1
|
Ravet A, Zervudacki J, Singla-Rastogi M, Charvin M, Thiebeauld O, Perez-Quintero AL, Courgeon L, Candat A, Lebeau L, Fortunato AE, Mendu V, Navarro L. Vesicular and non-vesicular extracellular small RNAs direct gene silencing in a plant-interacting bacterium. Nat Commun 2025; 16:3533. [PMID: 40229238 PMCID: PMC11997071 DOI: 10.1038/s41467-025-57908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Extracellular plant small RNAs (sRNAs) and/or double-stranded RNA (dsRNA) precursors act as triggers of RNAi in interacting filamentous pathogens. However, whether any of these extracellular RNA species direct gene silencing in plant-interacting bacteria remains unknown. Here, we show that Arabidopsis transgenic plants expressing sRNAs directed against virulence factors of a Pseudomonas syringae strain, reduce its pathogenesis. This Antibacterial Gene Silencing (AGS) phenomenon is directed by Dicer-Like (DCL)-dependent antibacterial sRNAs, but not cognate dsRNA precursors. Three populations of active extracellular sRNAs were recovered in the apoplast of these transgenic plants. The first one is mainly non-vesicular and associated with proteins, whereas the second one is located inside Extracellular Vesicles (EVs). Intriguingly, the third population is unbound to proteins and in a dsRNA form, unraveling functional extracellular free sRNAs (efsRNAs). Both Arabidopsis transgene- and genome-derived efsRNAs were retrieved inside bacterial cells. Finally, we show that salicylic acid (SA) promotes AGS, and that a substantial set of endogenous efsRNAs exhibits predicted bacterial targets that are down-regulated by SA biogenesis and/or signaling during infection. This study thus unveils an unexpected AGS phenomenon, which may have wider implications in the understanding of how plants regulate microbial transcriptome, microbial community composition and genome evolution of associated bacteria.
Collapse
Affiliation(s)
- Antinéa Ravet
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Jérôme Zervudacki
- ImmunRise Technologies (IRT), 75005, Paris, France
- ENgreen Technologies, 33100, Bordeaux, France
| | - Meenu Singla-Rastogi
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Magali Charvin
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Alvaro L Perez-Quintero
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lucas Courgeon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Liam Lebeau
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Venugopal Mendu
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Lionel Navarro
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
2
|
Elmayan T, Blein T, Elvira-Matelot E, Le Masson I, Christ A, Bouteiller N, Crespi MD, Vaucheret H. Arabidopsis SGS3 is recruited to chromatin by CHR11 to select RNA that initiate siRNA production. Nat Commun 2025; 16:2978. [PMID: 40140371 PMCID: PMC11947192 DOI: 10.1038/s41467-025-57394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/16/2025] [Indexed: 03/28/2025] Open
Abstract
In plants, aberrant RNAs produced by endogenous genes or transgenes are normally degraded by the nuclear and cytosolic RNA quality control (RQC) pathways. Under certain biotic or abiotic stresses, RQC is impaired, and aberrant RNAs are converted into siRNAs that initiate post-transcriptional gene silencing (PTGS) in the cytosol. How aberrant RNAs are selected and brought to the cytoplasm is not known. Here we show that the RNA-binding protein SUPPRESSOR OF GENE SILENCING (SGS)3 shuttles between the cytosol and the nucleus where it associates with the ISWI-like CHROMATIN REMODELER (CHR)11 and with RNAs transcribed from PTGS-sensitive transgene loci binding CHR11. Knocking down CHR11 and its paralog CHR17 strongly reduces transgene PTGS, suggesting that SGS3 recruitment by CHR11/17 facilitates PTGS initiation. CHR11 is also enriched at endogenous protein-coding genes (PCGs) producing nat-siRNAs and va-siRNAs under biotic or abiotic stresses, and this production is reduced in chr11 chr17 double mutants at genome-wide level. Moreover, impairing CHR11 and CHR17 rescues the lethal phenotype caused by the massive production of siRNAs from PCGs in RQC-deficient mutants. We propose that SGS3 recruitment by CHR11/17 allows exporting RNAs to the cytosol to initiate the production of siRNAs.
Collapse
Affiliation(s)
- Taline Elmayan
- Universite Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| | - Thomas Blein
- Universite Paris-Saclay, CNRS, INRAE, IPS2, Gif-sur-Yvette, France
| | - Emilie Elvira-Matelot
- Universite Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
- INSERM, U1287, Cancer Campus Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France
| | - Ivan Le Masson
- Universite Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| | - Aurélie Christ
- Universite Paris-Saclay, CNRS, INRAE, IPS2, Gif-sur-Yvette, France
| | - Nathalie Bouteiller
- Universite Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| | - Martin D Crespi
- Universite Paris-Saclay, CNRS, INRAE, IPS2, Gif-sur-Yvette, France
| | - Hervé Vaucheret
- Universite Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France.
| |
Collapse
|
3
|
Xu P, Huang J, Chen X, Wang Q, Yin B, Xian Q, Zhuang C, Hu Y. Efficient targeted T-DNA integration for gene activation and male germline-specific gene tagging in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70104. [PMID: 40121659 DOI: 10.1111/tpj.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Site-specific DNA integration is an important tool in plant genetic engineering. Traditionally, this process relies on homologous recombination (HR), which is known for its low efficiency in plant cells. In contrast, Agrobacterium-mediated T-DNA integration is highly efficient for plant transformation. However, T-DNA is typically inserted randomly into double-strand breaks within the plant genome via the non-homologous end-joining (NHEJ) DNA repair pathway. In this study, we developed an approach of CRISPR/Cas9-mediated targeted T-DNA integration in Arabidopsis, which was more rapid and efficient than the HR-mediated method. This targeted T-DNA integration aided in gene activation and male germline-specific gene tagging. Gene activation was accomplished by positioning the CaMV35S promoter at the left border of T-DNA, thereby activating specific downstream genes. The activation of FT and MYB26 significantly increased their transcriptional expression, which resulted in early flowering and an altered pattern of cell wall thickening in the anther endothelium, respectively. Male germline-specific gene tagging incorporates two reporters, namely, NeoR and MGH3::mCherry, within the T-DNA. This design facilitates the creation of insertional mutants, simplifies the genetic analysis of mutated alleles, and allows for cellular tracking of male germline cells during fertilization. We successfully applied this system to target the male germline-specific gene GEX2. In conclusion, our results demonstrated that site-specific integration of DNA fragments in the plant genome can be rapidly and efficiently achieved through the NHEJ pathway, making this approach broadly applicable in various contexts.
Collapse
Affiliation(s)
- Peng Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bo Yin
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Xian
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yufei Hu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
4
|
Roca Paixao JF, Déléris A. Epigenetic control of T-DNA during transgenesis and pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae583. [PMID: 39498848 DOI: 10.1093/plphys/kiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixao
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Angélique Déléris
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Renken K, Mendoza SM, Diaz S, Slotkin RK, Hancock CN. Pol V produced RNA facilitates transposable element excision site repair in Arabidopsis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000793. [PMID: 37273575 PMCID: PMC10236241 DOI: 10.17912/micropub.biology.000793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
The plant-specific RNA Polymerase V (Pol V) plays a key role in gene silencing, but its role in repair of double stranded DNA breaks is unclear. Excision of the transposable element mPing creates double stranded breaks that are repaired by NHEJ. We measured mPing excision site repair in multiple DNA methylation mutants including pol V using an mPing : GFP reporter. Two independent mutant alleles of pol V showed less GFP expression, indicating that the Pol V protein plays a role in excision site repair. Sequence analysis of the pol V excision sites indicated an elevated rate of large deletions consistent with less efficient repair. These results clarify the role of Pol V, but not other RNA-directed DNA methylation proteins (Pol IV) or maintenance DNA methylation pathways ( MET1 ), in the repair of double-strand DNA breaks.
Collapse
Affiliation(s)
- Kaili Renken
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Sarah M. Mendoza
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| | - Stephanie Diaz
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
- Cardiovascular Disease Initiative, Bayer and Broad Institute of MIT and Harvard
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, Missouri, United States
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - C. Nathan Hancock
- Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina, United States
| |
Collapse
|
6
|
Miranda de la Torre JO, Peppino Margutti MY, Lescano López I, Cambiagno DA, Alvarez ME, Cecchini NM. The Arabidopsis chromatin regulator MOM1 is a negative component of the defense priming induced by AZA, BABA and PIP. FRONTIERS IN PLANT SCIENCE 2023; 14:1133327. [PMID: 37229135 PMCID: PMC10203520 DOI: 10.3389/fpls.2023.1133327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
In plants, the establishment of broad and long-lasting immunity is based on programs that control systemic resistance and immunological memory or "priming". Despite not showing activated defenses, a primed plant induces a more efficient response to recurrent infections. Priming might involve chromatin modifications that allow a faster/stronger activation of defense genes. The Arabidopsis chromatin regulator "Morpheus Molecule 1" (MOM1) has been recently suggested as a priming factor affecting the expression of immune receptor genes. Here, we show that mom1 mutants exacerbate the root growth inhibition response triggered by the key defense priming inducers azelaic acid (AZA), β-aminobutyric acid (BABA) and pipecolic acid (PIP). Conversely, mom1 mutants complemented with a minimal version of MOM1 (miniMOM1 plants) are insensitive. Moreover, miniMOM1 is unable to induce systemic resistance against Pseudomonas sp. in response to these inducers. Importantly, AZA, BABA and PIP treatments reduce the MOM1 expression, but not miniMOM1 transcript levels, in systemic tissues. Consistently, several MOM1-regulated immune receptor genes are upregulated during the activation of systemic resistance in WT plants, while this effect is not observed in miniMOM1. Taken together, our results position MOM1 as a chromatin factor that negatively regulates the defense priming induced by AZA, BABA and PIP.
Collapse
Affiliation(s)
- Julián O. Miranda de la Torre
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Micaela Y. Peppino Margutti
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Damián Alejandro Cambiagno
- Unidad de Estudios Agropecuarios (UDEA), Instituto Nacional de Tecnología Agropecuaria (INTA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María E. Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás M. Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Cui F, Li X, Wu W, Luo W, Wu Y, Brosché M, Overmyer K. Ectopic expression of BOTRYTIS SUSCEPTIBLE1 reveals its function as a positive regulator of wound-induced cell death and plant susceptibility to Botrytis. THE PLANT CELL 2022; 34:4105-4116. [PMID: 35946779 PMCID: PMC9516177 DOI: 10.1093/plcell/koac206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/31/2022] [Indexed: 06/01/2023]
Abstract
Programmed cell death (PCD) is integral to plant life and required for stress responses, immunity, and development. Our understanding of the regulation of PCD is incomplete, especially concerning regulators involved in multiple divergent processes. The botrytis-susceptible (bos1) mutant of Arabidopsis is highly susceptible to fungal infection by Botrytis cinerea (Botrytis). BOS1 (also known as MYB108) regulates cell death propagation during plant responses to wounding. The bos1-1 allele contains a T-DNA insertion in the 5'-untranslated region upstream of the start codon. This insertion results in elevated expression of BOS1/MYB108. We used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) system (CRISPR/Cas9) to create new bos1 alleles with disrupted exons, and found that these lines lacked the typical bos1-1 wounding and Botrytis phenotypes. They did exhibit reduced fertility, as was previously observed in other bos1 alleles. Resequencing of the bos1-1 genome confirmed the presence of a mannopine synthase (MAS) promoter at the T-DNA left border. Expression of the BOS1 gene under control of the MAS promoter in wild-type plants conferred the characteristic phenotypes of bos1-1: Botrytis sensitivity and response to wounding. Multiple overexpression lines demonstrated that BOS1 was involved in regulation of cell death propagation in a dosage-dependent manner. Our data indicate that bos1-1 is a gain-of-function mutant and that BOS1 function in regulation of fertility and Botrytis response can both be understood as misregulated cell death.
Collapse
Affiliation(s)
| | | | | | - Wenbo Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Mikael Brosché
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Program, Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Kirk Overmyer
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Program, Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
8
|
van Tol N, van Schendel R, Bos A, van Kregten M, de Pater S, Hooykaas PJ, Tijsterman M. Gene targeting in polymerase theta-deficient Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:112-125. [PMID: 34713516 PMCID: PMC9299229 DOI: 10.1111/tpj.15557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 05/26/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Robin van Schendel
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| | - Alex Bos
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Maartje van Kregten
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Sylvia de Pater
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Paul J.J. Hooykaas
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
| | - Marcel Tijsterman
- Institute of Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterEinthovenweg 20Leiden2300 RCThe Netherlands
| |
Collapse
|
9
|
Abramov A, Hoffmann T, Stark TD, Zheng L, Lenk S, Hammerl R, Lanzl T, Dawid C, Schön CC, Schwab W, Gierl A, Frey M. Engineering of benzoxazinoid biosynthesis in Arabidopsis thaliana: Metabolic and physiological challenges. PHYTOCHEMISTRY 2021; 192:112947. [PMID: 34534712 DOI: 10.1016/j.phytochem.2021.112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Plant specialised metabolites constitute a layer of chemical defence. Classes of the defence compounds are often restricted to a certain taxon of plants, e.g. benzoxazinoids (BX) are characteristically detected in grasses. BXs confer wide-range defence by controlling herbivores and microbial pathogens and are allelopathic compounds. In the crops maize, wheat and rye high concentrations of BXs are synthesised at an early developmental stage. By transfer of six Bx-genes (Bx1 to Bx5 and Bx8) it was possible to establish the biosynthesis of 2,4-dihydroxy-1,4-benzoxazin-3-one glucoside (GDIBOA) in a concentration of up to 143 nmol/g dry weight in Arabidopsis thaliana. Our results indicate that inefficient channeling of substrates along the pathway and metabolisation of intermediates in host plants might be a general drawback for transgenic establishment of specialised metabolite biosynthesis pathways. As a consequence, BX levels required for defence are not obtained in Arabidopsis. We could show that indolin-2-one (ION), the first specific intermediate, is phytotoxic and is metabolised by hydroxylation and glycosylation by a wide spectrum of plants. In Arabidopsis, metabolic stress due to the enrichment of ION leads to elevated levels of salicylic acid (SA) and in addition to its intrinsic phytotoxicity, ION affects plant morphology indirectly via SA. We could show that Bx3 has a crucial role in the evolution of the pathway, first based on its impact on flux into the pathway and, second by C3-hydroxylation of the phytotoxic ION. Thereby BX3 interferes with a supposedly generic detoxification system towards the non-specific intermediate.
Collapse
Affiliation(s)
- Aleksej Abramov
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Thomas Hoffmann
- Associate Professorship of Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann Str. 1, 85354, Freising, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Linlin Zheng
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Stefan Lenk
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Tobias Lanzl
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner Str. 34, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany
| | - Wilfried Schwab
- Associate Professorship of Biotechnology of Natural Products, Technical University of Munich, Liesel-Beckmann Str. 1, 85354, Freising, Germany
| | - Alfons Gierl
- Chair of Genetics, Technical University of Munich, Emil-Ramann Str. 8, 85354, Freising, Germany
| | - Monika Frey
- Chair of Plant Breeding, Technical University of Munich, Liesel-Beckman Str. 2, 85354, Freising, Germany.
| |
Collapse
|
10
|
Xu C, Fang X, Lu T, Dean C. Antagonistic cotranscriptional regulation through ARGONAUTE1 and the THO/TREX complex orchestrates FLC transcriptional output. Proc Natl Acad Sci U S A 2021; 118:e2113757118. [PMID: 34789567 PMCID: PMC8617408 DOI: 10.1073/pnas.2113757118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Quantitative transcriptional control is essential for physiological and developmental processes in many organisms. Transcriptional output is influenced by cotranscriptional processes interconnected to chromatin regulation, but how the functions of different cotranscriptional regulators are integrated is poorly understood. The Arabidopsis floral repressor locus FLOWERING LOCUS C (FLC) is cotranscriptionally repressed by alternative processing of the antisense transcript COOLAIR. Proximal 3'-end processing of COOLAIR resolves a cotranscriptionally formed R-loop, and this process physically links to a histone-modifying complex FLD/SDG26/LD. This induces a chromatin environment locally that determines low transcription initiation and a slow elongation rate to both sense and antisense strands. Here, we show that ARGONAUTE1 (AGO1) genetically functions in this cotranscriptional repression mechanism. AGO1 associates with COOLAIR and influences COOLAIR splicing dynamics to promote proximal COOLAIR, R-loop resolution, and chromatin silencing. Proteomic analyses revealed physical associations between AGO1, subunits of RNA Polymerase II (Pol II), the splicing-related proteins-the spliceosome NineTeen Complex (NTC) and related proteins (NTR)-and the THO/TREX complex. We connect these activities by demonstrating that the THO/TREX complex activates FLC expression acting antagonistically to AGO1 in COOLAIR processing. Together these data reveal that antagonistic cotranscriptional regulation through AGO1 or THO/TREX influences COOLAIR processing to deliver a local chromatin environment that determines FLC transcriptional output. The involvement of these conserved cotranscriptional regulators suggests similar mechanisms may underpin quantitative transcriptional regulation generally.
Collapse
Affiliation(s)
- Congyao Xu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Xiaofeng Fang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tiancong Lu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
11
|
Zheng X, Om K, Stanton KA, Thomas D, Cheng PA, Eggert A, Simmons E, Yuan YW, Conradi Smith GD, Puzey JR, Cooley AM. The regulatory network for petal anthocyanin pigmentation is shaped by the MYB5a/NEGAN transcription factor in Mimulus. Genetics 2021; 217:6078588. [PMID: 33724417 PMCID: PMC8045675 DOI: 10.1093/genetics/iyaa036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Much of the visual diversity of angiosperms is due to the frequent evolution of novel pigmentation patterns in flowers. The gene network responsible for anthocyanin pigmentation, in particular, has become a model for investigating how genetic changes give rise to phenotypic innovation. In the monkeyflower genus Mimulus, an evolutionarily recent gain of petal lobe anthocyanin pigmentation in M. luteus var. variegatus was previously mapped to genomic region pla2. Here, we use sequence and expression analysis, followed by transgenic manipulation of gene expression, to identify MYB5a—orthologous to the NEGAN transcriptional activator from M. lewisii—as the gene responsible for the transition to anthocyanin-pigmented petals in M. l. variegatus. In other monkeyflower taxa, MYB5a/NEGAN is part of a reaction-diffusion network that produces semi-repeating spotting patterns, such as the array of spots in the nectar guides of both M. lewisii and M. guttatus. Its co-option for the evolution of an apparently non-patterned trait—the solid petal lobe pigmentation of M. l. variegatus—illustrates how reaction-diffusion can contribute to evolutionary novelty in non-obvious ways. Transcriptome sequencing of a MYB5a RNAi line of M. l. variegatus reveals that this genetically simple change, which we hypothesize to be a regulatory mutation in cis to MYB5a, has cascading effects on gene expression, not only on the enzyme-encoding genes traditionally thought of as the targets of MYB5a but also on all of its known partners in the anthocyanin regulatory network.
Collapse
Affiliation(s)
- Xingyu Zheng
- Departments of Biology and Applied Science, William & Mary, Williamsburg, VA 23185, USA.,School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kuenzang Om
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Kimmy A Stanton
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Daniel Thomas
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Philip A Cheng
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Allison Eggert
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| | - Emily Simmons
- Departments of Biology and Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | - Joshua R Puzey
- Departments of Biology and Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | - Arielle M Cooley
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| |
Collapse
|
12
|
Screening for Arabidopsis mutants with altered Ca 2+ signal response using aequorin-based Ca 2+ reporter system. STAR Protoc 2021; 2:100558. [PMID: 34041505 PMCID: PMC8144734 DOI: 10.1016/j.xpro.2021.100558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental stimuli evoke transient increases of the cytosolic Ca2+ level. To identify upstream components of Ca2+ signaling, we have optimized two forward genetic screening systems based on Ca2+ reporter aequorin. AEQsig6 and AEQub plants were used for generating ethyl methanesulfonate (EMS)-mutagenized libraries. The AEQsig6 EMS-mutagenized library was preferably used to screen the mutants with reduced Ca2+ signal response due to its high effectiveness, while the AEQub EMS-mutagenized library was used for screening of the mutants with altered Ca2+ signal response. For complete details on the use and execution of this protocol, please refer to Chen et al. (2020) and Zhu et al. (2013). Highly efficient systems for screening of Ca2+ signal mutants in Arabidopsis Step-by-step instructions to analyze Ca2+ signal response using Ca2+ reporter aequorin AEQsig6 system for identifying mutants impaired in shoot-based Ca2+ signaling FAS system for isolating tissue- or stimuli-specific Ca2+ responsive mutants
Collapse
|
13
|
Ma M, Chen X, Yin Y, Fan R, Li B, Zhan Y, Zeng F. DNA Methylation Silences Exogenous Gene Expression in Transgenic Birch Progeny. FRONTIERS IN PLANT SCIENCE 2020; 11:523748. [PMID: 33414793 PMCID: PMC7783445 DOI: 10.3389/fpls.2020.523748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 05/04/2023]
Abstract
The genetic stability of exogenous genes in the progeny of transgenic trees is extremely important in forest breeding; however, it remains largely unclear. We selected transgenic birch (Betula platyphylla) and its hybrid F1 progeny to investigate the expression stability and silencing mechanism of exogenous genes. We found that the exogenous genes of transgenic birch could be transmitted to their offspring through sexual reproduction. The exogenous genes were segregated during genetic transmission. The hybrid progeny of transgenic birch WT1×TP22 (184) and WT1×TP23 (212) showed higher Bgt expression and greater insect resistance than their parents. However, the hybrid progeny of transgenic birch TP23×TP49 (196) showed much lower Bgt expression, which was only 13.5% of the expression in its parents. To elucidate the mechanism underlying the variation in gene expression between the parents and progeny, we analyzed the methylation rates of Bgt in its promoter and coding regions. The hybrid progeny with normally expressed exogenous genes showed much lower methylation rates (0-29%) than the hybrid progeny with silenced exogenous genes (32.35-45.95%). These results suggest that transgene silencing in the progeny is mainly due to DNA methylation at cytosine residues. We further demonstrated that methylation in the promoter region, rather than in the coding region, leads to gene silencing. We also investigated the relative expression levels of three methyltransferase genes: BpCMT, BpDRM, and BpMET. The transgenic birch line 196 with a silenced Gus gene showed, respectively, 2.54, 9.92, and 4.54 times higher expression levels of BpCMT, BpDRM, and BpMET than its parents. These trends are consistent with and corroborate the high methylation levels of exogenous genes in the transgenic birch line 196. Therefore, our study suggests that DNA methylation in the promoter region leads to silencing of exogenous genes in transgenic progeny of birch.
Collapse
Affiliation(s)
- Minghao Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xiaohui Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yibo Yin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ruixin Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Bo Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fansuo Zeng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Castillo-González C, Shippen DE. Change and HOAP for the best. eLife 2020; 9:e64945. [PMID: 33350935 PMCID: PMC7755383 DOI: 10.7554/elife.64945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/18/2022] Open
Abstract
HOAP is a telomere-binding protein that has a conserved role in Drosophila, but it also needs to evolve quickly to restrict telomeric retrotransposons.
Collapse
Affiliation(s)
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
15
|
Kidokoro S, Kim JS, Ishikawa T, Suzuki T, Shinozaki K, Yamaguchi-Shinozaki K. DREB1A/CBF3 Is Repressed by Transgene-Induced DNA Methylation in the Arabidopsis ice1 -1 Mutant. THE PLANT CELL 2020; 32:1035-1048. [PMID: 32034036 PMCID: PMC7145508 DOI: 10.1105/tpc.19.00532] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/17/2019] [Accepted: 02/03/2020] [Indexed: 05/22/2023]
Abstract
DREB1/CBFs are key transcription factors involved in plant cold stress adaptation. The expression of DREB1/CBFs triggers a cold-responsive transcriptional cascade, after which many stress tolerance genes are expressed. Thus, elucidating the mechanisms of cold stress-inducible DREB1/CBF expression is important to understand the molecular mechanisms of plant cold stress responses and tolerance. We analyzed the roles of a transcription factor, INDUCER OF CBF EXPRESSION1 (ICE1), that is well known as an important transcriptional activator in the cold-inducible expression of DREB1A/CBF3 in Arabidopsis (Arabidopsis thaliana). ice1-1 is a widely accepted mutant allele known to abolish cold-inducible DREB1A expression, and this evidence has strongly supported ICE1-DREB1A regulation for many years. However, in ice1-1 outcross descendants, we unexpectedly discovered that ice1-1 DREB1A repression was genetically independent of the ice1-1 allele ICE1(R236H). Moreover, neither ICE1 overexpression nor double loss-of-function mutation of ICE1 and its homolog SCRM2 altered DREB1A expression. Instead, a transgene locus harboring a reporter gene in the ice1-1 genome was responsible for altering DREB1A expression. The DREB1A promoter was hypermethylated due to the transgene. We showed that DREB1A repression in ice1-1 results from transgene-induced silencing and not genetic regulation by ICE1. The ICE1(R236H) mutation has also been reported as scrm-D, which confers constitutive stomatal differentiation. The scrm-D phenotype and the expression of a stomatal differentiation marker gene were confirmed to be linked to the ICE1(R236H) mutation. We propose that the current ICE1-DREB1 regulatory model should be revalidated without the previous assumptions.
Collapse
Affiliation(s)
- Satoshi Kidokoro
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - June-Sik Kim
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074, Japan
| | - Tomona Ishikawa
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi, 478-8501, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Li N, Yuan D, Huang LJ. Development of a Gateway-compatible two-component expression vector system for plants. Transgenic Res 2019; 28:561-572. [PMID: 31435821 DOI: 10.1007/s11248-019-00167-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Genetic transformation of plants offers the possibility of functional characterization of individual genes and the improvement of plant traits. Development of novel transformation vectors is essential to improve plant genetic transformation technologies for various applications. Here, we present the development of a Gateway-compatible two-component expression vector system for Agrobacterium-mediated plant transformation. The expression system contains two independent plasmid vector sets, the activator vector and the reporter vector, based on the concept of the GAL4/UAS trans-activation system. The activator vector expresses a modified GAL4 protein (GAL4-VP16) under the control of specific promoter. The GAL4-VP16 protein targets the UAS in the reporter vector and subsequently activates reporter gene expression. Both the activator and reporter vectors contain the Gateway recombination cassette, which can be rapidly and efficiently replaced by any specific promoter and reporter gene of interest, to facilitate gene cloning procedures. The efficiency of the activator-reporter expression system has been assessed using agroinfiltration mediated transient expression assay in Nicotiana benthamiana and stable transgenic expression in Arabidopsis thaliana. The reporter genes were highly expressed with precise tissue-specific and subcellular localization. This Gateway-compatible two-component expression vector system will be a useful tool for advancing plant gene engineering.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, 410004, Hunan, China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, 410004, Hunan, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, 410004, Hunan, China.
| |
Collapse
|
17
|
Lei J, Jayaprakasha GK, Singh J, Uckoo R, Borrego EJ, Finlayson S, Kolomiets M, Patil BS, Braam J, Zhu-Salzman K. CIRCADIAN CLOCK-ASSOCIATED1 Controls Resistance to Aphids by Altering Indole Glucosinolate Production. PLANT PHYSIOLOGY 2019; 181:1344-1359. [PMID: 31527087 PMCID: PMC6836836 DOI: 10.1104/pp.19.00676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 05/07/2023]
Abstract
CIRCADIAN CLOCK-ASSOCIATED1 (CCA1), a well-known central circadian clock regulator, coordinates plant responses to environmental challenges. Its daily rhythmic expression in Arabidopsis (Arabidopsis thaliana) confers host resistance to the caterpillar Trichoplusia ni However, it is unclear whether CCA1 plays a role in defense against phloem sap-feeding aphids. In this study, we showed that green peach aphid (Myzus persicae) displayed an intrinsic circadian feeding rhythm. Under constant light, wild-type Columbia-0 (Col-0) Arabidopsis plants coentrained with aphids in the same light/dark cycles exhibited greater antixenotic activity than plants preentrained in the opposite cycle from the aphids. Consistently, circadian mutants cca1-1, cca1-11, lhy-21, ztl-1, ztl-4, and lux-2 suffered more severe damage than Col-0 plants when infested by aphids, suggesting that the Arabidopsis circadian clock plays a defensive role. However, the arrhythmic CCA1 overexpression line (CCA1-OX) displayed strong antixenotic and antibiotic activities despite its loss of circadian regulation. Aphids feeding on CCA1-OX plants exhibited lower reproduction and smaller body size and weight than those on Col-0. Apparently, CCA1 regulates both clock-dependent and -independent defense responses. Systematic investigation based on bioinformatics analyses indicated that resistance to aphids in CCA1-OX plants was due primarily to heightened basal indole glucosinolate levels. Interestingly, aphid feeding induced alternatively spliced intron-retaining CCA1a/b transcripts, which are normally expressed at low levels, whereas expression of the major fully spliced CCA1 transcript remained largely unchanged. We hypothesize that posttranscriptional modulation of CCA1 expression upon aphid infestation maximizes the potential of circadian-mediated defense and stress tolerance while ensuring normal plant development.
Collapse
Affiliation(s)
- Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, Texas 77843
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | | | - Jashbir Singh
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Rammohan Uckoo
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843
| | - Mike Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Janet Braam
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas 77843
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
18
|
Wang B, Liu J, Chu L, Jing X, Wang H, Guo J, Yi B. Exogenous Promoter Triggers APETALA3 Silencing through RNA-Directed DNA Methylation Pathway in Arabidopsis. Int J Mol Sci 2019; 20:ijms20184478. [PMID: 31514282 PMCID: PMC6770043 DOI: 10.3390/ijms20184478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/16/2022] Open
Abstract
The development of floral organs plays a vital role in plant reproduction. In our research, the APETALA3 (AP3) promoter-transgenic lines showed abnormal developmental phenotypes in stamens and petals. The aim of this study is to understand the molecular mechanisms of the morphological defects in transgenic plants. By performing transgenic analysis, it was found that the AP3-promoted genes and the vector had no relation to the morphological defects. Then, we performed the expression analysis of the class A, B, and C genes. A dramatic reduction of transcript levels of class B genes (AP3 and PISTILLATA) was observed. Additionally, we also analyzed the methylation of the promoters of class B genes and found that the promoter of AP3 was hypermethylated. Furthermore, combining mutations in rdr2-2, drm1/2, and nrpd1b-11 with the AP3-silencing lines rescued the abnormal development of stamens and petals. The expression of AP3 was reactivated and the methylation level of AP3 promoter was also reduced in RdDM-defective AP3-silencing lines. Our results showed that the RdDM pathway contributed to the transcriptional silencing in the transgenic AP3-silencing lines. Moreover, the results revealed that fact that the exogenous fragment of a promoter could trigger the methylation of homologous endogenous sequences, which may be ubiquitous in transgenic plants.
Collapse
Affiliation(s)
- Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Jing
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Grob S, Grossniklaus U. Invasive DNA elements modify the nuclear architecture of their insertion site by KNOT-linked silencing in Arabidopsis thaliana. Genome Biol 2019; 20:120. [PMID: 31186073 PMCID: PMC6560877 DOI: 10.1186/s13059-019-1722-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The three-dimensional (3D) organization of chromosomes is linked to epigenetic regulation and transcriptional activity. However, only few functional features of 3D chromatin architecture have been described to date. The KNOT is a 3D chromatin structure in Arabidopsis, comprising 10 interacting genomic regions termed KNOT ENGAGED ELEMENTs (KEEs). KEEs are enriched in transposable elements and associated small RNAs, suggesting a function in transposon biology. RESULTS Here, we report the KNOT's involvement in regulating invasive DNA elements. Transgenes can specifically interact with the KNOT, leading to perturbations of 3D nuclear organization, which correlates with the transgene's expression: high KNOT interaction frequencies are associated with transgene silencing. KNOT-linked silencing (KLS) cannot readily be connected to canonical silencing mechanisms, such as RNA-directed DNA methylation and post-transcriptional gene silencing, as both cytosine methylation and small RNA abundance do not correlate with KLS. Furthermore, KLS exhibits paramutation-like behavior, as silenced transgenes can lead to the silencing of active transgenes in trans. CONCLUSION Transgene silencing can be connected to a specific feature of Arabidopsis 3D nuclear organization, namely the KNOT. KLS likely acts either independent of or prior to canonical silencing mechanisms, such that its characterization not only contributes to our understanding of chromosome folding but also provides valuable insights into how genomes are defended against invasive DNA elements.
Collapse
Affiliation(s)
- Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
20
|
Li T, Natran A, Chen Y, Vercruysse J, Wang K, Gonzalez N, Dubois M, Inzé D. A genetics screen highlights emerging roles for CPL3, RST1 and URT1 in RNA metabolism and silencing. NATURE PLANTS 2019; 5:539-550. [PMID: 31076735 DOI: 10.1038/s41477-019-0419-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Post-transcriptional gene silencing (PTGS) is a major mechanism regulating gene expression in higher eukaryotes. To identify novel players in PTGS, a forward genetics screen was performed on an Arabidopsis thaliana line overexpressing a strong growth-repressive gene, ETHYLENE RESPONSE FACTOR6 (ERF6). We identified six independent ethyl-methanesulfonate mutants rescuing the dwarfism of ERF6-overexpressing plants as a result of transgene silencing. Among the causative genes, ETHYLENE-INSENSITIVE5, SUPERKILLER2 and HASTY1 have previously been reported to inhibit PTGS. Notably, the three other causative genes have not, to date, been related to PTGS: UTP:RNA-URIDYLYLTRANSFERASE1 (URT1), C-TERMINAL DOMAIN PHOSPHATASE-LIKE3 (CPL3) and RESURRECTION1 (RST1). We show that these genes may participate in protecting the 3' end of transgene transcripts. We present a model in which URT1, CPL3 and RST1 are classified as PTGS suppressors, as compromisation of these genes provokes the accumulation of aberrant transcripts which, in turn, trigger the production of small interfering RNAs, initiating RNA silencing.
Collapse
Affiliation(s)
- Ting Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Annelore Natran
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanjun Chen
- College of Life Science, Wuhan University, Wuhan, China
| | - Jasmien Vercruysse
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kun Wang
- College of Life Science, Wuhan University, Wuhan, China
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- INRA, Université de Bordeaux, Villenave d'Ornon, France
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
21
|
Dalakouras A, Lauter A, Bassler A, Krczal G, Wassenegger M. Transient expression of intron-containing transgenes generates non-spliced aberrant pre-mRNAs that are processed into siRNAs. PLANTA 2019; 249:457-468. [PMID: 30251012 DOI: 10.1007/s00425-018-3015-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/20/2018] [Indexed: 05/10/2023]
Abstract
MAIN CONCLUSION In this study, we show that aberrant pre-mRNAs from non-spliced and non-polyadenylated intron-containing transgenes are channelled to the RNA silencing pathway. In plants, improperly processed transcripts are called aberrant RNAs (ab-RNAs) and are eliminated by either RNA silencing or RNA decay mechanisms. Ab-RNAs transcribed from intronless genes are copied by RNA-directed RNA polymerases (RDRs) into double-stranded RNAs which are subsequently cleaved by DICER-LIKE endonucleases into small RNAs (sRNAs). In contrast, ab-RNAs from intron-containing genes are suggested to be channelled post-splicing to exonucleolytic degradation. Yet, it is not clear how non-spliced aberrant pre-mRNAs are eliminated. We reasoned that transient expression of agroinfiltrated intron-containing transgenes in Nicotiana benthamiana would allow us to study the steady-state levels of non-spliced pre-mRNAs. SRNA deep sequencing of the agroinfiltrated transgenes revealed the presence of sRNAs mapping to the entire non-spliced pre-mRNA suggesting that RDRs (most likely RDR6) processed aberrant non-spliced pre-mRNAs. Primary and secondary sRNAs with lengths of 18-25 nucleotides (nt) were detected, with the most prominent sRNA size class of 22 nt. SRNAs also mapped to the terminator sequence, indicating that RDR substrates also comprised read-through transcripts devoid of polyadenylation tail. Importantly, the occurring sRNAs efficiently targeted cognate mRNA for degradation but failed to cleave the non-spliced pre-mRNA, corroborating the notion that sRNAs are not triggering RNA cleavage in the nucleus.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.
- Institute of Plant Breeding and Genetic Resources ELGO-DEMETER, 57001, Thessaloniki, Greece.
| | - Anja Lauter
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany
| | - Alexandra Bassler
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany.
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Cambiagno DA, Nota F, Zavallo D, Rius S, Casati P, Asurmendi S, Alvarez ME. Immune receptor genes and pericentromeric transposons as targets of common epigenetic regulatory elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1178-1190. [PMID: 30238536 DOI: 10.1111/tpj.14098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 05/04/2023]
Abstract
Pattern recognition receptors (PRR) and nucleotide-binding leucine-rich repeat proteins (NLR) are major components of the plant immune system responsible for pathogen detection. To date, the transcriptional regulation of PRR/NLR genes is poorly understood. Some PRR/NLR genes are affected by epigenetic changes of neighboring transposable elements (TEs) (cis regulation). We analyzed whether these genes can also respond to changes in the epigenetic marks of distal pericentromeric TEs (trans regulation). We found that Arabidopsis tissues infected with Pseudomonas syringae pv. tomato (Pst) initially induced the expression of pericentromeric TEs, and then repressed it by RNA-directed DNA methylation (RdDM). The latter response was accompanied by the accumulation of small RNAs (sRNAs) mapping to the TEs. Curiously these sRNAs also mapped to distal PRR/NLR genes, which were controlled by RdDM but remained induced in the infected tissues. Then, we used non-infected mom1 (Morpheus' molecule 1) mutants that expressed pericentromeric TEs to test if they lose repression of PRR/NLR genes. mom1 plants activated several PRR/NLR genes that were unlinked to MOM1-targeted TEs, and showed enhanced resistance to Pst. Remarkably, the increased defenses of mom1 were abolished when MOM1/RdDM-mediated pericentromeric TEs silencing was re-established. Therefore, common sRNAs could control PRR/NLR genes and distal pericentromeric TEs and preferentially silence TEs when they are activated.
Collapse
Affiliation(s)
- Damián A Cambiagno
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Florencia Nota
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
| | - Sebastián Rius
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sebastián Asurmendi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Buenos Aires, Argentina
| | - María E Alvarez
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
23
|
Wu Q, Smith NA, Zhang D, Zhou C, Wang MB. Root-Specific Expression of a Jacalin Lectin Family Protein Gene Requires a Transposable Element Sequence in the Promoter. Genes (Basel) 2018; 9:E550. [PMID: 30428604 PMCID: PMC6266147 DOI: 10.3390/genes9110550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements (TEs) are widespread in the plant genome and can impact on the expression of neighbouring genes. Our previous studies have identified a number of DNA demethylase-regulated defence-related genes that contain TE sequences in the promoter and show tissue-specific expression in Arabidopsis. In this study we investigated the role of the promoter TE insertions in the root-specific expression of a DNA demethylase-regulated gene, AT5G38550, encoding a Jacalin lectin family protein. Using a promoter:GUS fusion reporter gene approach, we first demonstrated that the full-length promoter fragment, carrying four TE sequences, contained the essential regulatory information required for root-specific expression and DNA demethylase regulation in Arabidopsis. By successive deletion of the four TE sequences, we showed that one of the four TE insertions, a 201-bp TE fragment of the hAT DNA transposon family, was required for root-specific expression: Deletion of this TE, but not the first two TE sequences, converted the root-specific expression pattern to a constitutive expression pattern in Arabidopsis plants. Our study provides an example indicating an important role of TE insertions in tissue-specific expression of plant defence-related genes.
Collapse
Affiliation(s)
- Qiong Wu
- Citrus Research Institute, Southwest University, Chongqing 400716, China.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Daai Zhang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Chongqing 400716, China.
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia.
| |
Collapse
|
24
|
Lee CH, Carroll BJ. Evolution and Diversification of Small RNA Pathways in Flowering Plants. PLANT & CELL PHYSIOLOGY 2018; 59:2169-2187. [PMID: 30169685 DOI: 10.1093/pcp/pcy167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Small regulatory RNAs guide gene silencing at the DNA or RNA level through repression of complementary sequences. The two main forms of small RNAs are microRNA (miRNA) and small interfering RNA (siRNAs), which are generated from the processing of different forms of double-stranded RNA (dsRNA) precursors. These two forms of small regulatory RNAs function in distinct but overlapping gene silencing pathways in plants. Gene silencing pathways in eukaryotes evolved from an ancient prokaryotic mechanism involved in genome defense against invasive genetic elements, but has since diversified to also play a crucial role in regulation of endogenous gene expression. Here, we review the biogenesis of the different forms of small RNAs in plants, including miRNAs, phased, secondary siRNAs (phasiRNAs) and heterochromatic siRNAs (hetsiRNAs), with a focus on their functions in genome defense, transcriptional and post-transcriptional gene silencing, RNA-directed DNA methylation, trans-chromosomal methylation and paramutation. We also discuss the important role that gene duplication has played in the functional diversification of gene silencing pathways in plants, and we highlight recently discovered components of gene silencing pathways in plants.
Collapse
Affiliation(s)
- Chin Hong Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. PLANT SIGNALING & BEHAVIOR 2018; 13:e1525996. [PMID: 30289378 PMCID: PMC6204811 DOI: 10.1080/15592324.2018.1525996] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 05/18/2023]
Abstract
CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with the CRISPR/Cas9 system to confer immunity against the Tomato yellow leaf curl virus (TYLCV). Targeting the TYLCV genome with Cas9-single guide RNA at the sequences encoding the coat protein (CP) or replicase (Rep) resulted in efficient virus interference, as evidenced by low accumulation of the TYLCV DNA genome in the transgenic plants. The CRISPR/Cas9-based immunity remained active across multiple generations in the N. benthamiana and tomato plants. Together, our results confirmed the efficiency of the CRISPR/Cas9 system for stable engineering of TYLCV resistance in N. benthamiana and tomato, and opens the possibilities of engineering virus resistance against single and multiple infectious viruses in other crops.
Collapse
Affiliation(s)
- Manal Tashkandi
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Fatimah Aljedaani
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ashwag Shami
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- College of Science, Biology Department, Kingdom of Saudi Arabia (KSA), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E1069-E1074. [PMID: 29339507 PMCID: PMC5798360 DOI: 10.1073/pnas.1716300115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In plants, DNA cytosine methylation plays a central role in diverse cellular functions, from transcriptional regulation to maintenance of genome integrity. Vast numbers of whole-genome bisulphite sequencing (WGBS) datasets have been generated to profile DNA methylation at single-nucleotide resolution, yet computational analyses vary widely among research groups, making it difficult to cross-compare findings. Here we reprocessed hundreds of publicly available Arabidopsis WGBS libraries using a uniform pipeline. We identified high-confidence differentially methylated regions and compared libraries using a hierarchical framework, allowing us to identify relationships between methylation pathways. Furthermore, by using a large number of independent wild-type controls, we effectively filtered out spontaneous methylation changes from those that are biologically meaningful. Genome-wide characterization by next-generation sequencing has greatly improved our understanding of the landscape of epigenetic modifications. Since 2008, whole-genome bisulfite sequencing (WGBS) has become the gold standard for DNA methylation analysis, and a tremendous amount of WGBS data has been generated by the research community. However, the systematic comparison of DNA methylation profiles to identify regulatory mechanisms has yet to be fully explored. Here we reprocessed the raw data of over 500 publicly available Arabidopsis WGBS libraries from various mutant backgrounds, tissue types, and stress treatments and also filtered them based on sequencing depth and efficiency of bisulfite conversion. This enabled us to identify high-confidence differentially methylated regions (hcDMRs) by comparing each test library to over 50 high-quality wild-type controls. We developed statistical and quantitative measurements to analyze the overlapping of DMRs and to cluster libraries based on their effect on DNA methylation. In addition to confirming existing relationships, we revealed unanticipated connections between well-known genes. For instance, MET1 and CMT3 were found to be required for the maintenance of asymmetric CHH methylation at nonoverlapping regions of CMT2 targeted heterochromatin. Our comparative methylome approach has established a framework for extracting biological insights via large-scale comparison of methylomes and can also be adopted for other genomics datasets.
Collapse
|
27
|
Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. PLANT SIGNALING & BEHAVIOR 2018. [PMID: 30289378 DOI: 10.1080/15592324.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with the CRISPR/Cas9 system to confer immunity against the Tomato yellow leaf curl virus (TYLCV). Targeting the TYLCV genome with Cas9-single guide RNA at the sequences encoding the coat protein (CP) or replicase (Rep) resulted in efficient virus interference, as evidenced by low accumulation of the TYLCV DNA genome in the transgenic plants. The CRISPR/Cas9-based immunity remained active across multiple generations in the N. benthamiana and tomato plants. Together, our results confirmed the efficiency of the CRISPR/Cas9 system for stable engineering of TYLCV resistance in N. benthamiana and tomato, and opens the possibilities of engineering virus resistance against single and multiple infectious viruses in other crops.
Collapse
Affiliation(s)
- Manal Tashkandi
- a Laboratory for Genome Engineering, Division of Biological Sciences , 4700 King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| | - Zahir Ali
- a Laboratory for Genome Engineering, Division of Biological Sciences , 4700 King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| | - Fatimah Aljedaani
- a Laboratory for Genome Engineering, Division of Biological Sciences , 4700 King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| | - Ashwag Shami
- a Laboratory for Genome Engineering, Division of Biological Sciences , 4700 King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
- b College of Science, Biology Department , Kingdom of Saudi Arabia (KSA), Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Magdy M Mahfouz
- a Laboratory for Genome Engineering, Division of Biological Sciences , 4700 King Abdullah University of Science and Technology , Thuwal , Saudi Arabia
| |
Collapse
|
28
|
Butel N, Le Masson I, Bouteiller N, Vaucheret H, Elmayan T. sgs1: a neomorphic nac52 allele impairing post-transcriptional gene silencing through SGS3 downregulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:505-519. [PMID: 28207953 DOI: 10.1111/tpj.13508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
Post-transcriptional gene silencing (PTGS) is a defense mechanism that targets invading nucleic acids from endogenous (transposons) or exogenous (pathogens, transgenes) sources. Genetic screens based on the reactivation of silenced transgenes have long been used to identify cellular components and regulators of PTGS. Here we show that the first isolated PTGS-deficient mutant, sgs1, is impaired in the transcription factor NAC52. This mutant exhibits striking similarities to a mutant impaired in the H3K4me3 demethylase JMJ14 isolated from the same genetic screen. These similarities include increased transgene promoter DNA methylation, reduced H3K4me3 and H3K36me3 levels, reduced PolII occupancy and reduced transgene mRNA accumulation. It is likely that increased DNA methylation is the cause of reduced transcription because the effect of jmj14 and sgs1 on transgene transcription is suppressed by drm2, a mutation that compromises de novo DNA methylation, suggesting that the JMJ14-NAC52 module promotes transgene transcription by preventing DNA methylation. Remarkably, sgs1 has a stronger effect than jmj14 and nac52 null alleles on PTGS systems requiring siRNA amplification, and this is due to reduced SGS3 mRNA levels in sgs1. Given that the sgs1 mutation changes a conserved amino acid of the NAC proteins involved in homodimerization, we propose that sgs1 corresponds to a neomorphic nac52 allele encoding a mutant protein that lacks wild-type NAC52 activity but promotes SGS3 downregulation. Together, these results indicate that impairment of PTGS in sgs1 is due to its dual effect on transgene transcription and SGS3 transcription, thus compromising siRNA amplification.
Collapse
Affiliation(s)
- Nicolas Butel
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Ivan Le Masson
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
29
|
Charavay C, Segard S, Pochon N, Nussaume L, Javot H. SeedUSoon: A New Software Program to Improve Seed Stock Management and Plant Line Exchanges between Research Laboratories. FRONTIERS IN PLANT SCIENCE 2017; 8:13. [PMID: 28163712 PMCID: PMC5247430 DOI: 10.3389/fpls.2017.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/04/2017] [Indexed: 05/20/2023]
Abstract
Plant research is supported by an ever-growing collection of mutant or transgenic lines. In the past, a typical basic research laboratory would focus on only a few plant lines that were carefully isolated from collections of lines containing random mutations. The subsequent technological breakthrough in high-throughput sequencing, combined with novel and highly efficient mutagenesis techniques (including site-directed mutagenesis), has led to a recent exponential growth in plant line collections used by individual researchers. Tracking the generation and genetic properties of these genetic resources is thus becoming increasingly challenging for researchers. Another difficulty for researchers is controlling the use of seeds protected by a Material Transfer Agreement, as often only the original recipient of the seeds is aware of the existence of such documents. This situation can thus lead to difficult legal situations. Simultaneously, various institutions and the general public now demand more information about the use of genetically modified organisms (GMOs). In response, researchers are seeking new database solutions to address the triple challenge of research competition, legal constraints, and institutional/public demands. To help plant biology laboratories organize, describe, store, trace, and distribute their seeds, we have developed the new program SeedUSoon, with simplicity in mind. This software contains data management functions that allow the separate tracking of distinct mutations, even in successive crossings or mutagenesis. SeedUSoon reflects the biotechnological diversity of mutations and transgenes contained in any specific line, and the history of their inheritance. It can facilitate GMO certification procedures by distinguishing mutations on the basis of the presence/absence of a transgene, and by recording the technology used for their generation. Its interface can be customized to match the context and rules of any laboratory. In addition, SeedUSoon includes functions to help the laboratory protect intellectual property, export data, and facilitate seed exchange between laboratories. The SeedUSoon program, which is customizable to match individual practices and preferences, provides a powerful toolkit to plant laboratories searching for innovative approaches in laboratory management.
Collapse
Affiliation(s)
- Céline Charavay
- Institut de Biosciences et Biotechnologies de Grenoble-Laboratoire Biologie à Grande Échelle, Université Grenoble AlpesGrenoble, France
- Institut de Biosciences et Biotechnologies de Grenoble-Laboratoire Biologie à Grande Échelle-Groupe Informatique pour les Scientifiques du Sud Est, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA)Grenoble, France
- Laboratoire Biologie à Grande Échelle, Institut National de la Santé et de la Recherche Médicale (INSERM)Grenoble, France
| | - Stéphane Segard
- Institut de Biosciences et Biotechnologies de Grenoble-Laboratoire Biologie à Grande Échelle, Université Grenoble AlpesGrenoble, France
- Institut de Biosciences et Biotechnologies de Grenoble-Laboratoire Biologie à Grande Échelle-Groupe Informatique pour les Scientifiques du Sud Est, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA)Grenoble, France
- Laboratoire Biologie à Grande Échelle, Institut National de la Santé et de la Recherche Médicale (INSERM)Grenoble, France
| | - Nathalie Pochon
- Laboratoire Biologie Develop Plantes, Institut de Biosciences et Biotechnologies, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA)Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS) , UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesSaint-Paul-lez-Durance, France
- Aix Marseille Université, BVME UMR 7265Marseille, France
| | - Laurent Nussaume
- Laboratoire Biologie Develop Plantes, Institut de Biosciences et Biotechnologies, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA)Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS) , UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesSaint-Paul-lez-Durance, France
- Aix Marseille Université, BVME UMR 7265Marseille, France
| | - Hélène Javot
- Laboratoire Biologie Develop Plantes, Institut de Biosciences et Biotechnologies, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA)Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS) , UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesSaint-Paul-lez-Durance, France
- Aix Marseille Université, BVME UMR 7265Marseille, France
- *Correspondence: Hélène Javot, ;
| |
Collapse
|
30
|
Ganguly A, DeMott L, Dixit R. Function of the Arabidopsis kinesin-4, FRA1, requires abundant processive motility. J Cell Sci 2017; 130:1232-1238. [DOI: 10.1242/jcs.196857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/14/2017] [Indexed: 01/26/2023] Open
Abstract
Processivity is important for kinesins that mediate intracellular transport. Structure-function analyses of N-terminal kinesins have identified several non-motor regions that affect processivity in vitro. However, whether these structural elements affect kinesin processivity and function in vivo is not known. Here, we used an Arabidopsis kinesin-4, called Fragile Fiber1 (FRA1), which is thought to mediate vesicle transport to test whether mutations that alter processivity in vitro behave similarly in vivo and whether processivity is important for FRA1’s function. We generated several FRA1 mutants that differed in their run lengths in vitro and then transformed them into the fra1-5 mutant for complementation and in vivo motility analyses. Our data show that the behavior of processivity mutants in vivo can differ dramatically from in vitro properties, underscoring the need to extend structure-function analyses of kinesins in vivo. In addition, we found that high density of processive motility is necessary for FRA1’s physiological function.
Collapse
Affiliation(s)
- Anindya Ganguly
- Biology Department, Washington University in St. Louis, MO 63130, USA
| | - Logan DeMott
- Biology Department, Washington University in St. Louis, MO 63130, USA
| | - Ram Dixit
- Biology Department, Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
31
|
Hamera S, Yan Y, Song X, Chaudhary SU, Murtaza I, Su L, Tariq M, Chen X, Fang R. Expression of Cucumber mosaic virus suppressor 2b alters FWA methylation and its siRNA accumulation in Arabidopsis thaliana. Biol Open 2016; 5:1727-1734. [PMID: 27659688 PMCID: PMC5155521 DOI: 10.1242/bio.017244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Cucumber mosaic virus (CMV) suppressor 2b co-localizes with AGO4 in cytoplasmic and nuclear fractions of Arabidopsis thaliana Biochemical fractionation of A. thaliana cellular extracts revealed that 2b and AGO4 coexist in multiple size exclusions. 2b transgenic A. thaliana exhibited an enhanced accumulation of 24nt siRNAs from flowering wageningen (FWA) and other heterochromatic loci. These plants also exhibited hypo-methylation of an endogenous- as well as transgene-FWA promoter at non-CG sites. In corroboration, both transgenic 2b and CMV infection affected the regulation of transposons which mimics the ago4 phenotype. In conclusion, 2b perturbs plant defense by interfering with AGO4-regulated transcriptional gene silencing.
Collapse
Affiliation(s)
- Sadia Hamera
- SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan .,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Youngsheng Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Safee Ullah Chaudhary
- SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Quaid i Azam University, Islamabad 54320, Pakistan
| | - Lei Su
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Muhammad Tariq
- SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Mlotshwa S, Pruss GJ, MacArthur JL, Reed JW, Vance V. Developmental Defects Mediated by the P1/HC-Pro Potyviral Silencing Suppressor Are Not Due to Misregulation of AUXIN RESPONSE FACTOR 8. PLANT PHYSIOLOGY 2016; 172:1853-1861. [PMID: 27688620 PMCID: PMC5100759 DOI: 10.1104/pp.16.01030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/26/2016] [Indexed: 05/29/2023]
Abstract
Plant viral suppressors of RNA silencing induce developmental defects similar to those caused by mutations in genes involved in the microRNA pathway. A recent report has attributed viral suppressor-mediated developmental defects to up-regulation of AUXIN RESPONSE FACTOR 8 (ARF8), a target of miR167. The key piece of evidence was that the developmental defects in transgenic Arabidopsis (Arabidopsis thaliana) expressing viral suppressors were greatly alleviated in the F1 progeny of a cross with plants carrying the arf8-6 mutation. Arf8-6 is a SALK line T-DNA insertion mutant, a class of mutations prone to inducing transcriptional silencing of transgenes expressed from the 35S promoter. We have reinvestigated the role of ARF8 in viral suppressor-mediated developmental defects, using two independent arf8 mutations and the P1/HC-Pro potyviral suppressor of silencing. Progeny of a cross between P1/HC-Pro transgenic Arabidopsis and the arf8-6 T-DNA insertion mutant showed little effect on the P1/HC-Pro phenotype in the F1 generation, but almost all arf8-6/P1/HC-Pro progeny had lost the phenotype in the F2 generation. However, the loss of phenotype in the F2 generation was not correlated with the number of functional copies of the ARF8 gene. Instead, it reflected transcriptional silencing of the P1/HC-Pro transgene, as evidenced by a pronounced decrease in P1/HC-Pro mRNA and the appearance of 35S promoter small interfering RNAs. Furthermore, an independent loss-of-function point mutation, Arf8-8, had no detectable effects on P1/HC-Pro phenotype in either the F1 or F2 generations. Together, these data argue against the previously reported role of increased ARF8 expression in developmental defects caused by P1/HC-Pro.
Collapse
Affiliation(s)
- Sizolwenkosi Mlotshwa
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.M., G.J.P., J.L.M., V.V.); and
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.W.R.)
| | - Gail J Pruss
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.M., G.J.P., J.L.M., V.V.); and
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.W.R.)
| | - John L MacArthur
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.M., G.J.P., J.L.M., V.V.); and
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.W.R.)
| | - Jason W Reed
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.M., G.J.P., J.L.M., V.V.); and
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.W.R.)
| | - Vicki Vance
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 (S.M., G.J.P., J.L.M., V.V.); and
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (J.W.R.)
| |
Collapse
|
33
|
Kriegel A, Andrés Z, Medzihradszky A, Krüger F, Scholl S, Delang S, Patir-Nebioglu MG, Gute G, Yang H, Murphy AS, Peer WA, Pfeiffer A, Krebs M, Lohmann JU, Schumacher K. Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase. THE PLANT CELL 2015; 27:3383-96. [PMID: 26589552 PMCID: PMC4707456 DOI: 10.1105/tpc.15.00733] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/21/2015] [Accepted: 11/05/2015] [Indexed: 05/19/2023]
Abstract
The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.
Collapse
Affiliation(s)
- Anne Kriegel
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Zaida Andrés
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Anna Medzihradszky
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Falco Krüger
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Scholl
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Simon Delang
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - M Görkem Patir-Nebioglu
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Gezahegn Gute
- Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| | - Haibing Yang
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Angus S Murphy
- Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| | - Wendy Ann Peer
- Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742 Environmental Science and Technology, University of Maryland, College Park, Maryland 20742
| | - Anne Pfeiffer
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Deng S, Chua NH. Inverted-Repeat RNAs Targeting FT Intronic Regions Promote FT Expression in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:1667-78. [PMID: 26076969 DOI: 10.1093/pcp/pcv091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/11/2015] [Indexed: 05/04/2023]
Abstract
Transcriptional gene silencing (TGS) is often associated with promoter methylation in both animals and plants. However, the function of DNA methylation in the intragenic region remains unclear. Here, we confirmed that promoter methylation of FLOWERING LOCUS T (FT) led to gene silencing; in contrast, we found that intragenic methylation triggered by RNA-directed DNA methylation (RdDM) promoted FT expression. DNA methylation of the FT gene body blocked FLC repressor binding to the CArG boxes. However, when the boxes were not directly targeted by inverted-repeat RNAs (IRs), FLC binding blocked spreading of DNA methylation to theses sequences. Notwithstanding the FLC binding, FT was still activated under this condition. The DNA methylation was accompanied by elevated H3K9 methylation levels on the FT gene body. More importantly, the FT diurnal and organ-specific expression pattern was preserved in the activated plants. Our data demonstrate that the same type of epigenetic modification can lead to an opposite genetic outcome depending on the location of the modification on the gene locus. Moreover, we highlight a novel strategy to activate gene expression without changing its spatio-temporal regulatory patterns.
Collapse
Affiliation(s)
- Shulin Deng
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230, York Avenue, New York, NY 10065, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230, York Avenue, New York, NY 10065, USA
| |
Collapse
|
35
|
Dalakouras A, Dadami E, Wassenegger M. Viroid-induced DNA methylation in plants. Biomol Concepts 2015; 4:557-65. [PMID: 25436756 DOI: 10.1515/bmc-2013-0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, DNA methylation refers to the addition of a methyl group to the fifth atom in the six-atom ring of cytosine residues. At least in plants, DNA regions that become de novo methylated can be defined by homologous RNA molecules in a process termed RNA-directed DNA methylation (RdDM). RdDM was first discovered in viroid-infected plants. Viroids are pathogenic circular, non-coding, single-stranded RNA molecules. Members of the Pospiviroidae family replicate in the nucleus through double-stranded RNA intermediates, attracting the host RNA silencing machinery. The recruitment of this machinery results in the production of viroid-derived small RNAs (vd-sRNAs) that mediate RNA degradation and DNA methylation of cognate sequences. Here, we provide an overview of the cumulative data on the field of viroid-induced RdDM and discuss three possible scenarios concerning the mechanistic details of its establishment.
Collapse
|
36
|
Parent JS, Bouteiller N, Elmayan T, Vaucheret H. Respective contributions of Arabidopsis DCL2 and DCL4 to RNA silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:223-32. [PMID: 25376953 DOI: 10.1111/tpj.12720] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 05/20/2023]
Abstract
Dicer proteins are central to the different mechanisms involving RNA interference. Plants have evolved multiple DICER-LIKE (DCL) copies, thus enabling functional diversification. In Arabidopsis, DCL2 and DCL4 process double-stranded RNA into 22 and 21 nucleotide small interfering (si)RNAs, respectively, and have overlapping functions with regards to virus and transgene silencing. Nonetheless, some studies have reported that dcl2 or dcl4 single mutations are sometimes sufficient to hinder silencing. To better dissect the role of DCL2 and DCL4, we analyzed silencing kinetics and efficiencies using different transgenic systems in single and double mutant backgrounds. The results indicate that DCL2 stimulates transitivity and secondary siRNA production through DCL4 while being sufficient for silencing on its own. Notably, silencing of 35S-driven transgenes functions more efficiently in dcl4 mutants, indicating that DCL4 mostly obscures DCL2 in wild-type plants. Nonetheless, in a dcl4 mutant compromised in phloem-originating silencing, ectopically expressed DCL2 allows restoration of silencing, suggesting that DCL2 is not, or poorly, expressed in phloem. Remarkably, this ectopic DCL2 contribution to phloem-originating silencing is dependent on the activity of RNA-DEPENDENT RNA POLYMERASE6. These results indicate that, despite differences in the silencing activity of their small RNA products, DCL2 and DCL4 mostly act redundantly yet hierarchically when present simultaneously.
Collapse
|
37
|
Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, Chaumont F, Batoko H. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. THE PLANT CELL 2014; 26:4974-90. [PMID: 25538184 PMCID: PMC4311218 DOI: 10.1105/tpc.114.134080] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana multi-stress regulator TSPO is transiently induced by abiotic stresses. The final destination of this polytopic membrane protein is the Golgi apparatus, where its accumulation is strictly regulated, and TSPO is downregulated through a selective autophagic pathway. TSPO-related proteins regulate the physiology of the cell by generating functional protein complexes. A split-ubiquitin screen for potential TSPO interacting partners uncovered a plasma membrane aquaporin, PIP2;7. Pull-down assays and fluorescence imaging approaches revealed that TSPO physically interacts with PIP2;7 at the endoplasmic reticulum and Golgi membranes in planta. Intriguingly, constitutive expression of fluorescently tagged PIP2;7 in TSPO-overexpressing transgenic lines resulted in patchy distribution of the fluorescence, reminiscent of the pattern of constitutively expressed yellow fluorescent protein-TSPO in Arabidopsis. Mutational stabilization of TSPO or pharmacological inhibition of the autophagic pathway affected concomitantly the detected levels of PIP2;7, suggesting that the complex containing both proteins is degraded through the autophagic pathway. Coexpression of TSPO and PIP2;7 resulted in decreased levels of PIP2;7 in the plasma membrane and abolished the membrane water permeability mediated by transgenic PIP2;7. Taken together, these data support a physiological role for TSPO in regulating the cell-surface expression of PIP2;7 during abiotic stress conditions through protein-protein interaction and demonstrate an aquaporin regulatory mechanism involving TSPO.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Vasko Veljanovski
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Hagen Reinhardt
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Damien Guillaumot
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Celine Vanhee
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
38
|
Zhao M, San León D, Delgadillo MO, García JA, Simón-Mateo C. Virus-induced gene silencing in transgenic plants: transgene silencing and reactivation associate with two patterns of transgene body methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:440-452. [PMID: 24916614 DOI: 10.1111/tpj.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so-called virus-induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5' end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3' end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3' end, and an overall increase in CG methylation in the 5' end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas or (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Wang X, Fan C, Zhang X, Zhu J, Fu YF. BioVector, a flexible system for gene specific-expression in plants. BMC PLANT BIOLOGY 2013; 13:198. [PMID: 24304941 PMCID: PMC4235170 DOI: 10.1186/1471-2229-13-198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/27/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Functional genomic research always needs to assemble different DNA fragments into a binary vector, so as to express genes with different tags from various promoters with different levels. The cloning systems available bear similar disadvantages, such as promoters/tags are fixed on a binary vector, which is generally with low cloning efficiency and limited for cloning sites if a novel promoter/tag is in need. Therefore, it is difficult both to assemble a gene and a promoter together and to modify the vectors in hand. Another disadvantage is that a long spacer from recombination sites, which may be detrimental to the protein function, exists between a gene and a tag. Multiple GATEWAY system only resolves former problem at the expense of very low efficiency and expensive for multiple LR reaction. RESULTS To improve efficiency and flexibility for constructing expression vectors, we developed a platform, BioVector, by combining classical restriction enzyme/ligase strategy with modern Gateway DNA recombination system. This system included a series of vectors for gene cloning, promoter cloning, and binary vector construction to meet various needs for plant functional genomic study. CONCLUSION This BioVector platform makes it easy to construct any vectors to express a target gene from a specific promoter with desired intensity, and it is also waiting to be freely modified by researchers themselves for ongoing demands. This idea can also be transferred to the different fields including animal or yeast study.
Collapse
Affiliation(s)
- Xu Wang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Chengming Fan
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Jinlong Zhu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yong-Fu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
40
|
Dalakouras A, Wassenegger M. Revisiting RNA-directed DNA methylation. RNA Biol 2013; 10:453-5. [PMID: 23324611 PMCID: PMC3672289 DOI: 10.4161/rna.23542] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) involves sequence-specific guiding of the de novo methylation machinery to complementary genomic DNA by RNA molecules. It is still elusive whether guide RNAs bind directly to DNA or to nascent transcripts produced from it. Even the nature of the guide RNAs is not elucidated. RNA interference (RNAi) studies provided a link between RNAi and RdDM indicating that small interfering RNAs (siRNAs) trigger and guide cytosine methylation. The "siRNA hypothesis" is generally accepted. However, recent data demonstrated that RdDM is not always associated with the accumulation of corresponding siRNAs. RdDM triggers may differ from guide RNAs and further studies are needed to clarify if guide RNAs are small or long RNAs, if they are single or double stranded and if they target DNA or nascent transcript.
Collapse
Affiliation(s)
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
41
|
Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A. Genome modifications in plant cells by custom-made restriction enzymes. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:373-89. [PMID: 22469004 DOI: 10.1111/j.1467-7652.2011.00672.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genome editing, i.e. the ability to mutagenize, insert, delete and replace sequences, in living cells is a powerful and highly desirable method that could potentially revolutionize plant basic research and applied biotechnology. Indeed, various research groups from academia and industry are in a race to devise methods and develop tools that will enable not only site-specific mutagenesis but also controlled foreign DNA integration and replacement of native and transgene sequences by foreign DNA, in living plant cells. In recent years, much of the progress seen in gene targeting in plant cells has been attributed to the development of zinc finger nucleases and other novel restriction enzymes for use as molecular DNA scissors. The induction of double-strand breaks at specific genomic locations by zinc finger nucleases and other novel restriction enzymes results in a wide variety of genetic changes, which range from gene addition to the replacement, deletion and site-specific mutagenesis of endogenous and heterologous genes in living plant cells. In this review, we discuss the principles and tools for restriction enzyme-mediated gene targeting in plant cells, as well as their current and prospective use for gene targeting in model and crop plants.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
42
|
Melnyk CW, Molnar A, Bassett A, Baulcombe DC. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr Biol 2011; 21:1678-83. [PMID: 21962713 DOI: 10.1016/j.cub.2011.08.065] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/01/2011] [Accepted: 08/31/2011] [Indexed: 12/12/2022]
Abstract
RNA silencing in flowering plants generates a signal that moves between cells and through the phloem [1, 2]. Nucleotide sequence specificity of the signal is conferred by 21, 22, and 24 nucleotide (nt) sRNAs that are generated by Dicer-like (DCL) proteins [3]. In the recipient cells these sRNAs bind to Argonaute (AGO) effectors of silencing and the 21 nt sRNAs mediate posttranscriptional regulation (PTGS) via mRNA cleavage [4] whereas the 24 nt sRNAs are associated with RNA-dependent DNA methylation (RdDM) [5] that may underlie transcriptional gene silencing (TGS). Intriguingly, genes involved in TGS are required for graft-transmissible gene silencing associated with PTGS [6]. However, some of the same genes were also required for spread of a PTGS silencing signal out of the veins of Arabidopsis [7], and grafting tests failed to demonstrate direct transmission of TGS signals [8-10]. It seemed likely, therefore, that mobile silencing is associated only with PTGS. To address this possibility, we grafted TGS-inducing wild-type Arabidopsis and a mutant that is compromised in 24 nt sRNA production onto a wild-type reporter line. The 21-24 nt sRNAs from the TGS construct were transmitted across a graft union but only the 24 nt sRNAs directed RdDM and TGS of a transgene promoter in meristematic cells. These data extend the significance of an RNA silencing signal to embrace epigenetics and transcriptional gene silencing and support the hypothesis that these signals transmit information to meristematic cells where they initiate persistent epigenetic changes that may influence growth, development, and heritable phenotypes.
Collapse
Affiliation(s)
- Charles W Melnyk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|