1
|
Brabham HJ, Gómez De La Cruz D, Were V, Shimizu M, Saitoh H, Hernández-Pinzón I, Green P, Lorang J, Fujisaki K, Sato K, Molnár I, Šimková H, Doležel J, Russell J, Taylor J, Smoker M, Gupta YK, Wolpert T, Talbot NJ, Terauchi R, Moscou MJ. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. THE PLANT CELL 2024; 36:447-470. [PMID: 37820736 PMCID: PMC10827324 DOI: 10.1093/plcell/koad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.
Collapse
Affiliation(s)
- Helen J Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Diana Gómez De La Cruz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Motoki Shimizu
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Phon Green
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jennifer Lorang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Koki Fujisaki
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, 779 00 Olomouc, Czech Republic
| | - James Russell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yogesh Kumar Gupta
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- 2Blades, Evanston, IL 60201, USA
| | - Tom Wolpert
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 617-0001, Japan
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
2
|
Rychc Confers Extreme Resistance to Potato virus Y in Potato. Cells 2022; 11:cells11162577. [PMID: 36010654 PMCID: PMC9406545 DOI: 10.3390/cells11162577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The Potato virus Y (PVY) is responsible for huge economic losses for the potato industry worldwide and is the fifth most consequential plant virus globally. The main strategies for virus control are to limit aphid vectors, produce virus-free seed potatoes, and breed virus-resistant varieties. The breeding of PVY-resistant varieties is the safest and most effective method in terms of cost and environmental protection. Rychc, a gene that confers extreme resistance to PVY, is from S. chacoense, which is a wild diploid potato species that is widely used in many PVY-resistant breeding projects. In this study, Rychc was fine mapped and successfully cloned from S. chacoense accession 40-3. We demonstrated that Rychc encodes a TIR-NLR protein by stably transforming a diploid susceptible cultivar named AC142 and a tetraploid potato variety named E3. The Rychc conferred extreme resistance to PVYO, PVYN:O and PVYNTN in both of the genotypes. To investigate the genetic events occurring during the evolution of the Rychc locus, we sequenced 160 Rychc homologs from 13 S. chacoense genotypes. Based on the pattern of sequence identities, 160 Rychc homologs were divided into 11 families. In Family 11 including Rychc, we found evidence for Type I evolutionary patterns with frequent sequence exchanges, obscured orthologous relationships and high non-synonymous to synonymous substitutions (Ka/Ks), which is consistent with rapid diversification and positive selection in response to rapid changes in the PVY genomes. Furthermore, a functional marker named MG64-17 was developed in this study that indicates the phenotype with 100% accuracy and, therefore, can be used for marker-assisted selection in breeding programs that use S. chacoense as a breeding resource.
Collapse
|
3
|
Huang C. From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Viruses 2021; 13:v13040688. [PMID: 33923435 PMCID: PMC8073968 DOI: 10.3390/v13040688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
In the plant immune system, according to the 'gene-for-gene' model, a resistance (R) gene product in the plant specifically surveils a corresponding effector protein functioning as an avirulence (Avr) gene product. This system differs from other plant-pathogen interaction systems, in which plant R genes recognize a single type of gene or gene family because almost all virus genes with distinct structures and functions can also interact with R genes as Avr determinants. Thus, research conducted on viral Avr-R systems can provide a novel understanding of Avr and R gene product interactions and identify mechanisms that enable rapid co-evolution of plants and phytopathogens. In this review, we intend to provide a brief overview of virus-encoded proteins and their roles in triggering plant resistance, and we also summarize current progress in understanding plant resistance against virus Avr genes. Moreover, we present applications of Avr gene-mediated phenotyping in R gene identification and screening of segregating populations during breeding processes.
Collapse
Affiliation(s)
- Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
4
|
Wan WL, Kim ST, Castel B, Charoennit N, Chae E. Genetics of autoimmunity in plants: an evolutionary genetics perspective. THE NEW PHYTOLOGIST 2021; 229:1215-1233. [PMID: 32970825 DOI: 10.1111/nph.16947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 05/14/2023]
Abstract
Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Nuri Charoennit
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
5
|
Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A, Win J, Kamoun S. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 2019; 8:e49956. [PMID: 31774397 PMCID: PMC6944444 DOI: 10.7554/elife.49956] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Mauricio P Contreras
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Adeline Harant
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Chih-hang Wu
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Lida Derevnina
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Toshiyuki Sakai
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Cian Duggan
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Eleonora Moratto
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Tolga O Bozkurt
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Abbas Maqbool
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Joe Win
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
6
|
Wu M, Liu YN, Zhang C, Liu XT, Liu CC, Guo R, Niu KX, Zhu AQ, Yang JY, Chen JQ, Wang B. Molecular mapping of the gene(s) conferring resistance to Soybean mosaic virus and Bean common mosaic virus in the soybean cultivar Raiden. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3101-3114. [PMID: 31432199 DOI: 10.1007/s00122-019-03409-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/29/2019] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE In the soybean cultivar Raiden, both a SMV-resistance gene and a BCMV-resistance gene were fine-mapped to a common region within the Rsv1 complex locus on chromosome 13, in which two CC-NBS-LRR resistance genes (Glyma.13g184800 and Glyma.13g184900) exhibited significant divergence between resistant and susceptible cultivars and were subjected to positive selection. Both Soybean mosaic virus (SMV) and Bean common mosaic virus (BCMV) can induce soybean mosaic diseases. To date, few studies have explored soybean resistance against these two viruses simultaneously. In this work, Raiden, a cultivar resistant to both SMV and BCMV, was crossed with a susceptible cultivar, Williams 82, to fine-map the resistance genes. After inoculating ~ 200 F2 individuals with either SMV (SC6-N) or BCMV (HZZB011), a segregation ratio of 3 resistant:1 susceptible was observed, indicating that for either virus, a single dominant gene confers resistance. Bulk segregation analysis (BSA) revealed that the BCMV-resistance gene is also linked to the SMV-resistance Rsv1 complex locus. Genotyping the F2 individuals with 12 simple sequence repeat (SSR) markers across the Rsv1 complex locus then preliminarily mapped the SMV-resistance gene, Rsv1-r, between SSR markers BARCSOYSSR_13_1075 and BARCSOYSSR_13_1161 and the BCMV-resistance gene between BARCSOYSSR_13_1084 and BARCSOYSSR_13_1115. Furthermore, a population of 1009 F2 individuals was screened with markers BARCSOYSSR_13_1075 and BARCSOYSSR_13_1161, and 32 recombinant F2 individuals were identified. By determining the genotypes of these F2 individuals on multiple internal SSR and single nucleotide polymorphism (SNP) markers and assaying the phenotypes of selected recombinant F2:3 lines, both the SMV- and BCMV-resistance genes were fine-mapped to a common region ( ~ 154.5 kb) between two SNP markers: SNP-38 and SNP-50. Within the mapped region, two CC-NBS-LRR genes exhibited significant divergence between Raiden and Williams 82, and their evolution has been affected by positive selection.
Collapse
Affiliation(s)
- Mian Wu
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Ying-Na Liu
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Cong Zhang
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Xue-Ting Liu
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Cheng-Chen Liu
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Rui Guo
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Ke-Xin Niu
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - An-Qi Zhu
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Jia-Yin Yang
- Huaiyin Institute of Agricultural Science of Xuhuai Region in Jiangsu, Huai'an, 223001, Jiangsu Province, China
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, Department of Genetics and Evolutionary Biology, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| |
Collapse
|
7
|
MacQueen A, Tian D, Chang W, Holub E, Kreitman M, Bergelson J. Population Genetics of the Highly Polymorphic RPP8 Gene Family. Genes (Basel) 2019; 10:E691. [PMID: 31500388 PMCID: PMC6771003 DOI: 10.3390/genes10090691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity.
Collapse
Affiliation(s)
- Alice MacQueen
- Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210008, China.
| | - Wenhan Chang
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Eric Holub
- School of Life Sciences, Wellesbourne Innovation Campus, University of Warwick, Wellesbourne CV359EF, UK.
| | - Martin Kreitman
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Joy Bergelson
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
8
|
Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLoS Genet 2018; 14:e1007843. [PMID: 30543623 PMCID: PMC6307820 DOI: 10.1371/journal.pgen.1007843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
During meiosis, chromosomes undergo DNA double-strand breaks (DSBs), which can be repaired using a homologous chromosome to produce crossovers. Meiotic recombination frequency is variable along chromosomes and tends to concentrate in narrow hotspots. We mapped crossover hotspots located in the Arabidopsis thaliana RAC1 and RPP13 disease resistance genes, using varying haplotypic combinations. We observed a negative non-linear relationship between interhomolog divergence and crossover frequency within the hotspots, consistent with polymorphism locally suppressing crossover repair of DSBs. The fancm, recq4a recq4b, figl1 and msh2 mutants, or lines with increased HEI10 dosage, are known to show increased crossovers throughout the genome. Surprisingly, RAC1 crossovers were either unchanged or decreased in these genetic backgrounds, showing that chromosome location and local chromatin environment are important for regulation of crossover activity. We employed deep sequencing of crossovers to examine recombination topology within RAC1, in wild type, fancm, recq4a recq4b and fancm recq4a recq4b backgrounds. The RAC1 recombination landscape was broadly conserved in the anti-crossover mutants and showed a negative relationship with interhomolog divergence. However, crossovers at the RAC1 5'-end were relatively suppressed in recq4a recq4b backgrounds, further indicating that local context may influence recombination outcomes. Our results demonstrate the importance of interhomolog divergence in shaping recombination within plant disease resistance genes and crossover hotspots.
Collapse
|
9
|
Wang D, Sha Y, Hu J, Yang T, Piao X, Zhang X. Genetic signatures of plant resistance genes with known function within and between species. Genetica 2018; 146:517-528. [PMID: 30315424 DOI: 10.1007/s10709-018-0044-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Abstract
Plant disease resistance (R) genes have undergone significant evolutionary divergence to cope with rapid changes in pathogens. These highly variable evolutionary patterns may have contributed to diversity in R gene protein families or structures. Here, the evolutionary patterns of 76 identified R genes and their homologs were investigated within and between plant species. Results demonstrated that nucleotide binding sites and leucine-rich-repeat genes located in loci with complex evolutionary histories tended to evolve rapidly, have high variation in copy numbers, exhibit high levels of nucleotide variation and frequent gene conversion events, and also exhibit high non-synonymous to synonymous substitution ratios in LRR regions. However, non-NBS-LRR R genes are relatively well conserved with constrained variation and are more likely to participate in the basic defense system of hosts. In addition, both conserved and highly divergent evolutionary patterns were observed for the same R genes and were consistent with inter- and intra-specific distributions of some R genes. These results thus indicate either continuous or altered evolutionary patterns between and within species. The present investigation is the first attempt to investigate evolutionary patterns among all clearly functional R genes. The results reported here thus provide a foundation for future plant disease studies.
Collapse
Affiliation(s)
- Dan Wang
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Yan Sha
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China.
| | - Junfeng Hu
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Ting Yang
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, P.R. China
| |
Collapse
|
10
|
Neupane S, Ma Q, Mathew FM, Varenhorst AJ, Andersen EJ, Nepal MP. Evolutionary Divergence of TNL Disease-Resistant Proteins in Soybean (Glycine max) and Common Bean (Phaseolus vulgaris). Biochem Genet 2018; 56:397-422. [PMID: 29500532 DOI: 10.1007/s10528-018-9851-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Disease-resistant genes (R genes) encode proteins that are involved in protecting plants from their pathogens and pests. Availability of complete genome sequences from soybean and common bean allowed us to perform a genome-wide identification and analysis of the Toll interleukin-1 receptor-like nucleotide-binding site leucine-rich repeat (TNL) proteins. Hidden Markov model (HMM) profiling of all protein sequences resulted in the identification of 117 and 77 regular TNL genes in soybean and common bean, respectively. We also identified TNL gene homologs with unique domains, and signal peptides as well as nuclear localization signals. The TNL genes in soybean formed 28 clusters located on 10 of the 20 chromosomes, with the majority found on chromosome 3, 6 and 16. Similarly, the TNL genes in common bean formed 14 clusters located on five of the 11 chromosomes, with the majority found on chromosome 10. Phylogenetic analyses of the TNL genes from Arabidopsis, soybean and common bean revealed less divergence within legumes relative to the divergence between legumes and Arabidopsis. Syntenic blocks were found between chromosomes Pv10 and Gm03, Pv07 and Gm10, as well as Pv01 and Gm14. The gene expression data revealed basal level expression and tissue specificity, while analysis of available microRNA data showed 37 predicted microRNA families involved in targeting the identified TNL genes in soybean and common bean.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Qin Ma
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
11
|
Ma FF, Wu M, Liu YN, Feng XY, Wu XZ, Chen JQ, Wang B. Molecular characterization of NBS-LRR genes in the soybean Rsv3 locus reveals several divergent alleles that likely confer resistance to the soybean mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:253-265. [PMID: 29038948 DOI: 10.1007/s00122-017-2999-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE The divergence patterns of NBS - LRR genes in soybean Rsv3 locus were deciphered and several divergent alleles ( NBS_C, NBS_D and Columbia NBS_E ) were identified as the likely functional candidates of Rsv3. The soybean Rsv3 locus, which confers resistance to the soybean mosaic virus (SMV), has been previously mapped to a region containing five nucleotide binding site-leucine-rich repeats (NBS-LRR) genes (referred to as nbs_A-E) in Williams 82. In resistant cultivars, however, the number of NBS-LRR genes in this region and their divergence from susceptible alleles remain unclear. In the present study, we constructed and screened a bacterial artificial chromosome (BAC) library for an Rsv3-possessing cultivar, Zaoshu 18. Sequencing two positive BAC inserts on the Rsv3 locus revealed that Zaoshu 18 possesses the same gene content and order as Williams 82, but two of the NBS-LRR genes, NBS_C and NBS_D, exhibit distinct features that were not observed in the Williams 82 alleles. Obtaining these NBS-LRR genes from eight additional cultivars demonstrated that the NBS_A-D genes diverged into two different alleles: the nbs_A-D alleles were associated with the rsv3-type cultivars, whereas the NBS_A-D alleles were associated with the Rsv3-possessing cultivars. For the NBS_E gene, the cultivar Columbia possesses an allele (NBS_E) that differed from that in Zaoshu 18 and rsv3-type cultivars (nbs_E). Exchanged fragments were further detected on alleles of the NBS_C-E genes, suggesting that recombination is a major force responsible for allele divergence. Also, the LRR domains of the NBS_C-E genes exhibited extremely strong signals of positive selection. Overall, the divergence patterns of the NBS-LRR genes in Rsv3 locus elucidated by this study indicate that not only NBS_C but also NBS_D and Columbia NBS_E are likely functional alleles that confer resistance to SMV.
Collapse
Affiliation(s)
- Fang-Fang Ma
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Mian Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Ying-Na Liu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Xue-Ying Feng
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Xun-Zong Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, 163 XianLin Avenue, Nanjing, 210023, China.
| |
Collapse
|
12
|
Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP, Henderson IR. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet 2016; 12:e1006179. [PMID: 27415776 PMCID: PMC4945094 DOI: 10.1371/journal.pgen.1006179] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Carsten Reinhard
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Charles J. Underwood
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Xiaohui Zhao
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Jackson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles, France
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Sun XQ, Li DH, Xue JY, Yang SH, Zhang YM, Li MM, Hang YY. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana. Mol Biol Evol 2016; 33:2044-53. [PMID: 27189569 DOI: 10.1093/molbev/msw087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution.
Collapse
Affiliation(s)
- Xiao-Qin Sun
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ding-Hong Li
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jia-Yu Xue
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Si-Hai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Mei Zhang
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Mi-Mi Li
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yue-Yu Hang
- Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
14
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2213-25. [PMID: 26183036 DOI: 10.1007/s00122-015-2579-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/27/2015] [Indexed: 05/03/2023]
Abstract
We characterized a novel blast resistance gene Pi50 at the Pi2/9 locus; Pi50 is derived from functional divergence of duplicated genes. The unique features of Pi50 should facilitate its use in rice breeding and improve our understanding of the evolution of resistance specificities. Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, poses constant, major threats to stable rice production worldwide. The deployment of broad-spectrum resistance (R) genes provides the most effective and economical means for disease control. In this study, we characterize the broad-spectrum R gene Pi50 at the Pi2/9 locus, which is embedded within a tandem cluster of 12 genes encoding proteins with nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains. In contrast with other Pi2/9 locus, the Pi50 cluster contains four duplicated genes (Pi50_NBS4_1 to 4) with extremely high nucleotide sequence similarity. Moreover, these duplicated genes encode two kinds of proteins (Pi50_NBS4_1/2 and Pi50_NBS4_3/4) that differ by four amino acids. Complementation tests and resistance spectrum analyses revealed that Pi50_NBS4_1/2, not Pi50_NBS4_3/4, control the novel resistance specificity as observed in the Pi50 near isogenic line, NIL-e1. Pi50 shares greater than 96 % amino acid sequence identity with each of three other R proteins, i.e., Pi9, Piz-t, and Pi2, and has amino acid changes predominantly within the LRR region. The identification of Pi50 with its novel resistance specificity will facilitate the dissection of mechanisms behind the divergence and evolution of different resistance specificities at the Pi2/9 locus.
Collapse
Affiliation(s)
- Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingluan Han
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Liexian Zeng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bo Zhou
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, 1031, Metro Manila, Philippines.
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
16
|
Destefanis M, Nagy I, Rigney B, Bryan GJ, McLean K, Hein I, Griffin D, Milbourne D. A disease resistance locus on potato and tomato chromosome 4 exhibits a conserved multipartite structure displaying different rates of evolution in different lineages. BMC PLANT BIOLOGY 2015; 15:255. [PMID: 26496718 PMCID: PMC4619397 DOI: 10.1186/s12870-015-0645-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND In plant genomes, NB-LRR based resistance (R) genes tend to occur in clusters of variable size in a relatively small number of genomic regions. R-gene sequences mostly differentiate by accumulating point mutations and gene conversion events. Potato and tomato chromosome 4 harbours a syntenic R-gene locus (known as the R2 locus in potato) that has mainly been examined in central American/Mexican wild potato species on the basis of its contribution to resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. Evidence to date indicates the occurrence of a fast evolutionary mode characterized by gene conversion events at the locus in these genotypes. RESULTS A physical map of the R2 locus was developed for three Solanum tuberosum genotypes and used to identify the tomato syntenic sequence. Functional annotation of the locus revealed the presence of numerous resistance gene homologs (RGHs) belonging to the R2 gene family (R2GHs) organized into a total of 4 discrete physical clusters, three of which were conserved across S. tuberosum and tomato. Phylogenetic analysis showed clear orthology/paralogy relationships between S. tuberosum R2GHs but not in R2GHs cloned from Solanum wild species. This study confirmed that, in contrast to the wild species R2GHs, which have evolved through extensive sequence exchanges between paralogs, gene conversion was not a major force for differentiation in S. tuberosum R2GHs, and orthology/paralogy relationships have been maintained via a slow accumulation of point mutations in these genotypes. CONCLUSIONS S. tuberosum and Solanum lycopersicum R2GHs evolved mostly through duplication and deletion events, followed by gradual accumulation of mutations. Conversely, widespread gene conversion is the major evolutionary force that has shaped the locus in Mexican wild potato species. We conclude that different selective forces shaped the evolution of the R2 locus in these lineages and that co-evolution with a pathogen steered selection on different evolutionary paths.
Collapse
Affiliation(s)
- Marialaura Destefanis
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
- Pesticides, Plant Health & Seed Testing Laboratories, Department of Agriculture, Food and the Marine, Backweston Campus, Celbridge, Co. Kildare, Ireland.
| | - Istvan Nagy
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Brian Rigney
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.
| | - Karen McLean
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK.
| | - Denis Griffin
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
| | - Dan Milbourne
- Crops, Environment and Land Use Programme, Teagasc, Oak Park, Carlow, Ireland.
| |
Collapse
|
17
|
Si W, Yuan Y, Huang J, Zhang X, Zhang Y, Zhang Y, Tian D, Wang C, Yang Y, Yang S. Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. THE NEW PHYTOLOGIST 2015; 206:1491-502. [PMID: 25664766 DOI: 10.1111/nph.13319] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/29/2014] [Indexed: 05/02/2023]
Abstract
Numerous studies have argued that environmental variations may contribute to evolution through the generation of novel heritable variations via meiotic recombination, which plays a crucial role in crop domestication and improvement. Rice is one of the most important staple crops, but no direct estimate of recombination events has yet been made at a fine scale. Here, we address this limitation by sequencing 41 rice individuals with high sequencing coverage and c. 900 000 accurate markers. An average of 33.9 crossover (c. 4.53 cM Mb(-1) ) and 2.47 non-crossover events were detected per F2 plant, which is similar to the values in Arabidopsis. Although not all samples in the stress treatment group showed an increased number of crossover events, environmental stress increased the recombination rate in c. 28.5% of samples. Interestingly, the crossovers showed a highly uneven distribution among and along chromosomes, with c. 13.9% of the entire genome devoid of crossovers, including 11 of the 12 centromere regions, and c. 0.72% of the genome containing large numbers of crossovers (> 50 cM Mb(-1) ). The gene ontology (GO) categories showed that genes clustered within the recombination hot spot regions primarily tended to be involved in responses to environmental stimuli, suggesting that recombination plays an important role for adaptive evolution in rapidly changing environments.
Collapse
Affiliation(s)
- Weina Si
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yang Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ju Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yanchun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
18
|
Xie Z, Si W, Gao R, Zhang X, Yang S. Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Mol Genet Genomics 2015; 290:2173-86. [PMID: 26008792 DOI: 10.1007/s00438-015-1068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Late blight caused by the oomycete Phytophthora infestans is one of the most severe threats to potato production worldwide. Numerous studies suggest that the most effective protective strategy against the disease would be to provide potato cultivars with durable resistance (R) genes. However, little is known about the origin and evolutional history of these durable R-genes in potato. Addressing this might foster better understanding of the dynamics of these genes in nature and provide clues for identifying potential candidate R-genes. Here, a systematic survey was executed at RB/Rpi-blb1 locus, an exclusive broad-spectrum R-gene locus in potato. As indicated by synteny analysis, RB/Rpi-blb1 homologs were identified in all tested genomes, including potato, tomato, pepper, and Nicotiana, suggesting that the RB/Rpi-blb1 locus has an ancient origin. Two evolutionary patterns, similar to those reported on RGC2 in Lactuca, and Pi2/9 in rice, were detected at this locus. Type I RB/Rpi-blb1 homologs have frequent copy number variations and sequence exchanges, obscured orthologous relationships, considerable nucleotide divergence, and high non-synonymous to synonymous substitutions (Ka/Ks) between or within species, suggesting rapid diversification and balancing selection in response to rapid changes in the oomycete pathogen genomes. These characteristics may serve as signatures for cloning of late blight resistance genes.
Collapse
Affiliation(s)
- Zhengqing Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Weina Si
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rongchao Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
19
|
Wei C, Kuang H, Li F, Chen J. The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs. BMC Genomics 2014; 15:743. [PMID: 25178990 PMCID: PMC4161772 DOI: 10.1186/1471-2164-15-743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Several resistance traits, including the I2 resistance against tomato fusarium wilt, were mapped to the long arm of chromosome 11 of Solanum. However, the structure and evolution of this locus remain poorly understood. Results Comparative analysis showed that the structure and evolutionary patterns of the I2 locus vary considerably between potato and tomato. The I2 homologues from different Solanaceae species usually do not have orthologous relationship, due to duplication, deletion and frequent sequence exchanges. At least 154 sequence exchanges were detected among 76 tomato I2 homologues, but sequence exchanges between I2 homologues in potato is less frequent. Previous study showed that I2 homologues in potato were targeted by miR482. However, our data showed that I2 homologues in tomato were targeted by miR6024 rather than miR482. Furthermore, miR6024 triggers phasiRNAs from I2 homologues in tomato. Sequence analysis showed that miR6024 was originated after the divergence of Solanaceae. We hypothesized that miR6024 and miR482 might have facilitated the expansion of the I2 family in Solanaceae species, since they can minimize their potential toxic effects by down-regulating their expression. Conclusions The I2 locus represents a most divergent resistance gene cluster in Solanum. Its high divergence was partly due to frequent sequence exchanges between homologues. We propose that the successful expansion of I2 homologues in Solanum was at least partially attributed to miRNA mediated regulation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-743) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jiongjiong Chen
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
20
|
Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U. Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet 2013; 9:e1003707. [PMID: 23990800 PMCID: PMC3749932 DOI: 10.1371/journal.pgen.1003707] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/22/2013] [Indexed: 12/27/2022] Open
Abstract
Among the rare colonizers of heavy-metal rich toxic soils, Arabidopsis halleri is a compelling model extremophile, physiologically distinct from its sister species A. lyrata, and A. thaliana. Naturally selected metal hypertolerance and extraordinarily high leaf metal accumulation in A. halleri both require Heavy Metal ATPase4 (HMA4) encoding a PIB-type ATPase that pumps Zn(2+) and Cd(2+) out of specific cell types. Strongly enhanced HMA4 expression results from a combination of gene copy number expansion and cis-regulatory modifications, when compared to A. thaliana. These findings were based on a single accession of A. halleri. Few studies have addressed nucleotide sequence polymorphism at loci known to govern adaptations. We thus sequenced 13 DNA segments across the HMA4 genomic region of multiple A. halleri individuals from diverse habitats. Compared to control loci flanking the three tandem HMA4 gene copies, a gradual depletion of nucleotide sequence diversity and an excess of low-frequency polymorphisms are hallmarks of positive selection in HMA4 promoter regions, culminating at HMA4-3. The accompanying hard selective sweep is segmentally eclipsed as a consequence of recurrent ectopic gene conversion among HMA4 protein-coding sequences, resulting in their concerted evolution. Thus, HMA4 coding sequences exhibit a network-like genealogy and locally enhanced nucleotide sequence diversity within each copy, accompanied by lowered sequence divergence between paralogs in any given individual. Quantitative PCR corroborated that, across A. halleri, three genomic HMA4 copies generate overall 20- to 130-fold higher transcript levels than in A. thaliana. Together, our observations constitute an unexpectedly complex profile of polymorphism resulting from natural selection for increased gene product dosage. We propose that these findings are paradigmatic of a category of multi-copy genes from a broad range of organisms. Our results emphasize that enhanced gene product dosage, in addition to neo- and sub-functionalization, can account for the genomic maintenance of gene duplicates underlying environmental adaptation.
Collapse
Affiliation(s)
- Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Liège, Belgium
| | - Juergen Kroymann
- Laboratoire d'Ecologie, Systématique et Evolution, Université Paris-Sud/CNRS, Orsay, France
| | | | - María Bernal
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| | - Patrick Motte
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genomics 2013; 14:335. [PMID: 23682795 PMCID: PMC3679737 DOI: 10.1186/1471-2164-14-335] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022] Open
Abstract
Background The sequenced genomes of cucumber, melon and watermelon have relatively few R-genes, with 70, 75 and 55 copies only, respectively. The mechanism for low copy number of R-genes in Cucurbitaceae genomes remains unknown. Results Manual annotation of R-genes in the sequenced genomes of Cucurbitaceae species showed that approximately half of them are pseudogenes. Comparative analysis of R-genes showed frequent loss of R-gene loci in different Cucurbitaceae species. Phylogenetic analysis, data mining and PCR cloning using degenerate primers indicated that Cucurbitaceae has limited number of R-gene lineages (subfamilies). Comparison between R-genes from Cucurbitaceae and those from poplar and soybean suggested frequent loss of R-gene lineages in Cucurbitaceae. Furthermore, the average number of R-genes per lineage in Cucurbitaceae species is approximately 1/3 that in soybean or poplar. Therefore, both loss of lineages and deficient duplications in extant lineages accounted for the low copy number of R-genes in Cucurbitaceae. No extensive chimeras of R-genes were found in any of the sequenced Cucurbitaceae genomes. Nevertheless, one lineage of R-genes from Trichosanthes kirilowii, a wild Cucurbitaceae species, exhibits chimeric structures caused by gene conversions, and may contain a large number of distinct R-genes in natural populations. Conclusions Cucurbitaceae species have limited number of R-gene lineages and each genome harbors relatively few R-genes. The scarcity of R-genes in Cucurbitaceae species was due to frequent loss of R-gene lineages and infrequent duplications in extant lineages. The evolutionary mechanisms for large variation of copy number of R-genes in different plant species were discussed.
Collapse
|
22
|
Michelmore RW, Christopoulou M, Caldwell KS. Impacts of resistance gene genetics, function, and evolution on a durable future. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:291-319. [PMID: 23682913 DOI: 10.1146/annurev-phyto-082712-102334] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Studies on resistance gene function and evolution lie at the confluence of structural and molecular biology, genetics, and plant breeding. However, knowledge from these disparate fields has yet to be extensively integrated. This review draws on ideas and information from these different fields to elucidate the influences driving the evolution of different types of resistance genes in plants and the concurrent evolution of virulence in pathogens. It provides an overview of the factors shaping the evolution of recognition, signaling, and response genes in the context of emerging functional information along with a consideration of the new opportunities for durable resistance enabled by high-throughput DNA sequencing technologies.
Collapse
|
23
|
Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, Suzuki M, Masuta C. RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1171-85. [PMID: 22852808 DOI: 10.1094/mpmi-04-12-0076-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RCY1, which encodes a coiled coil nucleotide-binding site leucine-rich repeat (LRR) class R protein, confers the hypersensitive response (HR) to a yellow strain of Cucumber mosaic virus (CMV[Y]) in Arabidopsis thaliana. Nicotiana benthamiana transformed with hemagglutinin (HA) epitope-tagged RCY1 (RCY1-HA) also exhibited a defense response accompanied by HR cell death and induction of defense-related gene expression in response to CMV(Y). Following transient expression of RCY1-HA by agroinfiltration, the defense reaction was induced in N. benthamiana leaves infected with CMV(Y) but not in virulent CMV(B2)-infected N. benthamiana leaves transiently expressing RCY1-HA or CMV(Y)-infected N. benthamiana leaves transiently expressing HA-tagged RPP8 (RPP8-HA), which is allelic to RCY1. This result suggests that Arabidopsis RCY1-conferred resistance to CMV(Y) could be reproduced in N. benthamiana leaves in a gene-for-gene manner. Expression of a series of chimeric constructs between RCY1-HA and RPP8-HA in CMV(Y)-infected N. benthamiana indicated that induction of defense responses to CMV(Y) is regulated by the LRR domain of RCY1. Interestingly, in CMV(Y)-infected N. benthamiana manifesting the defense response, the levels of both RCY1 and chimeric proteins harboring the RCY1 LRR domain were significantly reduced. Taken together, these data indicate that the RCY1-conferred resistance response to CMV(Y) is regulated by an LRR domain-mediated interaction with CMV(Y) and seems to be tightly associated with the degradation of RCY1 in response to CMV(Y).
Collapse
|
24
|
Wu K, Xu T, Guo C, Zhang X, Yang S. Heterogeneous evolutionary rates of Pi2/9 homologs in rice. BMC Genet 2012; 13:73. [PMID: 22900499 PMCID: PMC3492116 DOI: 10.1186/1471-2156-13-73] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Pi2/9 locus contains multiple nucleotide binding site-leucine-rich repeat (NBS-LRR) genes in the rice genome. Although three functional R-genes have been cloned from this locus, little is known about the origin and evolutionary history of these genes. Herein, an extensive genome-wide survey of Pi2/9 homologs in rice, sorghum, Brachypodium and Arabidopsis, was conducted to explore this theme. RESULTS In our study, 1, 1, 5 and 156 Pi2/9 homologs were detected in Arabidopsis, Brachypodium, sorghum and rice genomes, respectively. Two distinct evolutionary patterns of Pi2/9 homologs, Type I and Type II, were observed in rice lines. Type I Pi2/9 homologs showed evidence of rapid gene diversification, including substantial copy number variations, obscured orthologous relationships, high levels of nucleotide diversity or/and divergence, frequent sequence exchanges and strong positive selection, whereas Type II Pi2/9 homologs exhibited a fairly slow evolutionary rate. Interestingly, the three cloned R-genes from the Pi2/9 locus all belonged to the Type I genes. CONCLUSIONS Our data show that the Pi2/9 locus had an ancient origin predating the common ancestor of gramineous species. The existence of two types of Pi2/9 homologs suggest that diversifying evolution should be an important strategy of rice to cope with different types of pathogens. The relationship of cloned Pi2/9 genes and Type I genes also suggests that rapid gene diversification might facilitate rice to adapt quickly to the changing spectrum of the fungal pathogen M. grisea. Based on these criteria, other potential candidate genes that might confer novel resistance specificities to rice blast could be predicted.
Collapse
Affiliation(s)
- Kejing Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Ting Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Changjiang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
25
|
Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H. Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. PLANT PHYSIOLOGY 2012; 159:197-210. [PMID: 22422941 PMCID: PMC3375961 DOI: 10.1104/pp.111.192062] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/12/2012] [Indexed: 05/20/2023]
Abstract
The proper use of resistance genes (R genes) requires a comprehensive understanding of their genomics and evolution. We analyzed genes encoding nucleotide-binding sites and leucine-rich repeats in the genomes of rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), and Brachypodium distachyon. Frequent deletions and translocations of R genes generated prevalent presence/absence polymorphism between different accessions/species. The deletions were caused by unequal crossover, homologous repair, nonhomologous repair, or other unknown mechanisms. R gene loci identified from different genomes were mapped onto the chromosomes of rice cv Nipponbare using comparative genomics, resulting in an integrated map of 495 R loci. Sequence analysis of R genes from the partially sequenced genomes of an African rice cultivar and 10 wild accessions suggested that there are many additional R gene lineages in the AA genome of Oryza. The R genes with chimeric structures (termed type I R genes) are diverse in different rice accessions but only account for 5.8% of all R genes in the Nipponbare genome. In contrast, the vast majority of R genes in the rice genome are type II R genes, which are highly conserved in different accessions. Surprisingly, pseudogene-causing mutations in some type II lineages are often conserved, indicating that their conservations were not due to their functions. Functional R genes cloned from rice so far have more type II R genes than type I R genes, but type I R genes are predicted to contribute considerable diversity in wild species. Type I R genes tend to reduce the microsynteny of their flanking regions significantly more than type II R genes, and their flanking regions have slightly but significantly lower G/C content than those of type II R genes.
Collapse
Affiliation(s)
| | | | - Qun Hu
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Jiongjiong Chen
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Kunpeng Li
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Chen Lu
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Hui Liu
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Wen Wang
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| | - Hanhui Kuang
- Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People’s Republic of China, 430070 (S.L., Y.Z., Q.H., J.C., K.L, C.L., H.K.); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China, 650223 (H.L., W.W.)
| |
Collapse
|
26
|
Ashfield T, Egan AN, Pfeil BE, Chen NW, Podicheti R, Ratnaparkhe MB, Ameline-Torregrosa C, Denny R, Cannon S, Doyle JJ, Geffroy V, Roe BA, Saghai Maroof M, Young ND, Innes RW. Evolution of a complex disease resistance gene cluster in diploid Phaseolus and tetraploid Glycine. PLANT PHYSIOLOGY 2012; 159:336-54. [PMID: 22457424 PMCID: PMC3375969 DOI: 10.1104/pp.112.195040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/22/2012] [Indexed: 05/20/2023]
Abstract
We used a comparative genomics approach to investigate the evolution of a complex nucleotide-binding (NB)-leucine-rich repeat (LRR) gene cluster found in soybean (Glycine max) and common bean (Phaseolus vulgaris) that is associated with several disease resistance (R) genes of known function, including Rpg1b (for Resistance to Pseudomonas glycinea1b), an R gene effective against specific races of bacterial blight. Analysis of domains revealed that the amino-terminal coiled-coil (CC) domain, central nucleotide-binding domain (NB-ARC [for APAF1, Resistance genes, and CED4]), and carboxyl-terminal LRR domain have undergone distinct evolutionary paths. Sequence exchanges within the NB-ARC domain were rare. In contrast, interparalogue exchanges involving the CC and LRR domains were common, consistent with both of these regions coevolving with pathogens. Residues under positive selection were overrepresented within the predicted solvent-exposed face of the LRR domain, although several also were detected within the CC and NB-ARC domains. Superimposition of these latter residues onto predicted tertiary structures revealed that the majority are located on the surface, suggestive of a role in interactions with other domains or proteins. Following polyploidy in the Glycine lineage, NB-LRR genes have been preferentially lost from one of the duplicated chromosomes (homeologues found in soybean), and there has been partitioning of NB-LRR clades between the two homeologues. The single orthologous region in common bean contains approximately the same number of paralogues as found in the two soybean homeologues combined. We conclude that while polyploidization in Glycine has not driven a stable increase in family size for NB-LRR genes, it has generated two recombinationally isolated clusters, one of which appears to be in the process of decay.
Collapse
Affiliation(s)
| | | | | | - Nicolas W.G. Chen
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Ram Podicheti
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | | | - Carine Ameline-Torregrosa
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Roxanne Denny
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Steven Cannon
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Jeff J. Doyle
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Valérie Geffroy
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Bruce A. Roe
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - M.A. Saghai Maroof
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Nevin D. Young
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405 (T.A., R.P., R.W.I.); Department of Biology, East Carolina University, Greenville, North Carolina 27858 (A.N.E.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (B.E.P., J.J.D.); Institut de Biotechnologie des Plantes, Université Paris Sud, Saclay Plant Sciences, 91405 Orsay cedex, France (N.W.G.C., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (M.B.R., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (C.A.-T., R.D., N.D.Y.); United States Department of Agriculture-Agricultural Research Service and Department of Agronomy, Iowa State University, Ames, Iowa 50011 (S.C.); Unité Mixte de Recherche de Génétique Végétale, Institut National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France (V.G.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (B.A.R.)
| |
Collapse
|
27
|
Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D. Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:757-69. [PMID: 21810963 PMCID: PMC3192553 DOI: 10.1104/pp.111.181990] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/01/2011] [Indexed: 05/18/2023]
Abstract
Plants, like animals, use several lines of defense against pathogen attack. Prominent among genes that confer disease resistance are those encoding nucleotide-binding site-leucine-rich repeat (NB-LRR) proteins. Likely due to selection pressures caused by pathogens, NB-LRR genes are the most variable gene family in plants, but there appear to be species-specific limits to the number of NB-LRR genes in a genome. Allelic diversity within an individual is also increased by obligatory outcrossing, which leads to genome-wide heterozygosity. In this study, we compared the NB-LRR gene complement of the selfer Arabidopsis thaliana and its outcrossing close relative Arabidopsis lyrata. We then complemented and contrasted the interspecific patterns with studies of NB-LRR diversity within A. thaliana. Three important insights are as follows: (1) that both species have similar numbers of NB-LRR genes; (2) that loci with single NB-LRR genes are less variable than tandem arrays; and (3) that presence-absence polymorphisms within A. thaliana are not strongly correlated with the presence or absence of orthologs in A. lyrata. Although A. thaliana individuals are mostly homozygous and thus potentially less likely to suffer from aberrant interaction of NB-LRR proteins with newly introduced alleles, the number of NB-LRR genes is similar to that in A. lyrata. In intraspecific and interspecific comparisons, NB-LRR genes are also more variable than receptor-like protein genes. Finally, in contrast to Drosophila, there is a clearly positive relationship between interspecific divergence and intraspecific polymorphisms.
Collapse
|
28
|
Abstract
In plants and animals, the NLR family of receptors perceives non-self and modified-self molecules inside host cells and mediates innate immune responses to microbial pathogens. Despite their similar biological functions and protein architecture, animal NLRs are normally activated by conserved microbe- or damage-associated molecular patterns, whereas plant NLRs typically detect strain-specific pathogen effectors. Plant NLRs recognize either the effector structure or effector-mediated modifications of host proteins. The latter indirect mechanism for the perception of non-self, as well as the within-species diversification of plant NLRs, maximize the capacity to recognize non-self through the use of a finite number of innate immunoreceptors. We discuss recent insights into NLR activation, signal initiation through the homotypic association of N-terminal domains and subcellular receptor dynamics in plants and compare those with NLR functions in animals.
Collapse
|
29
|
Wang J, Zhang L, Li J, Lawton-Rauh A, Tian D. Unusual signatures of highly adaptable R-loci in closely-related Arabidopsis species. Gene 2011; 482:24-33. [PMID: 21664259 DOI: 10.1016/j.gene.2011.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/29/2022]
Abstract
Plant resistance genes (R-genes) evolve rapidly in response to changing environments. What are the most remarkable signatures of fast adaptive genes, besides the commonly revealed rapid divergence and high non-synonymous substitution rate? Here we investigated these changes in five R-loci following recent differentiation between Arabidopsis thaliana and Arabidopsis lyrata. Extreme differences in evolutionary rates were observed: e.g., an overall 5.46-9.83-fold different nucleotide diversity at two R-loci between species, ten-fold higher non-synonymous substitution rates within one species versus the other, significantly different Ka/Ks ratios between species for the same R-gene, and high interspecific divergence at one R-locus. Particularly, we observed an elevated level of trans-specific polymorphism at one R-locus and a differentially maintained presence/absence polymorphism at another. The high frequency of ancestral polymorphisms amongst R-genes suggests that the persistence of some functional variation is an important evolutionary mechanism shaping genetic variation in R-genes, while the variation of presence/absence polymorphisms provides a potential mechanism for malleable activation of adaptive resistance response pathways. The distinct patterns among R-genes suggest that the same R-gene ortholog can be quickly shaped by different evolutionary processes, e.g., purifying selection in one species but positive selection in a closely-related species.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing, China
| | | | | | | | | |
Collapse
|
30
|
Ribas AF, Cenci A, Combes MC, Etienne H, Lashermes P. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. BMC Genomics 2011; 12:240. [PMID: 21575174 PMCID: PMC3113787 DOI: 10.1186/1471-2164-12-240] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most disease-resistance (R) genes in plants encode NBS-LRR proteins and belong to one of the largest and most variable gene families among plant genomes. However, the specific evolutionary routes of NBS-LRR encoding genes remain elusive. Recently in coffee tree (Coffea arabica), a region spanning the SH3 locus that confers resistance to coffee leaf rust, one of the most serious coffee diseases, was identified and characterized. Using comparative sequence analysis, the purpose of the present study was to gain insight into the genomic organization and evolution of the SH3 locus. RESULTS Sequence analysis of the SH3 region in three coffee genomes, Ea and Ca subgenomes from the allotetraploid C. arabica and Cc genome from the diploid C. canephora, revealed the presence of 5, 3 and 4 R genes in Ea, Ca, and Cc genomes, respectively. All these R-gene sequences appeared to be members of a CC-NBS-LRR (CNL) gene family that was only found at the SH3 locus in C. arabica. Furthermore, while homologs were found in several dicot species, comparative genomic analysis failed to find any CNL R-gene in the orthologous regions of other eudicot species. The orthology relationship among the SH3-CNL copies in the three analyzed genomes was determined and the duplication/deletion events that shaped the SH3 locus were traced back. Gene conversion events were detected between paralogs in all three genomes and also between the two sub-genomes of C. arabica. Significant positive selection was detected in the solvent-exposed residues of the SH3-CNL copies. CONCLUSION The ancestral SH3-CNL copy was inserted in the SH3 locus after the divergence between Solanales and Rubiales lineages. Moreover, the origin of most of the SH3-CNL copies predates the divergence between Coffea species. The SH3-CNL family appeared to evolve following the birth-and-death model, since duplications and deletions were inferred in the evolution of the SH3 locus. Gene conversion between paralog members, inter-subgenome sequence exchanges and positive selection appear to be the major forces acting on the evolution of SH3-CNL in coffee trees.
Collapse
Affiliation(s)
- Alessandra F Ribas
- IRD - Institut de Recherche pour le Développement, UMR RPB, Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Zhang X, Feng Y, Cheng H, Tian D, Yang S, Chen JQ. Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol Genet Genomics 2011; 285:79-90. [PMID: 21080199 DOI: 10.1007/s00438-010-0587-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
It is well known that nucleotide binding site (NBS)-encoding genes are duplicate-rich and fast-evolving genes. However, there is little information on the relative importance of tandem and segmental NBS duplicates and their exact evolutionary rates. The two rounds of large-scale duplication that have occurred in soybean provide a unique opportunity to investigate these issues. Comparison of NBS and non-NBS genes on segments of syntenic homoeologs shows that NBS-encoding genes evolve at least 1.5-fold faster (~1.5-fold higher synonymous and approximately 2.3-fold higher nonsynonymous substitution rates) and lose their genes approximately twofold faster than the flanking non-NBS genes. Compared with segmental duplicates, tandem NBS duplicates are more abundant in soybean, suggesting that tandem duplication is the major driving force in the expansion of NBS genes. Notably, significant sequence exchanges along with significantly positive selection were detected in most tandem-duplicated NBS gene families. The results suggest that the rapid evolution of NBS genes may be due to the combined effects of diversifying selection and frequent sequence exchanges. Interestingly, TIR-NBS-LRR genes (TNLs) have a higher nucleotide substitution rate than non-TNLs, indicating that these types of NBS genes may have a rather different evolutionary pattern. It is important to determine the exact relative evolutionary rates of TNL, non-TNL, and non-NBS genes in order to understand how fast the host plant can adjust its response to rapidly evolving pathogens in a coevolutionary context.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
32
|
Luo S, Peng J, Li K, Wang M, Kuang H. Contrasting Evolutionary Patterns of the Rp1 Resistance Gene Family in Different Species of Poaceae. Mol Biol Evol 2010; 28:313-25. [DOI: 10.1093/molbev/msq216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Natural diversity in flowering responses of Arabidopsis thaliana caused by variation in a tandem gene array. Genetics 2010; 186:263-76. [PMID: 20551443 DOI: 10.1534/genetics.110.116392] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tandemly arrayed genes that belong to gene families characterize genomes of many organisms. Gene duplication and subsequent relaxation of selection can lead to the establishment of paralogous cluster members that may evolve along different trajectories. Here, we report on the structural variation in MADS AFFECTING FLOWERING 2 (MAF2) gene, one member of the tandemly duplicated cluster of MADS-box-containing transcription factors in Arabidopsis thaliana. The altered gene structure at the MAF2 locus is present as a moderate-frequency polymorphism in Arabidopsis and leads to the extensive diversity in transcript patterns due to alternative splicing. Rearrangements at the MAF2 locus are associated with an early flowering phenotype in BC(5) lines. The lack of suppression of flowering time in a MAF2-insertion line expressing the MAF2-specific artificial miRNA suggests that these MAF2 variants are behaving as loss-of-function alleles. The variation in gene architecture is also associated with segregation distortion, which may have facilitated the spread and the establishment of the corresponding alleles throughout the Eurasian range of the A. thaliana population.
Collapse
|
34
|
Ashrafi H, Kinkade M, Foolad MR. A new genetic linkage map of tomato based on a Solanum lycopersicum x S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 2010; 52:935-56. [PMID: 19935918 DOI: 10.1139/g09-065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The narrow genetic base of the cultivated tomato, Solanum lycopersicum L., necessitates introgression of new variation from related species. Wild tomato species represent a rich source of useful genes and traits. Exploitation of genetic variation within wild species can be facilitated by the use of molecular markers and genetic maps. Recently we identified an accession (LA2093) within the red-fruited wild tomato species Solanum pimpinellifolium L. with exceptionally desirable characteristics, including disease resistance, abiotic stress tolerance, and high fruit lycopene content. To facilitate genetic characterization of such traits and their exploitation in tomato crop improvement, we developed a new recombinant inbred line (RIL) population from a cross between LA2093 and an advanced tomato breeding line (NCEBR-1). Furthermore, we constructed a medium-density molecular linkage map of this population using 294 polymorphic markers, including standard RFLPs, EST sequences (used as RFLP probes), CAPS, and SSRs. The map spanned 1091 cM of the tomato genome with an average marker spacing of 3.7 cM. A majority of the EST sequences, which were mainly chosen based on the putative role of their unigenes in disease resistance, defense-related response, or fruit quality, were mapped onto the tomato chromosomes for the first time. Co-localizations of relevant EST sequences with known disease resistance genes in tomato were also examined. This map will facilitate identification, genetic exploitation, and positional cloning of important genes or quantitative trait loci in LA2093. It also will allow the elucidation of the molecular mechanism(s) underlying important traits segregating in the RIL population. The map may further facilitate characterization and exploitation of genetic variation in other S. pimpinellifolium accessions as well as in modern cultivars of tomato.
Collapse
Affiliation(s)
- Hamid Ashrafi
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
35
|
Abstract
Understanding the fundamental mechanisms of plant disease resistance is of central importance to sustainable agriculture and human health. Use of the model plant Arabidopsis thaliana has resulted in an explosion of information regarding both disease resistance and susceptibility to pathogens. The last 20 years of research have demonstrated the commonalities between Arabidopsis and crop species. In this review, commemorating the 10th anniversary of the sequencing of the Arabidopsis genome, we will address some of the insights derived from the use of Arabidopsis as a model plant pathology system.
Collapse
Affiliation(s)
- Marc T Nishimura
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
36
|
Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovács L, Morgante M, Testolin R, Di Gaspero G. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genet 2009; 10:89. [PMID: 20042081 PMCID: PMC2814809 DOI: 10.1186/1471-2156-10-89] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grape powdery mildew is caused by the North American native pathogen Erysiphe necator. Eurasian Vitis vinifera varieties were all believed to be susceptible. REN1 is the first resistance gene naturally found in cultivated plants of Vitis vinifera. RESULTS REN1 is present in 'Kishmish vatkana' and 'Dzhandzhal kara', two grapevines documented in Central Asia since the 1920's. These cultivars have a second-degree relationship (half sibs, grandparent-grandchild, or avuncular), and share by descent the chromosome on which the resistance allele REN1 is located. The REN1 interval was restricted to 1.4 cM using 38 SSR markers distributed across the locus and the segregation of the resistance phenotype in two progenies of collectively 461 offspring, derived from either resistant parent. The boundary markers delimit a 1.4-Mbp sequence in the PN40024 reference genome, which contains 27 genes with known functions, 2 full-length coiled-coil NBS-LRR genes, and 9 NBS-LRR pseudogenes. In the REN1 locus of PN40024, NBS genes have proliferated through a mixture of segmental duplications, tandem gene duplications, and intragenic recombination between paralogues, indicating that the REN1 locus has been inherently prone to producing genetic variation. Three SSR markers co-segregate with REN1, the outer ones confining the 908-kb array of NBS-LRR genes. Kinship and clustering analyses based on genetic distances with susceptible cultivars representative of Central Asian Vitis vinifera indicated that 'Kishmish vatkana' and 'Dzhandzhal kara' fit well into local germplasm. 'Kishmish vatkana' also has a parent-offspring relationship with the seedless table grape 'Sultanina'. In addition, the distant genetic relatedness to rootstocks, some of which are derived from North American species resistant to powdery mildew and have been used worldwide to guard against phylloxera since the late 1800's, argues against REN1 being infused into Vitis vinifera from a recent interspecific hybridisation. CONCLUSION The REN1 gene resides in an NBS-LRR gene cluster tightly delimited by two flanking SSR markers, which can assist in the selection of this DNA block in breeding between Vitis vinifera cultivars. The REN1 locus has multiple layers of structural complexity compared with its two closely related paralogous NBS clusters, which are located some 5 Mbp upstream and 4 Mbp downstream of the REN1 interval on the same chromosome.
Collapse
Affiliation(s)
- Courtney Coleman
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100 Udine, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Loarce Y, Sanz MJ, Irigoyen ML, Fominaya A, Ferrer E. Mapping of STS markers obtained from oat resistance gene analog sequences. Genome 2009; 52:608-19. [DOI: 10.1139/g09-038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two previously isolated resistance gene analogs (RGAs) of oat have been located as RFLPs in the reference map of Avena byzantina ‘Kanota’ × Avena sativa ‘Ogle’ in regions either homologous or homoeologous to loci for resistance to Puccinia coronata , the causal agent of crown rust. In this study, the RGAs were mapped in two recombinant inbred line (RIL) populations that segregate for crown rust resistance: the diploid Avena strigosa × Avena wiestii RIL population (Asw), which has been used for mapping the complex locus PcA, and the hexaploid MN841801-1 × Noble-2 RIL population (MN), in which QTLs have been located. To obtain single-locus markers, RGAs were converted to sequence tagged site (STS) markers using a procedure involving extension of the original RGA sequence lengths by PCR genome walking, amplification and cloning of the parental fragments, and identification of single nucleotide polymorphisms. The procedure successfully obtained STSs from different members of the L7M2 family of sequences, the initial NBS of which have nucleotide similarities of >83%. However, for RGA III2.18, the parental lines were not polymorphic for the STSs assayed. A sequence characterized amplified region (SCAR) marker with features of an RGA had been previously identified for gene Pc94. This marker was also mapped in the above RIL populations. Markers based on RGA L7M2 co-localized with markers defining the QTL Prq1a in linkage group MN3, and were located 15.2 cM from PcA in linkage group AswAC. The SCAR marker for Pc94 was also located in the QTL Prq1a but at 39.5 cM from PcA in AswAC, indicating that the NBS-LRR sequence represented by this marker is not related to PcA. L7M2 was also excluded as a member of the PcA cluster, although it could be an appropriate marker for the Prq1a cluster if chromosome rearrangements are postulated.
Collapse
Affiliation(s)
- Yolanda Loarce
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - María Jesús Sanz
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Irigoyen
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Araceli Fominaya
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|