orbital magnetic resonance imaging (MRI) showed enlarged extraocular muscles. She was therefore referred to our hospital with diagnosis of GO. Methylprednisolone pulse therapy (MPT) in combination with orbital radiotherapy were performed for 3 weeks, and ocular symptoms improved. At 41 weeks, the patient was infected with SARS-CoV-2 and felt sudden worsening of diplopia and ptosis. MRI showed an enlarged right inferior rectus muscle. MPT and orbital radiotherapy were performed again for 3 weeks for the suspected GO, but there was insufficient improvement of the ptosis. Serum antiacetylcholine receptor and anti-muscle-specific tyrosine kinase antibodies were negative, but the patient was further evaluated with repetitive nerve stimulation test and ice pack test, and diagnosis was double-seronegative MG. Pyridostigmine treatment led to dramatic improvement of the ptosis. SARS-CoV-2 infection could exacerbate MG as well as GO. Careful diagnosis is required for ocular symptoms after SARS-CoV-2 infection, especially when there is double-seronegative MG.
Collapse
Affiliation(s)
- Yuto Nakano
- First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Ken Takeshima
- First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yasushi Furukawa
- First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shuhei Morita
- First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mayumi Sakata
- Department of Neurology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Taka-Aki Matsuoka
- First Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
4
|
Zhou W, Hu J, Nie J. Identification of Hub Genes and Analysis of their Regulatory miRNAs in Patients with Thymoma Associated Myasthenia Gravis Based on TCGA Database. Microrna 2025; 14:49-58. [PMID: 39192657 DOI: 10.2174/0122115366299210240823062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Myasthenia gravis is an autoimmune disease, and 30% of patients with thymoma often have myasthenia gravis. Patients with thymoma-associated MG (TAMG) have many different clinical presentations compared to non-MG thymoma (NMG), yet their gene expression differences remain unclear. OBJECTIVE In this study, we analyzed the Differentially Expressed Genes (DEGs) and analyzed their regulatory microRNAs (miRNAs) in TAMG, which will further clarify the possible pathogenesis of TAMG. METHODS DEGs were calculated using the RNA-sequencing data of TAMG and NMG downloaded from The Cancer Genome Atlas (TCGA) database. R software was then used to analyze the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs, while STRING was applied to build the protein-protein interaction (PPI) network and Cytoscape to identify and visualize the hub genes. Immune infiltration significances of hub genes were also explored by using the TIMER database and TCGA database. Upstream microRNAs (miRNAs) of the hub genes were predicted by online software. RESULTS We comparatively analyzed the gene expression differences between TAMG and NMG groups. A total of 977 DEGs were identified between the two groups (|log fold change (FC)| >2, adjusted P value <0.050), with 555 down-regulated genes and 422 up-regulated genes. Five top hub genes (CTNNB1, EGFR, SOX2, ERBB2, and EGF) were recognized in the PPI network. Analysis based on the TIMER and TCGA databases suggested that 5 hub genes were correlated with multiple immune cell infiltrations and immune checkpoint-related markers, such as PDCD1, CTLA-4, and CD274, in TAMG patients. Lastly, 5 miRNAs were identified to have the potential function of regulating the hub gene expression. CONCLUSION Our study identified 5 hub genes (CTNNB1, EGFR, SOX2, ERBB2, and EGF) and their 5 regulatory miRNAs in TAMG, and the hub genes were correlated with multiple immune cell infiltrations and immune checkpoint-related markers. Our findings could help partially clarify the pathophysiology of TAMG, which could be new potential targets for subsequent clinical immunotherapy.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jia Hu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jun Nie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Guo C, Wang P, Zhang S, Cheng Q, Zhang Q, Ma N, Li Y. Tocilizumab for the management of corticosteroid-resistant GO combined with OMG: a case series. BMC Ophthalmol 2024; 24:510. [PMID: 39592974 PMCID: PMC11590313 DOI: 10.1186/s12886-024-03779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
PURPOSE To highlight the safety and efficacy of tocilizumab (TCZ) in Graves' ophthalmopathy (GO) combined with ocular myasthenia gravis (OMG) patients refractory to steroids and cholinesterase inhibitor (CEI). METHODS This was retrospective case series. We reviewed the health records of patients with GO combined with OMG, ten of whom were refractory to corticosteroids and CEI treatment and received intravenous injection of TCZ. Ten patients were treated with four injections of TCZ (intravenously, 8 mg per kilogram of body weight, once a month). We analyzed the efficacy and safety of TCZ treatment for this subset of patients with GO and OMG. RESULTS The main outcomes including quality of life questionnaire in Graves' orbitopathy (GO-QoL) score, Clinical Activity Score (CAS), Myasthenia Gravis Activities of Daily Living profile (MG-ADL) score, proptosis, diplopia and ptosis were assessed at 3 time points: "Baseline" (before the TCZ injection), "4th month" (after fourth time TCZ injection), "Follow up" (Last follow-up). Comparing parameters at 4th month vs. at baseline, all indicators improved at 4th month including GO-QoL score of visual functioning subscale (82.29 ± 13.71 vs. 35.98 ± 20.66, P < 0.001), GO-QoL score of the appearance subscale (80 ± 8.75 vs. 40.63 ± 17.95, P < 0.001), CAS (1.3 ± 0.46 vs. 4.5 ± 0.81, P < 0.001), MG-ADL (2.5 ± 1.56 vs. 5.11 ± 1.14, P < 0.001). Furthermore, proptosis decreased from 19.73 ± 2.84 to 17.93 ± 2.26 mm at 4th month (P < 0.0001). Diplopia and ptosis were also resolved at 4th month. After following up for a minimum of 11 months, the patients had no signs of relapse. In addition, we observed that all analyzed patients exhibited no significant drug reactions following the administration of TCZ. CONCLUSION Tocilizumab maybe a useful therapeutic option in refractory GO coexisting with OMG. However, considering the limitation of a retrospective study, short follow up period and small sample size of this study, randomized controlled studies are needed to validate our results.
Collapse
Affiliation(s)
- Chenjun Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Ping Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Shaobo Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Qilin Cheng
- Department of Ophthalmology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Qiong Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Nan Ma
- Department of Ophthalmology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Yangjun Li
- Department of Ophthalmology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
6
|
Li Y, Shan Y, Xu L, Chen W, Li Y. Dihydroartemisinin ameliorates experimental autoimmune myasthenia gravis by regulating CD4 + T cells and modulating gut microbiota. Int Immunopharmacol 2024; 139:112699. [PMID: 39024745 DOI: 10.1016/j.intimp.2024.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Dihydroartemisinin (DHA), a derivative and active metabolite of artemisinin, possesses various immunomodulatory properties. However, its role in myasthenia gravis (MG) has not been clearly explored. Here, we investigated the role of DHA in experimental autoimmune myasthenia gravis (EAMG) and its potential mechanisms. METHODS The AChR97-116 peptide-induced EAMG model was established in Lewis rats and treated with DHA. Flow cytometry was used to assess the release of Th cell subsets and Treg cells, and 16S rRNA gene amplicon sequence analysis was applied to explore the relationship between the changes in the intestinal flora after DHA treatment. In addition, network pharmacology and molecular docking were utilized to explore the potential mechanism of DHA against EAMG, which was further validated in the rat model by immunohistochemical and RT-qPCR for further validation. RESULTS In this study, we demonstrate that oral administration of DHA ameliorated clinical symptoms in rat models of EAMG, decreased the expression level of Th1 and Th17 cells, and increased the expression level of Treg cells. In addition, 16S rRNA gene amplicon sequence analysis showed that DHA restored gut microbiota dysbiosis in EAMG rats by decreasing Ruminococcus abundance and increasing the abundance of Clostridium, Bifidobacterium, and Allobaculum. Using network pharmacology, 103 potential targets of DHA related to MG were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that PI3K-AKT signaling pathway was related to the treatment of DHA on EAMG. Meanwhile, molecular docking verified that DHA has good binding affinity to AKT1, CASP3, EGFR, and IGF1. Immunohistochemical staining showed that DHA treatment significantly inhibited the phosphorylated expression of AKT and PI3K in the spleen tissues of EAMG rats. In EAMG rats, RT-qPCR results also showed that DHA reduced the mRNA expression levels of PI3K and AKT1. CONCLUSIONS DHA ameliorated EAMG by inhibiting the PI3K-AKT signaling pathway, regulating CD4+ T cells and modulating gut microbiota, providing a novel therapeutic approach for the treatment of MG.
Collapse
Affiliation(s)
- Yan Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Yunan Shan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250013, China
| | - Lin Xu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yanbin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250013, China.
| |
Collapse
|
7
|
Uzawa A, Yasuda M, Akamine H, Onishi Y, Handa H, Ogaya E, Ozawa Y, Masuda H, Mori M, Kuwabara S. Markedly upregulated serum semaphorin 4A as a novel activity marker of myasthenia gravis. Scand J Immunol 2024; 99:e13360. [PMID: 38605547 DOI: 10.1111/sji.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 04/13/2024]
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction. Semaphorin 4A (Sema4A) is involved in the activation of T cells in various inflammatory disorders. In this study, we aimed to investigate whether Sema4A is involved in the pathogenesis of MG. We measured serum Sema4A concentrations in 30 treatment-naïve MG patients with acetylcholine receptor (AChR) antibodies, 7 with muscle-specific tyrosine kinase (MuSK) antibodies and 21 normal controls. As a result, serum Sema4A levels were significantly higher in patients with AChR antibody-positive MG and MuSK antibody-positive MG than in controls (p ≤ 0.0001 for both MG groups). Serum Sema4A levels were correlated with AChR antibody levels (Spearman's ρ = 0.39, p = 0.03) and MG Foundation of America clinical classification classes (Spearman's ρ = 0.38, p = 0.04) in patients with AChR antibody-positive MG. In conclusion, high serum Sema4A levels may reflect T-cell activation, and this molecule could be a potential marker of disease activity in MG.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideo Handa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Etsuko Ogaya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurology, Japanese Red Cross Narita Hospital, Narita, Japan
| | - Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Okuzono Y, Miyakawa S, Itou T, Sagara M, Iwata M, Ishizuchi K, Sekiguchi K, Motegi H, Oyama M, Warude D, Kikukawa Y, Suzuki S. B-cell immune dysregulation with low soluble CD22 levels in refractory seronegative myasthenia gravis. Front Immunol 2024; 15:1382320. [PMID: 38711503 PMCID: PMC11071663 DOI: 10.3389/fimmu.2024.1382320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Myasthenia gravis (MG), primarily caused by acetylcholine receptor (AChR) autoantibodies, is a chronic autoimmune disorder causing severe muscle weakness and fatigability. In particular, seronegative MG constitutes 10%-15% of MG cases and presents diagnostic challenges especially in early-onset female patients who often show severe disease and resistance to immunosuppressive therapy. Furthermore, the immunopathology of seronegative MG remains unclear. Thus, in this study, we aimed to elucidate the pathogenic mechanism of seronegative MG using scRNA-seq analysis and plasma proteome analysis; in particular, we investigated the relationship between immune dysregulation status and disease severity in refractory seronegative MG. Employing single-cell RNA-sequencing and plasma proteome analyses, we analyzed peripheral blood samples from 30 women divided into three groups: 10 healthy controls, 10 early-onset AChR-positive MG, and 10 refractory early-onset seronegative MG patients, both before and after intravenous immunoglobulin treatment. The disease severity was evaluated using the MG-Activities of Daily Living (ADL), MG composite (MGC), and revised 15-item MG-Quality of Life (QOL) scales. We observed numerical abnormalities in multiple immune cells, particularly B cells, in patients with refractory seronegative MG, correlating with disease activity. Notably, severe MG cases had fewer regulatory T cells without functional abnormalities. Memory B cells were found to be enriched in peripheral blood cells compared with naïve B cells. Moreover, plasma proteome analysis indicated significantly lower plasma protein levels of soluble CD22, expressed in the lineage of B-cell maturation (including mature B cells and memory B cells), in refractory seronegative MG patients than in healthy donors or patients with AChR-positive MG. Soluble CD22 levels were correlated with disease severity, B-cell frequency, and RNA expression levels of CD22. In summary, this study elucidates the immunopathology of refractory seronegative MG, highlighting immune disorders centered on B cells and diminished soluble CD22 levels. These insights pave the way for novel MG treatment strategies focused on B-cell biology.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shuuichi Miyakawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tatsuo Itou
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masaki Sagara
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masashi Iwata
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kei Ishizuchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Koji Sekiguchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Munenori Oyama
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Dnyaneshwar Warude
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yusuke Kikukawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Lee Y, Kim SW, Lee E, Shin HY, Kim M, Lee CY, Park BJ, Kim HE, Yang YH, Choi J, Ju S, Park J, Kim N, Choi J, Lee JG, Kwon S, Chung J. Stereotypic T cell receptor clonotypes in the thymus and peripheral blood of Myasthenia gravis patients. Heliyon 2024; 10:e26663. [PMID: 38420468 PMCID: PMC10901099 DOI: 10.1016/j.heliyon.2024.e26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Myasthenia Gravis (MG) patients with anti-acetylcholine receptor (AChR) antibodies frequently show hyperplastic thymi with ectopic germinal centers, where autoreactive B cells proliferate with the aid of T cells. In this study, thymus and peripheral blood (PB) samples were collected from ten AChR antibody-positive MG patients. T cell receptor (TCR) repertoires were analyzed using next-generation sequencing (NGS), and compared with that of an age and sex matched control group generated from a public database. Certain V genes and VJ gene recombination pairs were significantly upregulated in the TCR chains of αβ-T cells in the PB of MG patients compared to the control group. Furthermore, the TCR chains found in the thymi of MG patients had a weighted distribution to longer CDR3 lengths when compared to the PB of MG patients, and the TCR beta chains (TRB) in the MG group's PB showed increased clonality encoded by one upregulated V gene. When TRB sequences were sub-divided into groups based on their CDR3 lengths, certain groups showed decreased clonality in the MG group's PB compared to the control group's PB. Finally, we demonstrated that stereotypic MG patient-specific TCR clonotypes co-exist in both the PB and thymi at a much higher frequency than that of the clonotypes confined to the PB. These results strongly suggest the existence of a biased T cell-mediated immune response in MG patients, as observed in other autoimmune diseases.
Collapse
Affiliation(s)
- Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eunjae Lee
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - MinGi Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byung Jo Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ha Eun Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Ho Yang
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinny Choi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soyeon Ju
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jungheum Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Namphil Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewon Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Chung
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology Major, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Yasumizu Y, Takeuchi D, Morimoto R, Takeshima Y, Okuno T, Kinoshita M, Morita T, Kato Y, Wang M, Motooka D, Okuzaki D, Nakamura Y, Mikami N, Arai M, Zhang X, Kumanogoh A, Mochizuki H, Ohkura N, Sakaguchi S. Single-cell transcriptome landscape of circulating CD4 + T cell populations in autoimmune diseases. CELL GENOMICS 2024; 4:100473. [PMID: 38359792 PMCID: PMC10879034 DOI: 10.1016/j.xgen.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 02/17/2024]
Abstract
CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole CD4+ T cell heterogeneity, which can explain the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell datasets of over 1.8 million peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloging cell frequency and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune disease.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Daiki Takeuchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Faculty of Medicine, Osaka University, Osaka, Japan
| | - Reo Morimoto
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Min Wang
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaya Arai
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Song X, He Y, Huo Y, Jiang H, Yu Y, Sun Y, Liu Z, Zhang Z. Normalized circulating Tfh and Th17 associates with improvement in myasthenia gravis treated with ofatumumab. Front Immunol 2024; 15:1280029. [PMID: 38415260 PMCID: PMC10898244 DOI: 10.3389/fimmu.2024.1280029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Objective To assess the effect of B cell depletion therapy (BCDT) on circulating T follicular helper (cTfh) and circulating T helper 17 (cTh17) cells and its relation to clinical improvement in patients with myasthenia gravis (MG). Methods 28 anti-AchR positive MG patients treated with ofatumumab and 28 healthy controls (HCs) were included. Frequencies of cTfh and cTh17 cells were monitored by flow cytometry at baseline and 4, and 12 weeks after the initial dose ofatumumab. Serum cytokines associated with cTfh and cTh17, including IL-6, IL-21, and IL-17, were also analyzed. Results The frequency of cTfh and cTh17 significantly increased in MG patients compared with HCs. Additionally, elevated levels of both T-cell subsets correlated with MG severity. During the follow-up, cTfh and cTh17 return to normal after BCDT. Furthermore, the decrease in cTfh and cTh17 was associated with MG scores improvement over time. Notably, cTfh- and cTh17-related cytokines, including IL-6, IL-21, and IL-17, exhibited a marked decrease following ofatumumab therapy. Conclusions Abnormal expansion of cTfh and cTh17 cells may be key features in the immunopathology of MG. Their levels returned to normal after BCDT, which was closely correlated with clinical amelioration. This result suggests that these two T-cell subsets may be targets for BCDT treatment of MG.
Collapse
Affiliation(s)
- Xiaodong Song
- Department of Neurology, Peking University People’s Hospital, Beijing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang He
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Yang Huo
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Hong Jiang
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Yao Yu
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Yue Sun
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| | - Zhaoxu Zhang
- Department of Neurology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
12
|
Maniar R, Loehrer PJ. What Have We Learned from Molecularly Informed Clinical Trials on Thymomas and Thymic Carcinomas-Current Status and Future Directions? Cancers (Basel) 2024; 16:416. [PMID: 38254905 PMCID: PMC10813974 DOI: 10.3390/cancers16020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Thymic epithelial tumors (TETs), which include thymomas and thymic carcinomas, are a rare, heterogeneous group of malignancies that originate from the thymus gland. As an important organ of immune cell development, thymic tumors, particularly thymomas, are often associated with paraneoplastic autoimmune disorders. The advances in targeted therapies for both solid and hematologic malignancies have resulted in improved patient outcomes, including better and more durable efficacy and improved toxicity. Targeted therapies have also been investigated in the treatment of TETs, though the results have largely been modest. These have included somatostatin-receptor-targeting therapies, KIT- and EGFR-directed tyrosine kinase inhibitors, epigenetic modulators, anti-angiogenesis agents, and agents targeting the cell proliferation and survival pathways and cell cycle regulators. Numerous investigated treatments have failed or underperformed due to a lack of a strong biomarker of efficacy. Ongoing trials are attempting to expand on previous experiences, including the exploration of effective drugs in early-stage disease. Novel combination therapy strategies are also undergoing evaluation, with the goal of augmenting efficacy and understanding the toxicity while expanding the biomarkers of efficacy and safety. With advances in technology to improve target identification and drug delivery, old targets may become new opportunities, and the subsequently developed drugs may find their place in the treatment of thymic tumors.
Collapse
Affiliation(s)
| | - Patrick J. Loehrer
- Division of Hematology & Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
13
|
Wei SL, Yang CL, Si WY, Dong J, Zhao XL, Zhang P, Li H, Wang CC, Zhang M, Li XL, Duan RS. Altered serum levels of cytokines in patients with myasthenia gravis. Heliyon 2024; 10:e23745. [PMID: 38192761 PMCID: PMC10772159 DOI: 10.1016/j.heliyon.2023.e23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease characterized by generalized skeletal muscle contraction weakness due to autoantibodies targeting neural-muscular junctions. Here, we investigated the relationship between key cytokines and MG type, disease course, antibodies, and comorbidities. Method Cytokine levels in serum samples collected from MG (n = 45) and healthy control (HC, n = 38) patients from January 2020 to June 2022 were quantified via flow cytometry. Results Levels of IL-6 were higher in the MG group versus healthy individuals (p = 0.026) and in patients with generalized versus ocular MG (p = 0.019). IL-6 levels were positively correlated with QMG score. In patients with MG with both AChR and Titin antibodies, serum levels of sFas and granulysin were higher than in those with AChR alone (p = 0.036, and p = 0.028, respectively). LOMG had a reduction in serum levels of IL-2 compared to EOMG (p = 0.036). LOMG patients with diabetes had lower serum levels of IL-2, IL-4, and IFN-γ (p = 0.044, p = 0.038, and p = 0.047, respectively) versus those without diabetes. sFas in the MG with Abnormal thymus were reduced compared to those in MG with Normal thymus (p = 0.008). Conclusions This study revealed a positive correlation between IL-6 level and MG status. Serum cytokine levels of the AChR + Titin MG group differed from those of the AChR group. LOMG had a lower IL-2 level. Comorbidities affect some cytokines in peripheral blood in MG serum.
Collapse
Affiliation(s)
- Shu-Li Wei
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
| | - Xue-Lu Zhao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Min Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| |
Collapse
|
14
|
Zhang R, Cai Z, Ren D, Kang Y, Zhang Q, Lu X, Tu R. The emerging role of USP29 in cancer and other diseases. Cell Biochem Funct 2024; 42:e3928. [PMID: 38269503 DOI: 10.1002/cbf.3928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Reversible protein ubiquitination is a key process for maintaining cellular homeostasis. Deubiquitinases, which can cleave ubiquitin from substrate proteins, have been reported to be deeply involved in disease progression ranging from oncology to neurological diseases. The human genome encodes approximately 100 deubiquitinases, most of which are poorly characterized. One of the well-characterized deubiquitases is ubiquitin-specific protease 29 (USP29), which is often upregulated in pathological tissues and plays important roles in the progression of different diseases. Moreover, several studies have shown that deletion of Usp29 in mice does not cause visible growth and developmental defects, indicating that USP29 may be an ideal therapeutic target. In this review, we provide a comprehensive summary of the important roles and regulatory mechanisms of USP29 in cancer and other diseases, which may help us better understand its biological functions and improve future studies to construct suitable USP29-targeted therapy systems.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zeqiong Cai
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Doudou Ren
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Kang
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongfu Tu
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Li S, Zhang Z, Liu Z. Therapeutic effect of ofatumumab in patients with myasthenia gravis: immunoregulation of follicular T helper cells and T helper type 17 cells. Front Neurol 2023; 14:1278250. [PMID: 38146439 PMCID: PMC10749496 DOI: 10.3389/fneur.2023.1278250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction This study aimed to study the therapeutic effects of ofatumumab in patients with myasthenia gravis (MG) in addition to the immunomodulatory effects on peripheral follicular T helper (Tfh) cells and T helper type 17 (Th17) cells. Methods Thirty-one patients with anti-acetylcholine receptor (AChR) antibody-positive MG were included in this study. At weeks 0, 1, 2, and 4, an initial dose of 20 mg of ofatumumab was injected subcutaneously, with a 2-month follow-up after completing this first cycle. At baseline, 1 month, and 3 months, we assessed the Quantitative MG (QMG), 15-item MG-Quality of Life (MG-QOL15), and MG-Activities of Daily Living (MG-ADL) scales and measured the frequencies of Tfh, Th17, and B cells and the levels of anti-AChR antibody, IL-6, IL-21, and IL-17 in the peripheral blood. Results At 1 month and 3 months, the QMG, MG-QOL15, and MG-ADL scores were all significantly reduced. At 3 months, doses of prednisone were reduced by an average of 37%. Decreased frequencies of Tfh and Th17 cells, depletion of B cells, and reduced levels of IL-6, IL-21, and IL-17 were all observed at 1 month or 3 months. Discussion Therefore, the therapeutic effect of ofatumumab could be detected after one cycle of treatment, which was maintained for 2 months. The immunomodulatory effect of ofatumumab during the observation period may involve depletion of B cells, reduction of Tfh and Th17 cells frequencies, and reduced levels of IL-6, IL-21, and IL-17. The findings provide novel data for the potential application of ofatumumab in MG.
Collapse
Affiliation(s)
- Shasha Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zhaoxu Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Cebi M, Cakar A, Erdogdu E, Durmus-Tekce H, Yegen G, Ozkan B, Parman Y, Saruhan-Direskeneli G. Thymoma patients with or without myasthenia gravis have increased Th17 cells, IL-17 production and ICOS expression. J Neuroimmunol 2023; 381:578129. [PMID: 37329662 DOI: 10.1016/j.jneuroim.2023.578129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Thymoma associated myasthenia gravis (TAMG) is a small disease subgroup with autoantibodies against the acetylcholine receptor. The aim of this study was to assess the role of T helper (Th) cells in TAMG compared to thymoma patients without MG (TOMA) and healthy controls (HC). Peripheral blood cells were used for intracellular cytokine measurements and phenotyping of CD4+ Th cells. IL-21 and IL-4 productions and peripheral Th cells were higher in TAMG compared to TOMA patients and HC. Increases of ICOS and Th17 population were detected both in TAMG and TOMA groups. Higher IL-10 and Th1 population have been observed related to thymectomy. ICOS expression and Th17 induced by thymoma may contribute to the development of TAMG.
Collapse
Affiliation(s)
- Merve Cebi
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey; Department of Immunology, Institute of Health Sciences, Istanbul University, Turkey
| | - Arman Cakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Eren Erdogdu
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Hacer Durmus-Tekce
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Gulcin Yegen
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Berker Ozkan
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | - Yesim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, 34093 Istanbul, Turkey
| | | |
Collapse
|
17
|
Weng S, Huang L, Cai B, He L, Wen S, Li J, Zhong Z, Zhang H, Huang C, Yang Y, Jiang Q, Liu F. Astragaloside IV ameliorates experimental autoimmune myasthenia gravis by regulating CD4 + T cells and altering gut microbiota. Chin Med 2023; 18:97. [PMID: 37542273 PMCID: PMC10403896 DOI: 10.1186/s13020-023-00798-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is an antibody-mediated autoimmune disease and its pathogenesis is closely related to CD4 + T cells. In recent years, gut microbiota is considered to play an important role in the pathogenesis of MG. Astragaloside IV (AS-IV) is one of the main active components extracted from Astragalus membranaceus and has immunomodulatory effects. To study the immunomodulatory effect of AS-IV and the changes of gut microbiota on experimental autoimmune myasthenia gravis (EAMG) mice, we explore the possible mechanism of AS-IV in improving MG. METHODS In this study, network pharmacology was utilized to screen the crucial targets of AS-IV in the treatment of MG. Subsequently, a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to identify potential pathways through which AS-IV acts against MG. Furthermore, experimental investigations were conducted to validate the underlying mechanism of AS-IV in MG treatment. Before modeling, 5 mice were randomly selected as the control group (CFA group), and the other 10 were induced to EAMG model. These mice were randomly divided into EAMG group and EAMG + AS-IV group, n = 5/group. In EAMG + AS-IV group, AS-IV was administered by gavage. CFA and EAMG groups were given the same volume of PBS. Body weight, grip strength and clinical symptoms were assessed and recorded weekly. At the last administration, the feces were collected for 16S RNA microbiota analysis. The levels of Treg, Th1 and Th17 cells in spleen and Th1 and Th17 cells in thymus were detected by flow cytometry. The levels of IFN-γ, IL-17 and TGF-β in serum were measured by ELISA. Furthermore, fecal microbial transplantation (FMT) experiments were performed for exploring the influence of changed intestinal flora on EAMG. After EAMG model was induced, the mice were treated with antibiotics daily for 4 weeks to germ-free. Then germ-free EAMG mice were randomly divided into two groups: FMT EAMG group, FMT AS-IV group, n = 3/group. Fecal extractions from EAMG and EAMG + AS-IV groups as gathered above were used to administered daily to the respective groups for 4 weeks. Body weight, grip strength and clinical symptoms were assessed and recorded weekly. The levels of Treg, Th1 and Th17 cells in spleen and Th1 and Th17 cells in thymus were detected at the last administration. The levels of IFN-γ, IL-17 and TGF-β in serum were measured by ELISA. RESULTS The network pharmacology and KEGG pathway analysis revealed that AS-IV regulates T cell pathways, including T cell receptor signaling pathway and Th17 cell differentiation, suggesting its potential in improving MG. Further experimental verification demonstrated that AS-IV administration improved muscle strength and body weight, reduced the level of Th1 and Th17 cells, enhanced the level of Treg cells, and resulted in alterations of the gut microbiota, including changes in beta diversity, the Firmicutes/Bacteroidetes (F/B) ratio, and the abundance of Clostridia in EAMG mice. We further conducted FMT tests and demonstrated that the EAMG Abx-treated mice which were transplanted the feces of mice treated with AS-IV significantly alleviated myasthenia symptoms, reduced Th1 and Th17 cells levels, and increased Treg cell levels. CONCLUSION This study speculated that AS-IV ameliorates EAMG by regulating CD4 + T cells and altering the structure and species of gut microbiota of EAMG.
Collapse
Affiliation(s)
- Senhui Weng
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Linwen Huang
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Bingxing Cai
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Long He
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Shuting Wen
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Jinghao Li
- Department of Traditional Chinese Medicine of the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528000, China
| | - Zhuotai Zhong
- Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Haiyan Zhang
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Chongyang Huang
- Department of Spleen and Stomach Diseases, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, 510120, China
| | - Yunying Yang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China
| | - Qilong Jiang
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China.
| | - Fengbin Liu
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, No.12 Airport Road, Baiyun District, Guangzhou, 510422, China.
- Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangzhou University of Chinese Medicine, No.16 Airport Road, Baiyun District, Guangzhou, 510422, China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 2, Helongqi Road, Renhe Town, Baiyun District, Guangzhou, 510000, China.
| |
Collapse
|
18
|
Kojima Y, Uzawa A, Ozawa Y, Yasuda M, Onishi Y, Akamine H, Kawaguchi N, Himuro K, Noto YI, Mizuno T, Kuwabara S. Serum pentraxin 3 concentration correlates with disease severity in patients with myasthenia gravis. Clin Neurol Neurosurg 2022; 220:107371. [PMID: 35878561 DOI: 10.1016/j.clineuro.2022.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) is an antibody-mediated inflammatory disease affecting post-synaptic membranes of neuromuscular junctions, and objective biomarkers of MG disease activity are lacking. Pentraxin 3 (PTX3) is an acute-phase inflammatory glycoprotein in the same family as C-reactive protein that is associated with disease activity in several autoimmune disorders. Thus, we investigated whether circulating PTX3 is a useful biomarker of MG activity. METHODS Serum PTX3 was measured in 40 patients with MG who were positive for anti-acetylcholine receptor antibody, and in 30 healthy and disease controls, using a commercial enzyme-linked immunosorbent assay kit. In patients with MG, the correlation of serum PTX3 levels with disease severity scales at serum sampling, including MG Foundation of America (MGFA) classification, MG activity of daily living (MG-ADL) score, and quantitative MG (QMG) score, were investigated. RESULTS Although there was no significant difference in serum PTX3 between the MG and control groups (mean, 3346 pg/mL in MG group vs. 2870 pg/mL in control group, P = 0.56), serum PTX3 moderately correlated with all disease severity scores (MGFA classification: Spearman's ρ = 0.53, P = 0.0004; MG-ADL score: Spearman's ρ = 0.45, P = 0.004; QMG score: Spearman's ρ = 0.50, P = 0.004). CONCLUSION Our results suggest that circulating PTX3 may reflect the extent of neuromuscular junction damage and might be involved in the pathogenesis of MG.
Collapse
Affiliation(s)
- Yuta Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Kawaguchi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Neurology, Dowa Institute of Clinical Neuroscience, Neurology Clinic Chiba, Chiba, Japan
| | - Keiichi Himuro
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Neurology, Matsudo Neurology Clinic, Chiba, Japan
| | - Yu-Ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
19
|
Clinical Significance of OX40 and OX40 Ligand in the Peripheral Blood of Patients with Myasthenia Gravis. J Immunol Res 2022; 2022:4337399. [PMID: 35265719 PMCID: PMC8901326 DOI: 10.1155/2022/4337399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background A previous study on thymomas in myasthenia gravis (MG) patients indicated that OX40 expression may be upregulated in thymic tissues adjacent to germinal centers (GCs) and thymomas, and OX40 may interact with OX40L in GCs to enhance anti-acetylcholine receptor antibody production. However, little is known about the clinical significance of the expression of OX40 and OX40L in the peripheral blood of patients with MG. We aimed to characterize the expression of membrane-bound and soluble OX40 and OX40L in the peripheral blood of patients with MG and to identify their clinical significance. Methods For membrane molecules, we collected peripheral blood (PB) from 39 MG patients at baseline, 22 patients in relapse, and 42 patients in remission, as well as from 36 healthy participants as controls. For soluble molecules, plasma from 37 MG patients at baseline, 34 patients in relapse, and 30 patients in remission, as well as plasma from 36 healthy controls (HC), was retrospectively collected from the sample bank of the First Hospital of Soochow University. The expression of membrane-bound OX40 and OX40L (mOX40 and mOX40L) by immune cells was measured using flow cytometry. Plasma levels of soluble OX40 and OX40L (sOX40 and sOX40L) were measured by ELISA. Results (1) The expression of OX40 on CD4+ T cells and that of OX40L on B cells and monocytes were significantly increased, and the levels of sOX40 were significantly decreased in MG patients at baseline compared with HC, while the expression of sOX40L was not significantly different between the two groups. (2) Dynamic observation of the molecules showed significantly higher expression of OX40 on CD4+ T cells and higher levels of sOX40 in MG patients in relapse than in MG patients at baseline and MG patients in remission. Furthermore, the expression levels of sOX40 were significantly elevated in MG patients in remission compared with MG patients at baseline, and the expression of sOX40L was significantly lower in MG patients in remission than in MG patients at baseline and MG patients in relapse. (3) Plasma levels of sOX40 and sOX40L were significantly decreased in 13 patients with relapsed MG after immunosuppressive treatment compared with those before treatment. (4) Correlation analysis showed that the expression of OX40 on CD4+ T cells in patients with relapsed MG was positively correlated with the concentration of acetylcholine receptor antibodies (AchR-Ab), whereas the expression of OX40L on CD19+ B cells and CD14+ monocytes was negatively correlated with disease duration. (5) Binary regression analysis showed that patients with high CD4+ OX40 expression and high sOX40L levels had an increased risk of relapse. Conclusions OX40 and OX40L are abnormally expressed in the peripheral blood of patients with MG and may be closely associated with disease status and treatment. The OX40/OX40L pathway may be involved in the immunopathological process of MG and may play a role mainly in the later stage of MG.
Collapse
|
20
|
Stascheit F, Hotter B, Hoffmann S, Kohler S, Lehnerer S, Sputtek A, Meisel A. Calprotectin as potential novel biomarker in myasthenia gravis. J Transl Autoimmun 2021; 4:100111. [PMID: 34458711 PMCID: PMC8379505 DOI: 10.1016/j.jtauto.2021.100111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is the most common autoimmune disease affecting the neuromuscular junction by specific autoantibodies. The etiology of MG and its heterogeneity in clinical courses are poorly understood, although it was recently shown that gut microbial dysbiosis plays a critical role. Since levels of Calprotectin (CLP) seem to correlate with level of dysbiosis, we hypothesize that CLP may serve as potential disease activity biomarker in MG. Sera from 251 patients with MG and 90 controls were analyzed in an explorative, cross-sectional design. Prospectively, we tested CLP levels in MG patients up to 3 years. Association of CLP levels with socio-demographics, disease activity (quantitative myasthenia gravis (QMG) score, myasthenia gravis-specific Activities of Daily Living scale (MG-ADL)), antibody (Abs) status, history of myasthenic crisis, treatment regime, and history of thymectomy were investigated using univariate analysis. Mean baseline serum levels of CLP were significantly higher in MG patients compared to controls (4.3 μg/ml vs. 2.1 μg/ml; p < 0.0001). Higher levels of CLP were associated with a higher clinical disease severity measured by MGFA classification and QMG score. Nevertheless, the only weak correlation of CLP with clinical outcome parameters needs confirmation in future studies. Currently, there are no validated blood biomarkers for MG. The significantly elevated CLP and mild correlation with parameters of disease activity suggests that CLP holds promise as a biomarker for measurement of individual disease severity.
Collapse
Affiliation(s)
- Frauke Stascheit
- Department of Neurology, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Corresponding author. Department of Neurology with experimental Neurology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Benjamin Hotter
- Department of Neurology, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah Hoffmann
- Department of Neurology, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Siegfried Kohler
- Department of Neurology, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sophie Lehnerer
- Department of Neurology, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andreas Meisel
- Department of Neurology, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité — Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- German Myasthenia Gravis Society, Germany
| |
Collapse
|
21
|
Absence of Association between Previous Mycoplasma pneumoniae Infection and Subsequent Myasthenia Gravis: A Nationwide Population-Based Matched Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147677. [PMID: 34300128 PMCID: PMC8306290 DOI: 10.3390/ijerph18147677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) is not only one of the most common pathogenic bacteria for respiratory infection but also a trigger for many autoimmune diseases. Its infection process shared many similarities with the pathogenesis of myasthenia gravis (MG) at cellular and cytokine levels. Recent case reports demonstrated patients present with MG after M. pneumoniae infection. However, no epidemiological studies ever looked into the association between the two. Our study aimed to investigate the relationship between M. pneumoniae infection and subsequent development of MG. In this population-based retrospective cohort study, the risk of MG was analyzed in patients who were newly diagnosed with M. pneumoniae infection between 2000 and 2013. A total of 2428 M. pneumoniae patients were included and matched with the non-M. pneumoniae control cohort at a 1:4 ratio by age, sex, and index date. Cox proportional hazards regression analysis was applied to analyze the risk of MG development after adjusting for sex, age, and comorbidities, with hazard ratios and 95% confidence intervals. The incidence rates of MG in the non-M. pneumoniae and M. pneumoniae cohorts were 0.96 and 1.97 per 10,000 person-years, respectively. Another case-control study of patients with MG (n = 515) was conducted to analyze the impact of M. pneumoniae on MG occurrence as a sensitivity analysis. The analysis yielded consistent absence of a link between M. pneumoniae and MG. Although previous studies have reported that M. pneumoniae infection and MG may share associated immunologic pathways, we found no statistical significance between M. pneumoniae infection and subsequent development of MG in this study.
Collapse
|
22
|
Uzawa A, Akamine H, Kojima Y, Ozawa Y, Yasuda M, Onishi Y, Sawai S, Kawasaki K, Asano H, Ohyama S, Matsushita K, Mori M, Kuwabara S. High levels of serum interleukin-6 are associated with disease activity in myasthenia gravis. J Neuroimmunol 2021; 358:577634. [PMID: 34174586 DOI: 10.1016/j.jneuroim.2021.577634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Myasthenia gravis (MG), a neuromuscular junction disorder, is caused by pathogenic autoantibodies. Interleukin-6 (IL-6) plays important roles in T helper 17 (Th17), T follicular helper (Tfh), and B cell activations as well as in antibody production. This study aimed to evaluate the clinical significance of serum IL-6 level as a biomarker of disease activity in patients with anti-acetylcholine receptor (AChR) antibody-positive MG. In the present study, serum IL-6 levels were measured in 93 treatment-naïve patients with anti-AChR antibody-positive MG and compared with those in 101 controls. Moreover, correlations between serum IL-6 levels and clinical characteristics were analyzed. Serum IL-6 levels were significantly higher in patients with anti-AChR antibody-positive MG than in controls (median [interquartile range], 2.5 [1.5-8.3] pg/mL vs. 1.5 [1.5-3.2] pg/mL, P < 0.001). The serum levels were correlated with the MG Foundation of America clinical classification (Spearman's ρ = 0.27; P < 0.01) and decreased following immunosuppressive treatment in parallel with disease activity (P = 0.01). In conclusion, IL-6 is involved in the pathogenesis of anti-AChR antibody-positive MG and could be a therapeutic target in MG.
Collapse
Affiliation(s)
- Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuta Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Setsu Sawai
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Kenji Kawasaki
- Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Haruna Asano
- Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Satoko Ohyama
- Department of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | | | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
23
|
Myasthenia Gravis: Epidemiology, Pathophysiology and Clinical Manifestations. J Clin Med 2021; 10:jcm10112235. [PMID: 34064035 PMCID: PMC8196750 DOI: 10.3390/jcm10112235] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neurological disorder characterized by defective transmission at the neuromuscular junction. The incidence of the disease is 4.1 to 30 cases per million person-years, and the prevalence rate ranges from 150 to 200 cases per million. MG is considered a classic example of antibody-mediated autoimmune disease. Most patients with MG have autoantibodies against the acetylcholine receptors (AChRs). Less commonly identified autoantibodies include those targeted to muscle-specific kinase (MuSK), low-density lipoprotein receptor-related protein 4 (Lrp4), and agrin. These autoantibodies disrupt cholinergic transmission between nerve terminals and muscle fibers by causing downregulation, destruction, functional blocking of AChRs, or disrupting the clustering of AChRs in the postsynaptic membrane. The core clinical manifestation of MG is fatigable muscle weakness, which may affect ocular, bulbar, respiratory and limb muscles. Clinical manifestations vary according to the type of autoantibody, and whether a thymoma is present.
Collapse
|
24
|
Chen Y, Zhang XS, Wang YG, Lu C, Li J, Zhang P. Imbalance of Th17 and Tregs in thymoma may be a pathological mechanism of myasthenia gravis. Mol Immunol 2021; 133:67-76. [PMID: 33636431 DOI: 10.1016/j.molimm.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/17/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
An imbalance in Th17 cells and Tregs may be an important cause of the pathogenesis of thymoma with myasthenia gravis (MG). In this study, 30 patients with simple thymoma and 30 patients with thymoma with MG were analyzed. Flow cytometry analysis of Th17 and Tregs in peripheral blood revealed that the percentages of Th17 in thymoma were lower than those in thymoma with MG, while the percentages of Tregs were higher than those in simple thymoma. Serum cytokine ELISA assays showed that IL-6 levels in simple thymoma were lower than those in MG patients. Further, Th17 and Tregs levels were detected by immunohistochemical double staining of thymoma tissue; the number of positive Th17 cells in thymoma with MG was higher than that in simple thymoma, while positive Tregs showed the opposite results. RORγt protein and mRNA expression in thymoma with MG were both higher than those in simple thymoma. FOXP3 protein and mRNA expression in the thymoma with MG group were lower than those in simple thymoma. The results of coculture of thymoma cells and CD4 + T cells showed that thymoma cells could promote the differentiation of Th17 cells and inhibit the Tregs. Overall, Th17 cells and related transcription factors and cytokines in thymoma with MG patients were higher than those in thymoma patients, whereas, Tregs showed the opposite results, the mechanism may be that thymoma can secrete IL6 and IL21. These findings indicated that imbalances in Th17/Tregs may account for the pathogeny of thymoma with MG.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Cardiothorcic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue-Song Zhang
- Department of Cardiothorcic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan-Guo Wang
- Department of Cardiothorcic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Lu
- Department of Cardiothorcic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jian Li
- Department of Cardiothorcic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Peng Zhang
- Department of Cardiothorcic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
25
|
Agah E, Nafissi S, Saleh F, Sarraf P, Tafakhori A, Mousavi SV, Saghazadeh A, Sadr M, Sinaei F, Mohebbi B, Mahmoudi M, Shadi H, Rezaei N. Investigating the possible association between NLRP3 gene polymorphisms and myasthenia gravis. Muscle Nerve 2021; 63:730-736. [PMID: 33533549 DOI: 10.1002/mus.27193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In this case-control study, we investigated the association between nucleotide oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) single-nucleotide polymorphisms (SNPs) rs10754558, rs3806265, rs4612666, and rs35829419 and myasthenia gravis (MG). METHODS Samples from MG patients were selected from a previous study conducted in our neuromuscular clinic, which investigated the association between human leukocyte antigen (HLA) class II genes and MG. Genetic data of controls were also available from another study. The NLRP3 SNPs genotyping was performed using the TaqMan method. RESULTS A total of 93 blood samples from eligible Iranian patients with MG and 56 samples from healthy controls were obtained. The NLRP3 rs3806265 "C" allele was significantly more frequent in MG patients (P < .001; odd ratio [OR] = 2.33, 95% confidence interval [CI]: 1.4-4.0) than controls. The "CC" genotype of this SNP was found in 18.27% of patients, but none of the controls (P < .001). The distribution of other SNPs was similar between the groups. DISCUSSION These preliminary results suggest that there might be some associations between the NLRP3 gene polymorphism and MG.
Collapse
Affiliation(s)
- Elmira Agah
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahriar Nafissi
- Iranian Center for Neurological Research, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saleh
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Payam Sarraf
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Vahid Mousavi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Sinaei
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohebbi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center (RRC), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Shadi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
26
|
Ramezani F, Babaie F, Aslani S, Hemmatzadeh M, Mohammadi FS, Gowhari-Shabgah A, Jadidi-Niaragh F, Ezzatifar F, Mohammadi H. The Role of the IL-33/ST2 Immune Pathway in Autoimmunity: New Insights and Perspectives. Immunol Invest 2021; 51:1060-1086. [PMID: 33522348 DOI: 10.1080/08820139.2021.1878212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-33, a member of IL-1 cytokine family, is produced by various immune cells and acts as an alarm to alert the immune system after epithelial or endothelial cell damage during cell necrosis, infection, stress, and trauma. The biological functions of IL-33 largely depend on its ligation to the corresponding receptor, suppression of tumorigenicity 2 (ST2). The pathogenic roles of this cytokine have been implicated in several disorders, including allergic disease, cardiovascular disease, autoimmune disease, infectious disease, and cancers. However, alerted levels of IL-33 may result in either disease amelioration or progression. Genetic variations of IL33 gene may confer protective or susceptibility risk in the onset of autoimmune diseases. The purpose of this review is to discuss the involvement of IL-33 and ST2 in the pathogenesis of a variety of autoimmune disorders, such as autoimmune rheumatic, neurodegenerative, and endocrine diseases.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
27
|
Uzawa A, Kuwabara S, Suzuki S, Imai T, Murai H, Ozawa Y, Yasuda M, Nagane Y, Utsugisawa K. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol 2020; 203:366-374. [PMID: 33184844 DOI: 10.1111/cei.13546] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by muscle weakness and fatigue caused by the presence of autoantibodies against the acetylcholine receptor (AChR) or the muscle-specific tyrosine kinase (MuSK). Activated T, B and plasma cells, as well as cytokines, play important roles in the production of pathogenic autoantibodies and the induction of inflammation at the neuromuscular junction in MG. Many studies have focused on the role of cytokines and lymphocytes in anti-AChR antibody-positive MG. Chronic inflammation mediated by T helper type 17 (Th17) cells, the promotion of autoantibody production from B cells and plasma cells by follicular Th (Tfh) cells and the activation of the immune response by dysfunction of regulatory T (Treg ) cells may contribute to the exacerbation of the MG pathogenesis. In fact, an increased number of Th17 cells and Tfh cells and dysfunction of Treg cells have been reported in patients with anti-AChR antibody-positive MG; moreover, the number of these cells was correlated with clinical parameters in patients with MG. Regarding cytokines, interleukin (IL)-17; a Th17-related cytokine, IL-21 (a Tfh-related cytokine), the B-cell-activating factor (BAFF; a B cell-related cytokine) and a proliferation-inducing ligand (APRIL; a B cell-related cytokine) have been reported to be up-regulated and associated with clinical parameters of MG. This review focuses on the current understanding of the involvement of cytokines and lymphocytes in the immunological pathogenesis of MG, which may lead to the development of novel therapies for this disease in the near future.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - T Imai
- Department of Neurology, Sapporo Medical University Hospital, Sapporo, Japan
| | - H Murai
- Department of Neurology, International University of Health and Welfare, Narita, Japan
| | - Y Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Nagane
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| | - K Utsugisawa
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| |
Collapse
|
28
|
Chang T, Niu C, Sun C, Ma Y, Guo R, Ruan Z, Gao Y, Lu X, Li H, Lin Y, Lin J, Li Z. Melatonin exerts immunoregulatory effects by balancing peripheral effector and regulatory T helper cells in myasthenia gravis. Aging (Albany NY) 2020; 12:21147-21160. [PMID: 33136553 PMCID: PMC7695404 DOI: 10.18632/aging.103785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Myasthenia gravis (MG) is a prototypic organ-specific autoimmune disorder that, in most cases, is mainly mediated by antibodies against the acetylcholine receptor. Evidence implicates CD4+ T helper (Th) cells in the development of MG, whereas regulatory T cells (Tregs) are associated with disease resolution. Melatonin has important immunoregulatory effects in many T cell-mediated autoimmune diseases. However, there are few studies on the role of melatonin in MG. In the present study, we investigated serum melatonin levels and melatonin receptor expression in MG patients and healthy controls (HCs). We also evaluated the impact of melatonin administration on peripheral CD4+ Th cells and related cytokine production. Serum melatonin levels were lower in MG patients than in HCs, and MT1 expression was lower in PBMCs from MG patients than in those from HCs. Administration of melatonin significantly decreased Th1 and Th17 cell responses and proinflammatory cytokine production. Further investigation in vitro revealed that melatonin administration increased FoxP3 and IL-10 expression in CD4+ T cells from MG patients and enhanced the suppressive function of Tregs. These findings indicate that melatonin exerts immunoregulatory activity in MG by balancing effector and regulatory Th cell populations as well as by suppressing proinflammatory cytokine production.
Collapse
Affiliation(s)
- Ting Chang
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Chunxiao Niu
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Ying Ma
- Department of Immunology, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Yanwu Gao
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Xiaodan Lu
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Ye Lin
- Department of Neurology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jiaji Lin
- Medical Corp in Unit 93246 of PLA, Changchun, Jilin Province, P.R. China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|
29
|
Jing F, Huang W, Ma Q, Xu SJ, Wu CJ, Guan YX, Chen B. AEB-071 Ameliorates Muscle Weakness by Altering Helper T Lymphocytes in an Experimental Autoimmune Myasthenia Gravis Rat Model. Med Sci Monit 2020; 26:e924393. [PMID: 32920588 PMCID: PMC7510173 DOI: 10.12659/msm.924393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune neurological disorder of neuromuscular junctions. In this study we established experimental autoimmune myasthenia gravis (EAMG) rat models to investigate the effects of AEB-071 (AEB), which is a specific inhibitor of protein kinase C that prevents T lymphocyte activation. Material/Methods We utilized animals divided into 4 groups: (1) control rats, (2) EAMG, (3) AEB-071+EAMG, and (4) AZP+EAMG. Drug treatment was continued for 10 days. Ten weeks after immunization we measured body weights, assessed mortality rates, and used Lennon scores to evaluate EAMG grades. We also assessed the proportions of Treg, Th1, Th2, Th17, and lymphocytes using flow cytometry. Results In the absence of drug treatment, we found a significant decline in body weights in the EAMG group in comparison to control rats, and EAMG group rats also had higher Lennon scores (P<0.05). Interestingly, we found that AEB-071 restored the body weight of EAMG rats and the decreased mortality rate compared to AZP treatment. Although a decrease in the number of Treg cells was observed, the proportion of Th lymphocytes was significantly increased in the EAMG group, and AEB-071 treatment decreased the proportion of Th lymphocytes. Conclusions We concluded that AEB-071 treatment imparts beneficial effects in EAMG rat models by reducing mortality rate and restoring Th lymphocyte balance, and thus may be an attractive candidate for use in MG treatment.
Collapse
Affiliation(s)
- Feng Jing
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Wei Huang
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Qian Ma
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Sheng-Jie Xu
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Chang-Jin Wu
- Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Yu-Xiu Guan
- Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Bing Chen
- Department of Neurology, The 8th Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| |
Collapse
|
30
|
Liu X, Ma Q, Qiu L, Ou C, Lin Z, Lu Y, Huang H, Chen P, Huang Z, Liu W. Quantitative features and clinical significance of two subpopulations of AChR-specific CD4+ T cells in patients with myasthenia gravis. Clin Immunol 2020; 216:108462. [PMID: 32437925 DOI: 10.1016/j.clim.2020.108462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Acetylcholine receptor (AChR)-specific CD4+ T cells play a driving role in myasthenia gravis (MG) by regulating the production of autoantibodies. However, the quantitative features of AChR-specific T cells and their clinical significance in MG are unclear. In this study, we adopted standard and cultured enzyme-linked immunosorbent spot (ELISPOT) assays to quantify subpopulations of AChR-specific CD4+ T cells in MG patients, and evaluate their correlation with clinical characteristics. The results showed that Th1- and Th17-AChR-specific CD4+ T cells were detectable by standard and cultured ELISPOT assay respectively, with higher levels observed in MG patients comparing with healthy controls. The number of Th17-AChR-specific CD4+ T cells was positively correlated with anti-AChR antibody titer and quantitative MG score and may have latent capacity to reflect responses to immunosuppressants. These results highlight the differences in quantitative features of AChR-specific CD4+ T cells and imply Th17-AChR-specific CD4+ T cells can serve as a biomarker in MG.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Li Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Changyi Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhongqiang Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Pei Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhidong Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
31
|
Çebi M, Durmus H, Aysal F, Özkan B, Gül GE, Çakar A, Hocaoglu M, Mercan M, Yentür SP, Tütüncü M, Yayla V, Akan O, Dogan Ö, Parman Y, Saruhan-Direskeneli G. CD4 + T Cells of Myasthenia Gravis Patients Are Characterized by Increased IL-21, IL-4, and IL-17A Productions and Higher Presence of PD-1 and ICOS. Front Immunol 2020; 11:809. [PMID: 32508812 PMCID: PMC7248174 DOI: 10.3389/fimmu.2020.00809] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies predominantly against the acetylcholine receptor (AChR). Specific T cell subsets are required for long-term antibody responses, and cytokines secreted mainly from CD4+ T cells regulate B cell antibody production. The aim of this study was to assess the differences in the cytokine expressions of CD4+ T cells in MG patients with AChR antibodies (AChR-MG) and the effect of immunosuppressive (IS) therapy on cytokine activity and to test these findings also in MG patients without detectable antibodies (SN-MG). Clinically diagnosed AChR-MG and SN-MG patients were included. The AChR-MG patients were grouped as IS-positive and -negative and compared with age- and sex-matched healthy controls. Peripheral blood mononuclear cells were used for ex vivo intracellular cytokine production, and subsets of CD4+ T cells and circulating follicular helper T (cTfh) cells were detected phenotypically by the expression of the chemokine and the costimulatory receptors. Thymocytes obtained from patients who had thymectomy were also analyzed. IL-21, IL-4, IL-10, and IL-17A productions in CD4+ T cells were increased in AChR-MG compared to those in healthy controls. IS treatment enhanced IL-10 and reduced IFN-γ production in AChR-MG patients compared to those in IS-negative patients. Increased IL-21 and IL-4 productions were also demonstrated in SN-MG patients. Among CD4+ T cells, Th17 cells were increased in both disease subgroups. Treatment induced higher proportions of Th2 cells in AChR-MG patients. Both CXCR5+ and CXCR5− CD4+ T cells expressed higher programmed cell death protein 1 (PD-1) and inducible costimulatory (ICOS) in AChR-MG and SN-MG groups, mostly irrespective of the treatment. Based on chemokine receptors on CXCR5+PD-1+ in CD4+ T (cTfh) cells, in AChR-MG patients without treatment, the proportions of Tfh17 cells were higher than those in the treated group, whereas the Tfh1 cells were decreased compared with those in the controls. The relevance of CXCR5 and PD-1 in the pathogenesis of AChR-MG was also suggested by the increased presence of these molecules on mature CD4 single-positive thymocytes from the thymic samples. The study provides further evidence for the importance of IL-21, IL-17A, IL-4, and IL-10 in AChR-MG. Disease-related CD4+T cells are identified mainly as PD-1+ or ICOS+ with or without CXCR5, resembling cTfh cells in the circulation or probably in the thymus. AChR-MG and SN-MG seem to have some similar characteristics. IS treatment has distinctive effects on cytokine expression.
Collapse
Affiliation(s)
- Merve Çebi
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hacer Durmus
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Fikret Aysal
- Department of Neurology, Medipol University, Istanbul, Turkey
| | - Berker Özkan
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | - Arman Çakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Mehmet Hocaoglu
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Metin Mercan
- Bakirköy Sadi Konuk State Hospital, Istanbul, Turkey
| | - Sibel P Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Melih Tütüncü
- Department of Neurology, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Vildan Yayla
- Bakirköy Sadi Konuk State Hospital, Istanbul, Turkey
| | - Onur Akan
- Okmeydani State Hospital, Istanbul, Turkey
| | - Öner Dogan
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
32
|
Niu L, Jiang J, Yin Y, Hu B. LncRNA XLOC_003810 modulates thymic Th17/Treg balance in myasthenia gravis with thymoma. Clin Exp Pharmacol Physiol 2020; 47:989-996. [PMID: 32048308 DOI: 10.1111/1440-1681.13280] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 02/09/2020] [Indexed: 01/27/2023]
Abstract
Imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of myasthenia gravis with thymoma (MG-T). Long non-coding RNAs (lncRNAs) are implicated in the regulation of Th17/Treg balance. This study was designed to explore the role of XLOC_003810, a novel lncRNA, in regulating the Th17/Treg balance in MG-T. The thymic CD4+ T cells were isolated from control subjects and MG-T patients. The Th17/Treg balance was evaluated by determining proportions of Th17 and Treg cells and expression of Th17- and Treg- associated molecules. Lentivirus-mediated silencing and overexpression of XLOC_003810 in CD4+ T cells were performed. The results showed that XLOC_003810 expression was higher in MG-T thymic CD4+ T cells than that in the control group. Furthermore, the ratio of Th17/Treg cells, proportion of Th17 cells and levels of Th17-associated molecules were significantly increased, whereas the proportion of Treg cells and levels of Treg-associated molecules were decreased in MG-T thymic CD4+ T cells. Importantly, the Th17/Treg imbalance in MG-T thymic CD4+ T cells was aggravated by XLOC_003810 overexpression, whereas it was attenuated by XLOC_003810 silencing. Collectively, XLOC_003810 modulates thymic Th17/Treg balance in MG-T patients, providing the scientific basis for the clinical targeted therapy of MG-T.
Collapse
Affiliation(s)
- Li Niu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Yin
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Yan X, Gu Y, Wang C, Sun S, Wang X, Tian J, Wang M, Ji X, Duan X, Gao H, Fang Q, Dong W, Zhang X, Xue Q. Unbalanced expression of membrane-bound and soluble inducible costimulator and programmed cell death 1 in patients with myasthenia gravis. Clin Immunol 2019; 207:68-78. [PMID: 31374257 DOI: 10.1016/j.clim.2019.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/01/2023]
Abstract
This study aimed to investigate the possible functions and mechanisms of positive and negative costimulatory molecules in the pathological process of myasthenia gravis (MG). The expression levels of membrane-bound inducible costimulator (ICOS) and programmed cell death 1 (PD-1) in peripheral blood T cells, their corresponding ligands ICOSL and PDL-1 on B cells, and their soluble forms (sICOS, sPD-1, sICOSL, and sPDL-1) in plasma were detected in patients with untreated-stage MG (USMG) and remission-stage MG (RSMG). The results showed that the expression levels of membrane-bound ICOS and PD-1 in the peripheral blood T cells of the USMG group and their corresponding ligands ICOSL and PD-L1 on B cells were significantly increased compared to those in the RSMG group and healthy controls (HCs). The levels of sICOSL and sPD-1 were significantly upregulated in USMG patients compared to those in the RSMG and HC groups, while the levels of sICOS and sPD-L1 were not different. The expression of PD-L1 on CD19+ B cells was positively correlated with the concentrations of AchR Ab in the USMG group. The expression of ICOS and PD-1 in CD4+ T cells and the expression of ICOSL and PD-L1 on CD19+ B cells were positively correlated with the quantitative myasthenia gravis (QMG) scores in the USMG group. Also, in the USMG group, the plasma levels of sICOSL and sPD-1 were positively correlated with the QMG scores. In addition, the percentage of peripheral blood follicular helper T (Tfh) cells in the USMG group was positively correlated with ICOS and PD-1 expression on CD4+ T cells and ICOSL and PD-L1 expression on CD19+ B cells. There were positive correlations between sICOSL and sPD-1 levels and the percentage of peripheral blood Tfh cells and plasma interleukin-21 (IL-21) levels in the USMG group. The results suggest that the positive ICOS/ICOSL and negative PD-1/PD-L1 costimulatory molecule pairs participate in the pathological process of MG. Abnormal sICOSL and sPD-1 expression might interfere with the normal signal transduction of ICOS and PD-1 on Tfh cells, causing excessive activation of Tfh cells and promotion of disease progression. sICOSL and sPD-1 have potential value in monitoring MG disease states.
Collapse
Affiliation(s)
- Xiaoming Yan
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yanzheng Gu
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, China
| | - Caiqin Wang
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Simao Sun
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaozhu Wang
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jingluan Tian
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingyuan Wang
- Suzhou Red Cross Central Blood Station, Suzhou, Jiangsu 215006, China
| | - Xiaopei Ji
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaoyu Duan
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Hanqing Gao
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Fang
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, China
| | - Wanli Dong
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xueguang Zhang
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qun Xue
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
34
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
35
|
Wang Z, Wang W, Chen Y, Xu S, Wei D, Huang X. Elevated expression of interleukin-33 in myasthenia gravis patients. J Clin Neurosci 2019; 63:32-36. [DOI: 10.1016/j.jocn.2019.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/16/2019] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
|
36
|
Li QR, Ni WP, Lei NJ, Yang JY, Xuan XY, Liu PP, Gong GM, Yan F, Feng YS, Zhao R, Du Y. The overexpression of Fra1 disorders the inflammatory cytokine secretion by mTEC of myasthenia gravis thymus. Scand J Immunol 2018; 88:e12676. [PMID: 29807388 DOI: 10.1111/sji.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/22/2018] [Indexed: 12/01/2022]
Abstract
The thymus of a myasthenia gravis (MG) patient is often accompanied by and effected with follicular hyperplasia. Inflammatory cytokines in thymus induce the formation of germinal centres (GC). MG thymic inflammatory cytokines are predominantly secreted by stromal cells. Our previous studies revealed that the expression level of the Fra1 protein, which is a Fos member of the activator protein 1 transcription factors (AP-1), was higher in the MG thymus compared with that of the normal thymus. Based on that, we demonstrated that Fra1 was mainly expressed in medulla thymic epithelial cells (mTECs) and that the rate of Fra1 positive mTECs in the MG thymus was higher than normal. In vitro, we found that the expression of CCL-5, CCL-19 and CCL-21 could be regulated by Fra1 in mTEC and that IL-1β, IL-6, IL-8 and ICAM1 were downregulated in the Fra1 overexpression group and upregulated in the Fra1 knock-down group. Meanwhile, we detected that the expression levels of suppressor of cytokine signalling 3 (SOCS3) were significantly upregulated along with the overexpression of Fra1. Hence, we considered that the overexpression of Fra1 disrupted inflammatory cytokine secretion by mTEC in the MG thymus and that STAT3 and SOCS3 were strongly involved in this process.
Collapse
Affiliation(s)
- Q-R Li
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - W-P Ni
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - N-J Lei
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - J-Y Yang
- College of Veterinary Medicine, North West Agriculture and Forestry University, Zhengzhou, China
| | - X-Y Xuan
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - P-P Liu
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - G-M Gong
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - F Yan
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - Y-S Feng
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - R Zhao
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| | - Y Du
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Wang Z, Yan Y. Immunopathogenesis in Myasthenia Gravis and Neuromyelitis Optica. Front Immunol 2017; 8:1785. [PMID: 29312313 PMCID: PMC5732908 DOI: 10.3389/fimmu.2017.01785] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) and neuromyelitis optica (NMO) are autoimmune channelopathies of the peripheral neuromuscular junction (NMJ) and central nervous system (CNS) that are mainly mediated by humoral immunity against the acetylcholine receptor (AChR) and aquaporin-4 (AQP4), respectively. The diseases share some common features, including genetic predispositions, environmental factors, the breakdown of tolerance, the collaboration of T cells and B cells, imbalances in T helper 1 (Th1)/Th2/Th17/regulatory T cells, aberrant cytokine and antibody secretion, and complement system activation. However, some aspects of the immune mechanisms are unique. Both targets (AChR and AQP4) are expressed in the periphery and CNS, but MG mainly affects the NMJ in the periphery outside of CNS, whereas NMO preferentially involves the CNS. Inflammatory cells, including B cells and macrophages, often infiltrate the thymus but not the target—muscle in MG, whereas the infiltration of inflammatory cells, mainly polymorphonuclear leukocytes and macrophages, in NMO, is always observed in the target organ—the spinal cord. A review of the common and discrepant characteristics of these two autoimmune channelopathies may expand our understanding of the pathogenic mechanism of both disorders and assist in the development of proper treatments in the future.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
38
|
Sharma S, Malmeström C, Lindberg C, Meisel S, Schön K, Verolin M, Lycke NY. A Sensitive Method for Detecting Peptide-specific CD4 + T Cell Responses in Peripheral Blood from Patients with Myasthenia Gravis. Front Immunol 2017; 8:1370. [PMID: 29114250 PMCID: PMC5660702 DOI: 10.3389/fimmu.2017.01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neurological disorder typified by skeletal muscle fatigue and most often production of autoantibodies against the nicotinic acetylcholine receptor (AChR). The present study was undertaken to assess the extent of AChR-peptide recognition in MG patients using co-culturing (DC:TC) of autologous monocyte-derived dendritic cells (moDCs) and highly enriched CD4+ T cells from the blood as compared to the traditional whole peripheral blood mononuclear cell (PBMC) cultures. We found that the DC:TC cultures were highly superior to the PBMC cultures for detection of reactivity toward HLA-DQ/DR-restricted AChR-peptides. In fact, whereas DC:TC cultures identified recognition in all MG patients the PBMC cultures failed to detect responsiveness in around 40% of the patients. Furthermore, reactivity to multiple peptides was evident in DC:TC cultures, while PBMC cultures mostly exhibited reactivity to a single peptide. No healthy control (HC) CD4+ T cells responded to the peptides in either culture system. Interestingly, whereas spontaneous production of IFNγ and IL-17 was observed in the DC:TC cultures from MG patients, recall responses to peptides enhanced IL-10 production in 9/13 MG patients, while little increase in IFNγ and IL-17 was seen. HCs did not produce cytokines to peptide stimulations. We conclude that the DC: TC culture system is significantly more sensitive and better identifies the extent of responsiveness in MG patients to AChR-peptides than traditional PBMC cultures.
Collapse
Affiliation(s)
- Sapna Sharma
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Laboratory for Clinical Immunology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Sarah Meisel
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Nils Yngve Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Du A, Huang S, Zhao X, Feng K, Zhang S, Huang J, Miao X, Baggi F, Ostrom RS, Zhang Y, Chen X, Xu C. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy 2017; 13:1981-1994. [PMID: 28933591 PMCID: PMC5788490 DOI: 10.1080/15548627.2017.1375633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.
Collapse
Affiliation(s)
- Ailian Du
- a Department of Neurology, Tongren Hospital , Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai , China
| | - Shiqian Huang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaonan Zhao
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kuan Feng
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Shuangyan Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jiefang Huang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiang Miao
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Fulvio Baggi
- d Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Rennolds S Ostrom
- e Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Irvine , CA , USA
| | - Yanyun Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiangjun Chen
- f Department of Neurology , Fudan University Huashan Hospital, and Institute of Neurology, Fudan University , Shanghai , China
| | - Congfeng Xu
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| |
Collapse
|
40
|
Rapamycin alleviates inflammation and muscle weakness, while altering the Treg/Th17 balance in a rat model of myasthenia gravis. Biosci Rep 2017; 37:BSR20170767. [PMID: 28655853 PMCID: PMC5518538 DOI: 10.1042/bsr20170767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease commonly treated with immunosuppressants. We evaluated the novel immunosuppressant, rapamycin (RAPA), in a rat model of experimental autoimmune MG (EAMG). Mortality rates in the RAPA (12%) were significantly down compared with the EAMG (88%) or cyclophosphamide (CTX) (68%) intervention groups. Muscular weakness decreased after both RAPA and CTX treatment. However, Lennon scores were lower (1.74 ± 0.49, 3.39 ± 0.21, and 3.81 ± 0.22 in RAPA, CTX, and EAMG groups, respectively), and body weights (203.12 ± 4.13 g, 179.23 ± 2.13 g, and 180.13 ± 5.13 g in RAPA, CTX, and EAMG groups, respectively) were significantly higher, only in the RAPA group. The proportion of regulatory T cells (Treg) significantly increased, while that of Th17 cells significantly decreased in the RAPA group compared with the EAMG group. In comparison, CTX intervention resulted in increased Th17 but significantly decreased Tregs. Hence, RAPA can be more effectively used in comparison with CTX to treat MG, with an efficacy higher than that of CTX. In addition, our results suggest RAPA’s efficacy in alleviating symptoms of MG stems from its ability to correct the Treg/Th17 imbalance observed in MG.
Collapse
|
41
|
Hosseini M, Robat-Jazi B, Shaygannejad V, Naffisi S, Mirmossayeb O, Rezaei A, Mansourian M, Esmaeil N. Increased Proportion of Tc17 and Th17 Cells and Their Significant Reduction after Thymectomy May Be Related to Disease Progression in Myasthenia Gravis. Neuroimmunomodulation 2017; 24:264-270. [PMID: 29414833 DOI: 10.1159/000486037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the neuromuscular junction. The thymus has an important role in the pathogenesis of MG because most patients have thymic pathology, and thymectomy (TE) can reduce the severity of the disease. METHODS In this study, the frequency of Th17 and Tc17 cells was studied in 12 MG patients (pre-TE and 6 months post-TE) and in 12 healthy controls (HC). RESULTS The frequency of Tc17 cells in the pre-TE patients was significantly higher than in the HC (p < 0.05), and after TE, these cells had significantly decreased compared to before TE (p < 0.05). The frequency of Th17 cells in pre-TE patients was significantly higher than in the HC (p < 0.05), and after TE, these cells had significantly decreased compared to before TE (p < 0.05). CONCLUSION Our findings indicated a possible role of Tc17 and Th17 in MG pathogenesis.
Collapse
Affiliation(s)
- Mina Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang L, Zhang Y, He M. β2-Adrenergic receptor gene polymorphisms in the relapse of myasthenia gravis with thymus abnormality. Int J Neurosci 2016; 127:291-298. [PMID: 27338803 DOI: 10.1080/00207454.2016.1202952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of β2-adrenergic receptor (β2-AR) in the relapse of myasthenia gravis (MG) associated with thymus abnormality has not been fully identified. METHODS Using polymerase chain reaction and gene sequencing method, we investigated the relationship of β2-AR gene polymorphisms with different thymus pathology in MG patients. The role of β2-AR gene polymorphisms in the relapse of MG was further investigated. RESULTS Age of onset (p = 0.034), the onset symptom of ocular MG (OMG; p = 0.023), the first symptom of OMG second generalization (p = 0.040) were different in MG with thymoma from those in MG with normal thymus or thymus hyperplasia. Gene polymorphisms of β2-AR on positions 16 and 27 showed no significant difference between relapsed and non-relapsed MG patients with thymus abnormality (thymus hyperplasia: position 16, p = 0.792; position 27, p = 0.664; thymoma: position 16, p = 0.226; position 27, p = 0.615). However, genotypes distribution on position 27 among MG patients with three thymus histology was significantly different (χ² = 8.153, p = 0.041). Furthermore, glucocorticoid can decrease relapse of MG with thymus hyperplasia (p = 0.021). CONCLUSIONS MG patients with thymus abnormality differ from MG patients with normal thymus in age of onset, the onset symptom of OMG and the first symptom of OMG second generalization. β2-AR gene polymorphisms had no relationship with the relapse of MG with thymus abnormality. Gene polymorphism of β2-AR on position 27 was associated with different thymus histology of MG. Glucocorticoid was able to reduce the risk of relapse of MG with thymus hyperplasia.
Collapse
Affiliation(s)
- Lili Wang
- a Department of Neurology, Beijing Shijitan Hospital , Capital Medical University , Beijing , China
| | - Yun Zhang
- a Department of Neurology, Beijing Shijitan Hospital , Capital Medical University , Beijing , China
| | - Maolin He
- a Department of Neurology, Beijing Shijitan Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
43
|
Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells. J Neuroimmunol 2015; 290:109-14. [PMID: 26711579 DOI: 10.1016/j.jneuroim.2015.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.
Collapse
|
44
|
Nishimura T, Inaba Y, Nakazawa Y, Omata T, Akasaka M, Shirai I, Ichikawa M. Reduction in peripheral regulatory T cell population in childhood ocular type myasthenia gravis. Brain Dev 2015; 37:808-16. [PMID: 25563663 DOI: 10.1016/j.braindev.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Myasthenia gravis (MG) is a T-cell dependent and antibody mediated autoimmune disease. Recent studies of adult patients and animal models have shown that regulatory T cells (Tregs) play an important role in the pathogenesis of MG, but little is known about MG in children. This study evaluated the role of peripheral blood Tregs in childhood ocular MG and assessed if Tregs could be an index for estimating immunological status. PATIENTS AND METHODS Clinical data and peripheral lymphocytes were obtained from 13 children with serum AChR antibody-positive ocular type MG and 18 age-matched controls. Committed cells from MG patients were divided into two clinical stages: active (n=12) and remission (n=11). Tregs and Th17 cells were analyzed by flow cytometric analysis based on CD4(+)CD25(+) intracellular Foxp3(+) and CD4(+) intracellular IL-17A(+) fractions, respectively. RESULTS The percentage of Tregs among peripheral blood CD4(+) T cells in active stage, remission stage, and control groups was 3.3±1.3%, 4.8±1.7%, and 5.0±0.6%, respectively. The Treg population was significantly lower in the active stage than in the remission stage and controls. Furthermore, Treg percentage was significantly lower during relapse of myasthenia symptoms. We witnessed no remarkable associations between the percentage of Tregs and immune suppressant dosages. CONCLUSIONS A significant reduction in the peripheral Treg population is considered to contribute to the pathophysiology of ocular type childhood MG and may be a marker of immunological state in these patients.
Collapse
Affiliation(s)
- Takafumi Nishimura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Inaba
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Taku Omata
- Division of Child Neurology, Chiba Children's Hospital, Chiba, Japan
| | - Manami Akasaka
- Department of Pediatrics, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ikuko Shirai
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Motoki Ichikawa
- Child and Women's Health Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| |
Collapse
|
45
|
Wang Z, Chen Y, Xu S, Yang Y, Wei D, Wang W, Huang X. Aberrant decrease of microRNA19b regulates TSLP expression and contributes to Th17 cells development in myasthenia gravis related thymomas. J Neuroimmunol 2015; 288:34-9. [PMID: 26531692 DOI: 10.1016/j.jneuroim.2015.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 12/24/2022]
Abstract
Myasthenia gravis (MG) is an organ-specific autoimmune disease. The imbalance of T helper type 17 cells (Th17) plays a key role in the pathogenesis of thymomatous MG. But the regulatory mechanism for Th17 cell development in MG-related thymoma remains undefined. Here we demonstrated that thymic stromal lymphopoietin (TSLP) is significantly decreased in thymomas. We also proved that TSLP was post-trancriptionally regulated by microRNA-19b. The expression of microRNA-19b was negatively correlated with the expression of TSLP mRNA and protein in thymomas. This study indicated that the elevation of microRNA-19b suppressed TSLP expression and then influenced T cell development in thymomatous MG.
Collapse
Affiliation(s)
- Zhongkui Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China; Department of Neurology, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Yuping Chen
- Department of Neurology, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Shengjie Xu
- Department of Neurology, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Yanhua Yang
- Department of Neurology, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Dongning Wei
- Department of Neurology, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Wei Wang
- Department of Neurology, The 309th Hospital of Chinese PLA, Beijing 100091, China
| | - Xusheng Huang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
46
|
Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK. PLoS One 2015; 10:e0123546. [PMID: 25893403 PMCID: PMC4403992 DOI: 10.1371/journal.pone.0123546] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/04/2015] [Indexed: 12/16/2022] Open
Abstract
Neuromuscular transmission failure in myasthenia gravis (MG) is most commonly elicited by autoantibodies (ab) to the acetylcholine receptor or the muscle-specific kinase, constituting AChR-MG and MuSK-MG. It is controversial whether these MG subtypes arise through different T helper (Th) 1, Th2 or Th17 polarized immune reactions and how these reactions are blunted by immunosuppression. To address these questions, plasma levels of cytokines related to various Th subtypes were determined in patients with AChR-MG, MuSK-MG and healthy controls (CON). Peripheral blood mononuclear cells (PBMC) were activated in vitro by anti-CD3, and cytokines were quantified in supernatants. In purified blood CD4+ T cells, RNA of various cytokines, Th subtype specific transcription factors and the co-stimulatory molecule, CD40L, were quantified by qRT-PCR. Plasma levels of Th1, Th2 and Th17 related cytokines were overall not significantly different between MG subtypes and CON. By contrast, in vitro stimulated PBMC from MuSK-MG but not AChR-MG patients showed significantly increased secretion of the Th1, Th17 and T follicular helper cell related cytokines, IFN-γ, IL-17A and IL-21. Stimulated expression of IL-4, IL-6, IL-10 and IL-13 was not significantly different. At the RNA level, expression of CD40L by CD4+ T cells was reduced in both AChR-MG and MuSK-MG patients while expression of Th subset related cytokines and transcription factors were normal. Immunosuppression treatment had two effects: First, it reduced levels of IL12p40 in the plasma of AChR-MG and MuSK-MG patients, leaving other cytokine levels unchanged; second, it reduced spontaneous secretion of IFN-γ and increased secretion of IL-6 and IL-10 by cultured PBMC from AChR-MG, but not MuSK-MG patients. We conclude that Th1 and Th17 immune reactions play a role in MuSK-MG. Immunosuppression attenuates the Th1 response in AChR-MG and MuSK-MG, but otherwise modulates immune responses in AChR-MG and MuSK-MG patients differentially.
Collapse
|
47
|
Xu H, Zhang M, Li XL, Li H, Yue LT, Zhang XX, Wang CC, Wang S, Duan RS. Low and high doses of ursolic acid ameliorate experimental autoimmune myasthenia gravis through different pathways. J Neuroimmunol 2015; 281:61-7. [PMID: 25867469 DOI: 10.1016/j.jneuroim.2015.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/08/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by fatigable muscle weakness. Ursolic acid (UA) is a pentacyclic triterpenoid with anti-inflammatory and immunomodulatory properties, especially inhibiting IL-17. We found that UA ameliorated the symptoms of experimental autoimmune myasthenia gravis (EAMG), a rat model of MG. Although both the low and high doses of UA shifted Th17 to Th2 cytokines, other mechanisms were dose dependent. The low dose enhanced Fas-mediated apoptosis, whereas the high dose up-regulated Treg cells and reduced the concentrations of IgG2b antibodies. These findings suggest a new strategy to treat EAMG and even human MG.
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Neurology, Taian City Central Hospital, Taian 271000, PR China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xiao-Li Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Long-Tao Yue
- Central Laboratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xin-Xin Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Shan Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
48
|
Schaffert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A, Kohler S. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol 2015; 45:1339-47. [PMID: 25676041 DOI: 10.1002/eji.201445064] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/07/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
The role of Th17 cells in the pathogenesis of autoantibody-mediated diseases is unclear. Here, we assessed the contribution of Th17 cells to the pathogenesis of experimental autoimmune myasthenia gravis (EAMG), which is induced by repetitive immunizations with Torpedo californica acetylcholine receptor (tAChR). We show that a significant fraction of tAChR-specific CD4(+) T cells is producing IL-17. IL-17(ko) mice developed fewer or no EAMG symptoms, although the frequencies of tAChR-specific CD4(+) T cells secreting IL-2, IFN-γ, or IL-21, and the percentage of FoxP3(+) Treg cells were similar to WT mice. Even though the total anti-tAChR antibody levels were equal, the complement fixating IgG2b subtype was reduced in IL-17(ko) as compared to WT mice. Most importantly, pathogenic anti-murine AChR antibodies were significantly lower in IL-17(ko) mice. Furthermore, we confirmed the role of Th17 cells in EAMG pathogenesis by the reconstitution of TCR β/δ(ko) mice with WT or IL-17(ko) CD4(+) T cells. In conclusion, we show that the level of IgG2b and the loss of B-cell tolerance, which results in pathogenic anti-murine AChR-specific antibodies, are dependent on IL-17 production by CD4(+) T cells. Thus, we describe here for the first time how Th17 cells are involved in the induction of classical antibody-mediated autoimmunity.
Collapse
Affiliation(s)
- Hanne Schaffert
- Department of Experimental Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andreas Pelz
- Department of Experimental Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Abhishek Saxena
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Andreas Meisel
- Department of Experimental Neurology, Charité-University Medicine Berlin, Berlin, Germany.,NeuroCure Clinical Research Center (NCRC), Charité-University Medicine Berlin, Berlin, Germany.,Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andreas Thiel
- Department of Regenerative Immunology and Aging, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Siegfried Kohler
- Department of Experimental Neurology, Charité-University Medicine Berlin, Berlin, Germany.,NeuroCure Clinical Research Center (NCRC), Charité-University Medicine Berlin, Berlin, Germany.,Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
49
|
Xu G, Zheng K, Lu X, Wang J, Chai Y, Wang J. Association between polymorphisms in the promoter region of T cell immunoglobulin and mucin domain-3 and myasthenia gravis-associated thymoma. Oncol Lett 2015; 9:1470-1474. [PMID: 25663933 PMCID: PMC4314971 DOI: 10.3892/ol.2015.2845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Thymoma is a type of benign or low-grade malignant tumor, occurring on the thymic epithelium. Patients with thymoma may also suffer from myasthenia gravis (MG), presenting MG-associated thymoma. T cell immunoglobulin and mucin domain-3 (Tim-3), a subtype of the Tim protein family, may be an important immune regulatory and pivotal molecule associated with tumor development. In order to understand the etiology and pathogenesis of MG-associated thymoma in the Han population of North China, the present study investigated the association between a polymorphism on the -574 locus in the promoter of Tim-3 and the risk of MG-associated thymoma in the Han Chinese population. In total, 116 patients with thymoma and MG were enrolled into the MG-associated thymoma group, while 124 patients with thymoma, but without MG, were enrolled into the non-MG-associated thymoma group. Examinations were conducted to reach a definite diagnosis of thymoma and MG and rule out other autoimmune diseases. Allele-specific polymerase chain reaction (AS-PCR) was performed to determine the polymorphism on the -574 locus of Tim-3 in all the subjects. PCR products were randomly selected for sequencing. Statistically significant differences were detected between the distribution frequencies of the GT+TT genotype and T allele on the -574 locus of the MG-associated thymoma group (31.03 vs. 12.90%, respectively; χ2=11.609, P=0.001) and the non-MG-associated thymoma group (15.52 vs. 6.45%, respectively; χ2=10.198, P=0.001). In conclusion, the present study indicated that an association may exist between the polymorphism of the -574 locus in the Tim-3 promoter and MG-associated thymoma.
Collapse
Affiliation(s)
- Guowu Xu
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Zheng
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xing Lu
- Department of Intensive Care Unit, Tianjin Third Central Hospital, Tianjin 300170, P.R. China
| | - Jinxiang Wang
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanfen Chai
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Junyi Wang
- Department of Intensive Care Unit, Tianjin Third Central Hospital, Tianjin 300170, P.R. China
| |
Collapse
|
50
|
Zheng K, Xu G, Lu X, Zhang J, Zhang P. Expression and polymorphisms of T cell immunoglobulin domain and mucin domain protein-1 in thymoma with or without myasthenia gravis. Oncol Lett 2014; 8:317-322. [PMID: 24959269 PMCID: PMC4063586 DOI: 10.3892/ol.2014.2090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/27/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the expression and association of the single-nucleotide polymorphism (SNP) -1637A/G in the promoter region of the T cell immunoglobulin domain and mucin domain protein-1 (Tim-1) gene in patients diagnosed with thymoma with or without myasthenia gravis (MG). The expression of Tim-1 was detected using the streptavidin peroxidase immunohistochemical staining method on tissues obtained from thymoma patients with (n=58) and without (n=62) MG. The Tim-1 gene -1637A/G polymorphism was detected using the single allele-specific primer polymerase chain reaction. The positive rate of Tim-1 expression in thymoma patients with MG was 62.1% (32/58), which was significantly higher compared with that in thymoma patients without MG (33.9%, 21/62) (P=0.002). The genotype frequencies of GG, GA and AA in the -1637A/G polymorphism were 0.7931, 0.2069 and 0, respectively, in thymoma patients with MG, and 0.6129, 0.3871 and 0, respectively, in thymoma patients without MG. A significant difference in the genotypes between the thymoma patients with MG and those without MG was found (P=0.031). In addition, a significant difference in allele frequencies between thymoma patients with MG and those without MG (P=0.024) was observed. The high expression of Tim-1 in thymoma tissues may play an important role in the development of thymoma with MG. The -1637A/G polymorphism site of the promoter region in Tim-1 may be associated with thymoma with MG. These findings provide a basis for further genetic research of thymoma with MG.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Guowu Xu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xing Lu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|