1
|
Fedorin DN, Eprintsev AT, Chuykova VO, Igamberdiev AU. Participation of miR165a in the Phytochrome Signal Transduction in Maize ( Zea mays L.) Leaves under Changing Light Conditions. Int J Mol Sci 2024; 25:5733. [PMID: 38891921 PMCID: PMC11171563 DOI: 10.3390/ijms25115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The involvement of the microRNA miR165a in the light-dependent mechanisms of regulation of target genes in maize (Zea mays) has been studied. The light-induced change in the content of free miR165a was associated with its binding by the AGO10 protein and not with a change in the rate of its synthesis from the precursor. The use of knockout Arabidopsis plants for the phytochrome A and B genes demonstrated that the presence of an active form of phytochrome B causes an increase in the level of the RNA-induced silencing miR165a complex, which triggers the degradation of target mRNAs. The two fractions of vesicles from maize leaves, P40 and P100 that bind miR165a, were isolated by ultracentrifugation. The P40 fraction consisted of larger vesicles of the size >0.170 µm, while the P100 fraction vesicles were <0.147 µm. Based on the quantitative PCR data, the predominant location of miR165a on the surface of extracellular vesicles of both fractions was established. The formation of the active form of phytochrome upon the irradiation of maize plants with red light led to a redistribution of miR165a, resulting in an increase in its proportion inside P40 vesicles and a decrease in P100 vesicles.
Collapse
Affiliation(s)
- Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; (D.N.F.); (A.T.E.); (V.O.C.)
| | - Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; (D.N.F.); (A.T.E.); (V.O.C.)
| | - Victoria O. Chuykova
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; (D.N.F.); (A.T.E.); (V.O.C.)
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
2
|
Kimura I, Kanegae T. A phytochrome/phototropin chimeric photoreceptor promotes growth of fern gametophytes under limited light conditions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2403-2416. [PMID: 38189579 DOI: 10.1093/jxb/erae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/06/2024] [Indexed: 01/09/2024]
Abstract
Many ferns thrive even in low-light niches such as under an angiosperm forest canopy. However, the shade adaptation strategy of ferns is not well understood. Phytochrome 3/neochrome (phy3/neo) is an unconventional photoreceptor, found in the fern Adiantum capillus-veneris, that controls both red and blue light-dependent phototropism and chloroplast photorelocation, which are considered to improve photosynthetic efficiency in ferns. Here we show that phy3/neo localizes not only at the plasma membrane but also in the nucleus. Since both phototropism and chloroplast photorelocation are mediated by membrane-associated phototropin photoreceptors, we speculated that nucleus-localized phy3/neo possesses a previously undescribed biological function. We reveal that phy3/neo directly interacts with Adiantum cryptochrome 3 (cry3) in the nucleus. Plant cryptochromes are blue light receptors that transcriptionally regulate photomorphogenesis; therefore, phy3/neo may function via cry3 to synchronize light-mediated development with phototropism and chloroplast photorelocation to promote fern growth under low-light conditions. Furthermore, we demonstrate that phy3/neo regulates the expression of the Cyclin-like gene AcCyc1 and promotes prothallium expansion growth. These findings provide insight into the shade adaptation strategy of ferns and suggest that phy3/neo plays a substantial role in the survival and growth of ferns during the tiny gametophytic stage under low-light conditions, such as those on the forest floor.
Collapse
Affiliation(s)
- Izumi Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takeshi Kanegae
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Fedorin DN, Eprintsev AT, Igamberdiev AU. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154195. [PMID: 38377939 DOI: 10.1016/j.jplph.2024.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.
Collapse
Affiliation(s)
- Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
4
|
Zhao Y, Shi H, Pan Y, Lyu M, Yang Z, Kou X, Deng XW, Zhong S. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell 2023; 186:1230-1243.e14. [PMID: 36931246 DOI: 10.1016/j.cell.2023.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 08/23/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Although Ca2+ has long been recognized as an obligatory intermediate in visual transduction, its role in plant phototransduction remains elusive. Here, we report a Ca2+ signaling that controls photoreceptor phyB nuclear translocation in etiolated seedlings during dark-to-light transition. Red light stimulates acute cytosolic Ca2+ increases via phyB, which are sensed by Ca2+-binding protein kinases, CPK6 and CPK12 (CPK6/12). Upon Ca2+ activation, CPK6/12 in turn directly interact with and phosphorylate photo-activated phyB at Ser80/Ser106 to initiate phyB nuclear import. Non-phosphorylatable mutation, phyBS80A/S106A, abolishes nuclear translocation and fails to complement phyB mutant, which is fully restored by combining phyBS80A/S106A with a nuclear localization signal. We further show that CPK6/12 function specifically in the early phyB-mediated cotyledon expansion, while Ser80/Ser106 phosphorylation generally governs phyB nuclear translocation. Our results uncover a biochemical regulatory loop centered in phyB phototransduction and provide a paradigm for linking ubiquitous Ca2+ increases to specific responses in sensory stimulus processing.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Kou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China.
| |
Collapse
|
5
|
Gould PD, Domijan M, Greenwood M, Tokuda IT, Rees H, Kozma-Bognar L, Hall AJ, Locke JC. Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression. eLife 2018; 7:31700. [PMID: 29697372 PMCID: PMC5988422 DOI: 10.7554/elife.31700] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24-hr rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.
Collapse
Affiliation(s)
- Peter D Gould
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mirela Domijan
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mark Greenwood
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Hannah Rees
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Laszlo Kozma-Bognar
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Genetics, University of Szeged, Szeged, Hungary
| | - Anthony Jw Hall
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - James Cw Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.,Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Microsoft Research, Cambridge, United Kingdom
| |
Collapse
|
6
|
Braguy J, Zurbriggen MD. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:118-38. [PMID: 27227549 DOI: 10.1111/tpj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/15/2023]
Abstract
Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.
Collapse
Affiliation(s)
- Justine Braguy
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
| |
Collapse
|
7
|
Juillot S, Beyer HM, Madl J, Weber W, Zurbriggen MD, Römer W. Signalling to the nucleus under the control of light and small molecules. MOLECULAR BIOSYSTEMS 2016; 12:345-9. [DOI: 10.1039/c5mb00763a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One major regulatory mechanism in cell signalling is the spatio-temporal control of the localization of signalling molecules. We synthetically designed an entire cell signalling pathway, which allows controlling the transport of signalling molecules from the plasma membrane to the nucleus, by using light and small molecules.
Collapse
Affiliation(s)
- Samuel Juillot
- Faculty of Biology
- University of Freiburg
- D-79104 Freiburg
- Germany
- Spemann Graduate School of Biology and Medicine (SGBM)
| | - Hannes M. Beyer
- Faculty of Biology
- University of Freiburg
- D-79104 Freiburg
- Germany
- Spemann Graduate School of Biology and Medicine (SGBM)
| | - Josef Madl
- Faculty of Biology
- University of Freiburg
- D-79104 Freiburg
- Germany
- BIOSS Centre for Biological Signalling Studies
| | - Wilfried Weber
- Faculty of Biology
- University of Freiburg
- D-79104 Freiburg
- Germany
- Spemann Graduate School of Biology and Medicine (SGBM)
| | - Matias D. Zurbriggen
- Faculty of Biology
- University of Freiburg
- D-79104 Freiburg
- Germany
- BIOSS Centre for Biological Signalling Studies
| | - Winfried Römer
- Faculty of Biology
- University of Freiburg
- D-79104 Freiburg
- Germany
- Spemann Graduate School of Biology and Medicine (SGBM)
| |
Collapse
|
8
|
Chang N, Gao Y, Zhao L, Liu X, Gao H. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel. Sci Rep 2015; 5:9612. [PMID: 25872642 PMCID: PMC4397536 DOI: 10.1038/srep09612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/12/2015] [Indexed: 01/28/2023] Open
Abstract
CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored.
Collapse
Affiliation(s)
- Ning Chang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuefang Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lin Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
9
|
Kula M, Rys M, Skoczowski A. Far-red light (720 or 740 nm) improves growth and changes the chemical composition ofChlorella vulgaris. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Monika Kula
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences Cracow Poland
| | - Magdalena Rys
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences Cracow Poland
| | | |
Collapse
|
10
|
Yao H, Wang G, Wang X. Nuclear translocation of proteins and the effect of phosphatidic acid. PLANT SIGNALING & BEHAVIOR 2014; 9:e977711. [PMID: 25482760 PMCID: PMC5155622 DOI: 10.4161/15592324.2014.977711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 05/22/2023]
Abstract
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Hongyan Yao
- National Key Laboratory of Plant Molecular
Genetics; Institute of Plant Physiology and Ecology; Chinese Academy of
Sciences; Shanghai, China
- Correspondence to: Hongyan Yao;
| | - Geliang Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| | - Xuemin Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| |
Collapse
|
11
|
Ádám É, Kircher S, Liu P, Mérai Z, González-Schain N, Hörner M, Viczián A, Monte E, Sharrock RA, Schäfer E, Nagy F. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling. THE NEW PHYTOLOGIST 2013; 200:86-96. [PMID: 23772959 DOI: 10.1111/nph.12364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/12/2013] [Indexed: 06/02/2023]
Abstract
Phytochromes (phy) C, D and E are involved in the regulation of red/far-red light-induced photomorphogenesis of Arabidopsis thaliana, but only limited data are available on the mode of action and biological function of these lesser studied phytochrome species. We fused N-terminal fragments or full-length PHYC, D and E to YELLOW FLUORESCENT PROTEIN (YFP), and analyzed the function, stability and intracellular distribution of these fusion proteins in planta. The activity of the constitutively nuclear-localized homodimers of N-terminal fragments was comparable with that of full-length PHYC, D, E-YFP, and resulted in the regulation of various red light-induced photomorphogenic responses in the studied genetic backgrounds. PHYE-YFP was active in the absence of phyB and phyD, and PHYE-YFP controlled responses, as well as accumulation, of the fusion protein in the nuclei, was saturated at low fluence rates of red light and did not require functional FAR-RED ELONGATED HYPOCOTYL1 (FHY-1) and FHY-1-like proteins. Our data suggest that PHYC-YFP, PHYD-YFP and PHYE-YFP fusion proteins, as well as their truncated N-terminal derivatives, are biologically active in the modulation of red light-regulated photomorphogenesis. We propose that PHYE-YFP can function as a homodimer and that low-fluence red light-induced translocation of phyE and phyA into the nuclei is mediated by different molecular mechanisms.
Collapse
Affiliation(s)
- Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
| | - Stefan Kircher
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Peng Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Zsuzsanna Mérai
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Nahuel González-Schain
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Maximilian Hörner
- BIOSS Center for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, D-79104, Freiburg, Germany
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
| | - Elena Monte
- Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Robert A Sharrock
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Eberhard Schäfer
- Institute of Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- BIOSS Center for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, D-79104, Freiburg, Germany
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
12
|
Qin S, Lin H, Jiang P. Advances in genetic engineering of marine algae. Biotechnol Adv 2012; 30:1602-13. [PMID: 22634258 DOI: 10.1016/j.biotechadv.2012.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.
Collapse
Affiliation(s)
- Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | | | | |
Collapse
|
13
|
Galstyan A, Bou-Torrent J, Roig-Villanova I, Martínez-García JF. A dual mechanism controls nuclear localization in the atypical basic-helix-loop-helix protein PAR1 of Arabidopsis thaliana. MOLECULAR PLANT 2012; 5:669-677. [PMID: 22311779 DOI: 10.1093/mp/sss006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PAR1 is an atypical basic-helix-loop-helix (bHLH) protein that negatively regulates the shade avoidance syndrome in Arabidopsis thaliana acting as a transcriptional cofactor. Consistently with this function, PAR1 has to be in the nucleus to display biological activity. Previous structure-function analyses revealed that the N-terminal region of PAR1 drives the protein to the nucleus. However, truncated forms of PAR1 lacking this region still display biological activity, implying that PAR1 has additional mechanisms to localize into the nucleus. In this work, we compared the primary structure of PAR1 and various related and unrelated plant bHLH proteins, which led us to suggest that PAR1 contains a non-canonical nuclear localization signal (NLS) in the N-terminal region. By overexpressing truncated and mutated derivatives of PAR1, we have also investigated the importance of other regions of PAR1, such as the acidic and the extended HLH dimerization domains, for its nuclear localization. We found that, in the absence of the N-terminal region, a functional HLH domain is required for nuclear localization. Our results suggest the existence of a dual mechanism for PAR1 nuclear localization: (1) one mediated by the N-terminal non-consensus NLS and (2) a second one that involves interaction with other proteins via the dimerization domain.
Collapse
Affiliation(s)
- Anahit Galstyan
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193-Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Viczián A, Ádám É, Wolf I, Bindics J, Kircher S, Heijde M, Ulm R, Schäfer E, Nagy F. A short amino-terminal part of Arabidopsis phytochrome A induces constitutive photomorphogenic response. MOLECULAR PLANT 2012; 5:629-641. [PMID: 22498774 DOI: 10.1093/mp/sss035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytochrome A (phyA) is the dominant photoreceptor of far-red light sensing in Arabidopsis thaliana. phyA accumulates at high levels in the cytoplasm of etiolated seedlings, and light-induced phyA signaling is mediated by a complex regulatory network. This includes light- and FHY1/FHL protein-dependent translocation of native phyA into the nucleus in vivo. It has also been shown that a short N-terminal fragment of phyA (PHYA406) is sufficient to phenocopy this highly regulated cellular process in vitro. To test the biological activity of this N-terminal fragment of phyA in planta, we produced transgenic phyA-201 plants expressing the PHYA406-YFP (YELLOW FLUORESCENT PROTEIN)-DD, PHYA406-YFP-DD-NLS (nuclear localization signal), and PHYA406-YFP-DD-NES (nuclear export signal) fusion proteins. Here, we report that PHYA406-YFP-DD is imported into the nucleus and this process is partially light-dependent whereas PHYA406-YFP-DD-NLS and PHYA406-YFP-DD-NES display the expected constitutive localization patterns. Our results show that these truncated phyA proteins are light-stable, they trigger a constitutive photomorphogenic-like response when localized in the nuclei, and neither of them induces proper phyA signaling. We demonstrate that in vitro and in vivo PHYA406 Pfr and Pr bind COP1, a general repressor of photomorphogenesis, and co-localize with it in nuclear bodies. Thus, we conclude that, in planta, the truncated PHYA406 proteins inactivate COP1 in the nuclei in a light-independent fashion.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62., H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leitgeb B, Sokolova V, Schäfer E, Viczián A. Effects of missense mutation on structure and function of photoreceptor. PLANT SIGNALING & BEHAVIOR 2012; 7:589-591. [PMID: 22516823 PMCID: PMC3419025 DOI: 10.4161/psb.19702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytochromes (PHYs) are photoreceptors of the red (R ~660 nm) and far-red (FR ~730 nm) light, and they control a wide range of responses affecting crucial aspects of plant life. There are five genes PHYA-PHYE encoding for phytochromes of different but overlapping function. One of these, PHYA has the unique function controlling specific responses in high irradiance far-red, as well as in very weak light. Appropriate PHYA functioning requires not only the photoreversibility of molecule but also the proper nuclear localization and degradation of receptor. Recently, we identified and described a mutant PHYA allele (phyA-5) in Arabidopsis thaliana, which showed reduced binding affinity to FHY1/FHL, the proteins regulating its nuclear transport, resulting in impaired nuclear localization and altered signaling under certain conditions. We present here a hypothesis to explain how the identified amino acid substitution may lead to structural changes manifested as altered signaling and phenotype displayed by the phyA-5 mutant.
Collapse
Affiliation(s)
- Balázs Leitgeb
- Institute of Biophysics; Biological Research Centre; Hungarian Academy of Sciences; Szeged, Hungary
| | - Vladyslava Sokolova
- Institute of Plant Biology; Biological Research Centre; Hungarian Academy of Sciences; Szeged, Hungary
| | - Eberhard Schäfer
- Biologie II/Institut für Botanik; University of Freiburg; Freiburg, Germany
| | - András Viczián
- Institute of Plant Biology; Biological Research Centre; Hungarian Academy of Sciences; Szeged, Hungary
| |
Collapse
|
16
|
Tsuboi H, Nakamura S, Schäfer E, Wada M. Red light-induced phytochrome relocation into the nucleus in Adiantum capillus-veneris. MOLECULAR PLANT 2012; 5:611-8. [PMID: 22266427 DOI: 10.1093/mp/ssr119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiantum capillus-veneris spore germination by partial spore-irradiation experiments. The nuclear or non-nuclear region of imbibed spores was irradiated with a microbeam of red and/or far-red light and the localization of phytochrome involved in spore germination was estimated from the germination rate. The phytochrome for spore germination existed throughout whole spore under darkness after imbibition, but gradually migrated to the nuclear region following red light irradiation. Intracellular distribution of PHY-GUS fusion proteins expressed in germinated spores by particle bombardment showed the migration of Acphy2, but not Acphy1, into nucleus in a red light-dependent manner, suggesting that Acphy2 is the photoreceptor for fern spore germination.
Collapse
|
17
|
Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc Natl Acad Sci U S A 2012; 109:5892-7. [PMID: 22451940 DOI: 10.1073/pnas.1120764109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant.
Collapse
|
18
|
Kircher S, Terecskei K, Wolf I, Sipos M, Adam E. Phytochrome A-specific signaling in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:1714-1719. [PMID: 22067110 PMCID: PMC3329343 DOI: 10.4161/psb.6.11.17509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Among the five phytochromes in Arabidopsis thaliana, phytochrome A (phyA) plays a major role in seedling de-etiolation. Until now more then ten positive and some negative components acting downstream of phyA have been identified. However, their site of action and hierarchical relationships are not completely understood yet.
Collapse
Affiliation(s)
- Stefan Kircher
- Institute of Botany, University of Freiburg; Freiburg, Germany
| | - Kata Terecskei
- Biological Research Centre, Institute of Plant Biology; Szeged, Hungary
| | - Iris Wolf
- Institute of Botany, University of Freiburg; Freiburg, Germany
| | - Mark Sipos
- Biological Research Centre, Institute of Plant Biology; Szeged, Hungary
| | - Eva Adam
- Biological Research Centre, Institute of Plant Biology; Szeged, Hungary
| |
Collapse
|
19
|
Wolf I, Kircher S, Fejes E, Kozma-Bognár L, Schäfer E, Nagy F, Ádám É. Light-regulated nuclear import and degradation of Arabidopsis phytochrome-A N-terminal fragments. PLANT & CELL PHYSIOLOGY 2011; 52:361-72. [PMID: 21169346 PMCID: PMC3037077 DOI: 10.1093/pcp/pcq194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/09/2010] [Indexed: 05/20/2023]
Abstract
The photoreceptor phytochrome-A (phyA) regulates germination and seedling establishment by mediating very low fluence (VLFR) and far-red high irradiance (FR-HIR) responses in Arabidopsis thaliana. In darkness, phyA homodimers exist in the biologically inactive Pr form and are localized in the cytoplasm. Light induces formation of the biologically active Pfr form and subsequent rapid nuclear import. PhyA Pfr, in contrast to the Pr form, is labile and has a half-life of ∼30 min. We produced transgenic plants in a phyA-201 null background that express the PHYA-yellow fluorescent protein (YFP) or the PHYA686-YFP-dimerization domain (DD) and PHYA686-YFP-DD-nuclear localization signal (NLS) or PHYA686-YFP-DD-nuclear exclusion signal (NES) fusion proteins. The PHYA686-YFP fusion proteins contained the N-terminal domain of phyA (686 amino acid residues), a short DD and the YFP. Here we report that (i) PHYA686-YFP-DD fusion protein is imported into the nucleus in a light-dependent fashion; (ii) neither of the PHYA686 fusion proteins is functional in FR-HIR and nuclear VLFR; and (iii) the phyA-dependent, blue light-induced inhibition of hypocotyl growth is mediated by the PHYA686-YFP-DD-NES but not by the PHYA686-YFP-DD-NLS and PHYA686-YFP-DD fusion proteins. We demonstrate that (i) light induces degradation of all PHYA N-terminal-containing fusion proteins and (ii) these N-terminal domain-containing fusion proteins including the constitutively nuclear PHYA686-YFP-DD-NLS and predominantly cytoplasmic PHYA686-YFP-DD-NES degrade at comparable rates but markedly more slowly than PHYA-YFP, whereas (iii) light-induced degradation of the native phyA is faster compared with PHYA-YFP.
Collapse
Affiliation(s)
- Iris Wolf
- Institute of Botany, Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Stefan Kircher
- Institute of Botany, Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Erzsébet Fejes
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
| | - László Kozma-Bognár
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
| | - Eberhard Schäfer
- Institute of Botany, Biology II, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Ferenc Nagy
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Éva Ádám
- Plant Biology Institute, Biological Research Centre, Temesvari krt. 62, H-6726 Szeged, Hungary
- *Corresponding author: E-mail, ; Fax, +36-62-433-434
| |
Collapse
|
20
|
Debrieux D, Fankhauser C. Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the nucleus. PLANT MOLECULAR BIOLOGY 2010; 73:687-695. [PMID: 20473552 DOI: 10.1007/s11103-010-9649-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Higher plants possess multiple members of the phytochrome family of red, far-red light sensors to modulate plant growth and development according to competition from neighbors. The phytochrome family is composed of the light-labile phyA and several light-stable members (phyB-phyE in Arabidopsis). phyA accumulates to high levels in etiolated seedlings and is essential for young seedling establishment under a dense canopy. In photosynthetically active seedlings high levels of phyA counteract the shade avoidance response. phyA levels are maintained low in light-grown plants by a combination of light-dependent repression of PHYA transcription and light-induced proteasome-mediated degradation of the activated photoreceptor. Light-activated phyA is transported from the cytoplasm where it resides in darkness to the nucleus where it is needed for most phytochrome-induced responses. Here we show that phyA is degraded by a proteasome-dependent mechanism both in the cytoplasm and the nucleus. However, phyA degradation is significantly slower in the cytoplasm than in the nucleus. In the nucleus phyA is degraded in a proteasome-dependent mechanism even in its inactive Pr (red light absorbing) form, preventing the accumulation of high levels of nuclear phyA in darkness. Thus, light-induced degradation of phyA is in part controlled by a light-regulated import into the nucleus where the turnover is faster. Although most phyA responses require nuclear phyA it might be useful to maintain phyA in the cytoplasm in its inactive form to allow accumulation of high levels of the light sensor in etiolated seedlings.
Collapse
Affiliation(s)
- Dimitry Debrieux
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | | |
Collapse
|
21
|
Palágyi A, Terecskei K, Ádám É, Kevei É, Kircher S, Mérai Z, Schäfer E, Nagy F, Kozma-Bognár L. Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. PLANT PHYSIOLOGY 2010; 153:1834-45. [PMID: 20530216 PMCID: PMC2923874 DOI: 10.1104/pp.110.153031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/06/2010] [Indexed: 05/18/2023]
Abstract
At the core of the circadian network in Arabidopsis (Arabidopsis thaliana), clock genes/proteins form multiple transcriptional/translational negative feedback loops and generate a basic approximately 24-h oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of plants only if it corresponds to the natural day/night cycles. Light, absorbed by photoreceptors, is the most effective signal in synchronizing the oscillator to environmental cycles. Phytochrome B (PHYB) is the major red/far-red light-absorbing phytochrome receptor in light-grown plants. Besides modulating the pace and phase of the circadian clock, PHYB controls photomorphogenesis and delays flowering. It has been demonstrated that the nuclear-localized amino-terminal domain of PHYB is capable of controlling photomorphogenesis and, partly, flowering. Here, we show (1) that PHYB derivatives containing 651 or 450 amino acid residues of the amino-terminal domains are functional in mediating red light signaling to the clock, (2) that circadian entrainment is a nuclear function of PHYB, and (3) that a 410-amino acid amino-terminal fragment does not possess any functions of PHYB due to impaired chromophore binding. However, we provide evidence that the carboxyl-terminal domain is required to mediate entrainment in white light, suggesting a role for this domain in integrating red and blue light signaling to the clock. Moreover, careful analysis of the circadian phenotype of phyB-9 indicates that PHYB provides light signaling for different regulatory loops of the circadian oscillator in a different manner, which results in an apparent decoupling of the loops in the absence of PHYB under specific light conditions.
Collapse
|
22
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
23
|
|