1
|
Jiang T, Hao T, Chen W, Li C, Pang S, Fu C, Cheng J, Zhang C, Ghorbanpour M, Miao S. Reprogrammed Plant Metabolism During Viral Infections: Mechanisms, Pathways and Implications. MOLECULAR PLANT PATHOLOGY 2025; 26:e70066. [PMID: 39972520 PMCID: PMC11839395 DOI: 10.1111/mpp.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Plant viruses pose a significant threat to global agriculture, leading to substantial crop losses that jeopardise food security and disrupt ecosystem stability. These viral infections often reprogramme plant metabolism, compromising key pathways critical for growth and defence. For instance, infections by cucumber mosaic virus alter amino acid and secondary metabolite biosynthesis, including flavonoid and phenylpropanoid pathways, thereby weakening plant defences. Similarly, tomato bushy stunt virus disrupts lipid metabolism by altering the synthesis and accumulation of sterols and phospholipids, which are essential for viral replication and compromise membrane integrity. Recent advancements in gene-editing technologies, such as CRISPR/Cas9, and metabolomics offer innovative strategies to mitigate these impacts. Precise genetic modifications can restore or optimise disrupted metabolic pathways, enhancing crop resilience to viral infections. Metabolomics further aids in identifying metabolic biomarkers linked to viral resistance, guiding breeding programmes aimed at developing virus-resistant plants. By reducing the susceptibility of crops to viral infections, these approaches hold significant potential to reduce dependence on chemical pesticides, increase crop yields and promote sustainable agricultural practices. Future research should focus on expanding our understanding of virus-host interactions at the molecular level while exploring the long-term ecological impacts of viral infections. Interdisciplinary approaches integrating multi-omics technologies and sustainable management strategies will be critical in addressing the challenges posed by plant viruses and ensuring global agricultural stability.
Collapse
Affiliation(s)
- Tong Jiang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Tianwen Hao
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Wenjing Chen
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chengliang Li
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Shuqi Pang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chenglong Fu
- Shandong Meng'en Modern Agriculture Development Co. Ltd.LiaochengChina
| | - Jie Cheng
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Chaobo Zhang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Shuo Miao
- North China Forestry Experiment CenterChinese Academy of ForestryBeijingChina
| |
Collapse
|
2
|
Wu K, Hu C, Liao P, Hu Y, Sun X, Tan Q, Pan Z, Xu S, Dong Z, Wu S. Potassium stimulates fruit sugar accumulation by increasing carbon flow in Citrus sinensis. HORTICULTURE RESEARCH 2024; 11:uhae240. [PMID: 39512779 PMCID: PMC11540757 DOI: 10.1093/hr/uhae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/22/2024] [Indexed: 11/15/2024]
Abstract
Soluble sugars contribute to the taste and flavor of citrus fruit. Potassium (K), known as a quality element, plays key roles in improving sugar accumulation and fruit quality, but the mechanism is largely unknown. This study aims to elucidate how K improves sugar accumulation by regulating carbon flow from source leaves to fruit in Newhall navel orange. We found that optimal fruit K concentrations around 1.5% improved sugar accumulation and fruit quality in citrus. K application increased the strength of both sink and source, as indicated by the increased fruit growth rate, enzyme activities and expression levels of key genes involved in sucrose (Suc) metabolism in fruit and leaf. K application also facilitated Suc transport from source leaves to fruit, as confirmed by the enhanced 13C-Suc level in fruit. Furthermore, we found that navel orange used the symplastic pathway for transporting Suc from source leaves to fruit, and K application enhanced symplastic loading, as demonstrated by the intensified carboxyfluorescein signal and increased plasmodesmata density in leaves. The findings reveal that K stimulates fruit sugar accumulation by increasing carbon flow from source leaves to fruit in Newhall navel orange.
Collapse
Affiliation(s)
- Kongjie Wu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Chengxiao Hu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Peiyu Liao
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Yinlong Hu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Xuecheng Sun
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Qiling Tan
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Zhiyong Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Shoujun Xu
- Guangdong Agricultural Environment and Cultivated land Quality Protection Center, Huanshizhong Street, Yuexiu District, Guangzhou 510599 China
| | - Zhihao Dong
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| | - Songwei Wu
- Hubei Provincial Engineering Laboratory for New Fertilizers/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Shizhishan Street, Hongshan District, Wuhan, Hubei, 430070 China
| |
Collapse
|
3
|
Liu YH, Song YH, Ruan YL. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1910-1925. [PMID: 35104311 PMCID: PMC8982439 DOI: 10.1093/jxb/erab562] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/25/2021] [Indexed: 06/12/2023]
Abstract
It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.
Collapse
Affiliation(s)
- Yong-Hua Liu
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| | - You-Hong Song
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong-Ling Ruan
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Cai Y, Yin L, Tu W, Deng Z, Yan J, Dong W, Gao H, Xu J, Zhang N, Wang J, Zhu L, Meng Q, Zhang Y. Ectopic Expression of VvSUC27 Induces Stenospermocarpy and Sugar Accumulation in Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:759047. [PMID: 34868153 PMCID: PMC8637806 DOI: 10.3389/fpls.2021.759047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Seedless fruits are favorable in the market because of their ease of manipulation. Sucrose transporters (SUTs or SUCs) are essential for carbohydrate metabolism in plants. Whether SUTs participate directly in causing stenospermocarpy, thereby increasing fruit quality, remains unclear. Three SUTs, namely, VvSUC11, VvSUC12, and VvSUC27 from Vitis vinifera, were characterized and ectopic expression in tomatoes. VvSUC11- and VvSUC12-overexpressing lines had similar flower and fruit phenotypes compared with those of the wild type. VvSUC27-overexpressing lines produced longer petals and pistils, an abnormal stigma, much less and shrunken pollen, and firmer seedless fruits. Moreover, produced fruits from all VvSUC-overexpressing lines had a higher soluble solid content and sugar concentration. Transcriptomic analysis revealed more genes associated with carbohydrate metabolism and sugar transport and showed downregulation of auxin- and ethylene-related signaling pathways during early fruit development in VvSUC27-overexpressing lines relative to that of the wild type. Our findings demonstrated that stenospermocarpy can be induced by overexpression of VvSUC27 through a consequential reduction in nutrient delivery to pollen at anthesis, with a subsequent downregulation of the genes involved in carbohydrate metabolism and hormone signaling. These commercially desirable results provide a new strategy for bioengineering stenospermocarpy in tomatoes and in other fruit plants.
Collapse
Affiliation(s)
- Yumeng Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Tianjin Key Laboratory of Crop Genetics and Breeding, Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Key Laboratory, Academy of Agricultural Sciences, Nanning, China
| | - Wenrui Tu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhefang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenjie Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinxu Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Zhu
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingyong Meng
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Sáez C, Flores-León A, Montero-Pau J, Sifres A, Dhillon NPS, López C, Picó B. RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. FRONTIERS IN PLANT SCIENCE 2021; 12:798858. [PMID: 35116050 PMCID: PMC8805612 DOI: 10.3389/fpls.2021.798858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) emerged in the Mediterranean Basin in 2012 as the first DNA bipartite begomovirus (Geminiviridae family), causing severe yield and economic losses in cucurbit crops. A major resistance locus was identified in the wild melon accession WM-7 (Cucumis melo kachri group), but the mechanisms involved in the resistant response remained unknown. In this work, we used RNA-sequencing to identify disease-associated genes that are differentially expressed in the course of ToLCNDV infection and could contribute to resistance. Transcriptomes of the resistant WM-7 genotype and the susceptible cultivar Piñonet Piel de Sapo (PS) (C. melo ibericus group) in ToLCNDV and mock inoculated plants were compared at four time points during infection (0, 3, 6, and 12 days post inoculation). Different gene expression patterns were observed over time in the resistant and susceptible genotypes in comparison to their respective controls. Differentially expressed genes (DEGs) in ToLCNDV-infected plants were classified using gene ontology (GO) terms, and genes of the categories transcription, DNA replication, and helicase activity were downregulated in WM-7 but upregulated in PS, suggesting that reduced activity of these functions reduces ToLCNDV replication and intercellular spread and thereby contributes to resistance. DEGs involved in the jasmonic acid signaling pathway, photosynthesis, RNA silencing, transmembrane, and sugar transporters entail adverse consequences for systemic infection in the resistant genotype, and lead to susceptibility in PS. The expression levels of selected candidate genes were validated by qRT-PCR to corroborate their differential expression upon ToLCNDV infection in resistant and susceptible melon. Furthermore, single nucleotide polymorphism (SNPs) with an effect on structural functionality of DEGs linked to the main QTLs for ToLCNDV resistance have been identified. The obtained results pinpoint cellular functions and candidate genes that are differentially expressed in a resistant and susceptible melon line in response to ToLCNDV, an information of great relevance for breeding ToLCNDV-resistant melon cultivars.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Cristina Sáez,
| | - Alejandro Flores-León
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Narinder P. S. Dhillon
- World Vegetable Center, East and Southeast Asia, Research and Training Station, Kasetsart University, Nakhon Pathom, Thailand
| | - Carmelo López
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Carmelo López,
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity, Universitat Politècnica de València, Valencia, Spain
- Belén Picó,
| |
Collapse
|
6
|
Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol Life Sci 2020; 78:799-816. [PMID: 32920696 PMCID: PMC7897608 DOI: 10.1007/s00018-020-03622-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.
Collapse
|
7
|
Zhang J, Lu Z, Pan Y, Ren T, Cong R, Lu J, Li X. Potassium deficiency aggravates yield loss in rice by restricting the translocation of non-structural carbohydrates under Sarocladium oryzae infection condition. PHYSIOLOGIA PLANTARUM 2019; 167:352-364. [PMID: 30536828 DOI: 10.1111/ppl.12896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Sheath rot disease (ShR) caused by Sarocladium oryzae (S. oryzae) infection is an emerging disease that causes severe yield loss by restricting the translocation of non-structural carbohydrates (NSC). Potassium (K) nutrition plays a critical role in disease resistance and the exportation of NSC. However, the physiological mechanisms of K with respect to ShR have not been thoroughly elucidated to date. The objectives of this study were to reveal the mechanisms by which K increases ShR resistance by regulating NSC translocation of rice, therefore, a field experiment combined with an inoculation experiment was conducted. We demonstrate that ShR disease incidence and disease index decreased dramatically with an increasing K application. K deficiency sharply induced the accumulation of NSC in the flag leaf (FL) and flag leaf sheath (FLS) under S. oryzae infection condition, which reduced the contribution of transferred NSC to final yield. A permutational multivariate analysis showed that K deficiency had a greater (49.0%, P < 0.001) effect on the NSC content variation in FL than that of S. oryzae infection (15.0%, P < 0.001). S. oryzae infection dramatically increased the difference in apparent transferred mass of NSC and cell membrane injury of diseased organs between K-deficient and K-sufficient rice. Finally, we demonstrate that cell membrane injury was a limiting factor imposed by K deficiency, which restricts the export of NSC from source organs. This work highlights the importance of K in improving ShR resistance by regulating NSC translocation (particularly the stem NSC).
Collapse
Affiliation(s)
- Jianglin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhifeng Lu
- Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu, China
| | - Yonghui Pan
- Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu, China
| | - Tao Ren
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Rihuan Cong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jianwei Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Xiaokun Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
9
|
Ma S, Sun L, Sui X, Li Y, Chang Y, Fan J, Zhang Z. Phloem loading in cucumber: combined symplastic and apoplastic strategies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:391-404. [PMID: 30604489 DOI: 10.1111/tpj.14224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 05/22/2023]
Abstract
Phloem loading, as the first step of transporting photoassimilates from mesophyll cells to sieve element-companion cell complex, creates a driving force for long-distance nutrient transport. Three loading strategies have been proposed: passive symplastic loading, apoplastic loading and symplastic transfer followed by polymer-trapping of stachyose and raffinose. Although individual species are generally referred to as using a single phloem loading mechanism, it has been suggested that some plants may use more than one, i.e. 'mixed loading'. Here, by using a combination of electron microscopy, reverse genetics and 14 C labeling, loading strategies were studied in cucumber, a polymer-trapping loading species. The results indicate that intermediary cells (ICs), which mediate polymer-trapping, and ordinary companion cells, which mediate apoplastic loading, were mainly found in the fifth and third order veins, respectively. Accordingly, a cucumber galactinol synthase gene (CsGolS1) and a sucrose transporter gene (CsSUT2) were expressed mainly in the fifth/third and the third order veins, respectively. Immunolocalization analysis indicated that CsGolS1 was localized in companion cells (CCs) while CsSUT2 was in CCs and sieve elements (SEs). Suppressing CsGolS1 significantly decreased the stachyose level and increased sucrose content, while suppressing CsSUT2 decreased the sucrose level and increased the stachyose content in leaves. After 14 CO2 labeling, [14 C]sucrose export increased and [14 C]stachyose export reduced from petioles in CsGolS1i plants, but [14 C]sucrose export decreased and [14 C]stachyose export increased into petioles in CsSUT2i plants. Similar results were also observed after pre-treating the CsGolS1i leaves with PCMBS (transporter inhibitor). These results demonstrate that cucumber phloem loading depends on both polymer-trapping and apoplastic loading strategies.
Collapse
Affiliation(s)
- Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lulu Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaxin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Maron L. Getting that sugar, one way or another. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:389-390. [PMID: 31033090 DOI: 10.1111/tpj.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
11
|
Ganusova EE, Burch-Smith TM. Review: Plant-pathogen interactions through the plasmodesma prism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:70-80. [PMID: 30709495 DOI: 10.1016/j.plantsci.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Plasmodesmata (PD) allow membrane and cytoplasmic continuity between plant cells, and they are essential for intercellular communication and signaling in addition to metabolite partitioning. Plant pathogens have evolved a variety of mechanisms to subvert PD to facilitate their infection of plant hosts. PD are implicated not only in local spread around infection sites but also in the systemic spread of pathogens and pathogen-derived molecules. In turn, plants have developed strategies to limit pathogen spread via PD, and there is increasing evidence that PD may also be active players in plant defense responses. The last few years have seen important advances in understanding the roles of PD in plant-pathogen infection. Nonetheless, several critical areas remain to be addressed. Here we highlight some of these, focusing on the need to consider the effects of pathogen-PD interaction on the trafficking of endogenous molecules, and the involvement of chloroplasts in regulating PD during pathogen defense. By their very nature, PD are recalcitrant to most currently used investigative techniques, therefore answering these questions will require creative imaging and novel quantification approaches.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
12
|
Sun Y, Huang D, Chen X. Dynamic regulation of plasmodesmatal permeability and its application to horticultural research. HORTICULTURE RESEARCH 2019; 6:47. [PMID: 30962940 PMCID: PMC6441653 DOI: 10.1038/s41438-019-0129-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/10/2023]
Abstract
Effective cell-to-cell communication allows plants to fine-tune their developmental processes in accordance with the prevailing environmental stimuli. Plasmodesmata (PD) are intercellular channels that span the plant cell wall and serve as cytoplasmic bridges to facilitate efficient exchange of signaling molecules between neighboring cells. The identification of PD-associated proteins and the subsequent elucidation of the regulation of PD structure have provided vital insights into the role of PD architecture in enforcing crucial cellular processes, including callose deposition, ER-Golgi-based secretion, cytoskeleton dynamics, membrane lipid raft organization, chloroplast metabolism, and cell wall formation. In this review, we summarize the emerging discoveries from recent studies that elucidated the regulatory mechanisms involved in PD biogenesis and the dynamics of PD opening-closure. Retrospectively, PD-mediated cell-to-cell communication has been implicated in diverse cellular and physiological processes that are fundamental for the development of horticultural plants. The potential application of PD biotechnological engineering represents a powerful approach for improving agronomic traits in horticultural crops in the future.
Collapse
Affiliation(s)
- Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Dingquan Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
13
|
Bishop KA, Lemonnier P, Quebedeaux JC, Montes CM, Leakey ADB, Ainsworth EA. Similar photosynthetic response to elevated carbon dioxide concentration in species with different phloem loading strategies. PHOTOSYNTHESIS RESEARCH 2018; 137:453-464. [PMID: 29860702 DOI: 10.1007/s11120-018-0524-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO2 concentrations is unclear, despite the widespread impacts of rising CO2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO2 uptake by elevated CO2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO2. There was a trend toward greater starch accumulation at elevated CO2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO2, but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.
Collapse
Affiliation(s)
- Kristen A Bishop
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Pauline Lemonnier
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Jennifer C Quebedeaux
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Christopher M Montes
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Andrew D B Leakey
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Elizabeth A Ainsworth
- Departments of Plant Biology and Crop Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA.
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Fink D, Dobbelstein E, Barbian A, Lohaus G. Ratio of sugar concentrations in the phloem sap and the cytosol of mesophyll cells in different tree species as an indicator of the phloem loading mechanism. PLANTA 2018; 248:661-673. [PMID: 29882156 DOI: 10.1007/s00425-018-2933-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/01/2018] [Indexed: 05/28/2023]
Abstract
Sucrose concentration in phloem sap was several times higher than in the cytosol of mesophyll cells. The results suggest that phloem loading involves active steps in the analyzed tree species. Phloem loading in source leaves is a key step for carbon partitioning and passive symplastic loading has been proposed for several tree species. However, experimental evidence to prove the potential for sucrose diffusion from mesophyll to phloem is rare. Here, we analyzed three tree species (two angiosperms, Fagus sylvatica, Magnolia kobus, and one gymnosperm, Gnetum gnemon) to investigate the proposed phloem loading mechanism. For this purpose, the minor vein structure and the sugar concentrations in phloem sap as well as in the subcellular compartments of mesophyll cells were investigated. The analyzed tree species belong to the open type minor vein subcategory. The sucrose concentration in the cytosol of mesophyll cells ranged between 75 and 165 mM and was almost equal to the vacuolar concentration. Phloem sap could be collected from F. sylvatica and M. kobus and the concentration of sucrose in phloem sap was about five- and 11-fold higher, respectively, than in the cytosol of mesophyll cells. Sugar exudation of cut leaves was decreased by p-chloromercuribenzenesulfonic acid, an inhibitor of sucrose-proton transporter. The results suggest that phloem loading of sucrose in the analyzed tree species involves active steps, and apoplastic phloem loading seems more likely.
Collapse
Affiliation(s)
- Daniel Fink
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| | - Elena Dobbelstein
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| | - Andreas Barbian
- Core Facility Electron Microscopy, UKD, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany.
| |
Collapse
|
15
|
The Role of Sugar Transporter Genes during Early Infection by Root-Knot Nematodes. Int J Mol Sci 2018; 19:ijms19010302. [PMID: 29351253 PMCID: PMC5796247 DOI: 10.3390/ijms19010302] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/28/2022] Open
Abstract
Although pathogens such as nematodes are known to hijack nutrients from host plants, the mechanisms whereby nematodes obtain sugars from plants remain largely unknown. To determine the effects of nematode infection on host plant sugar allocation, soluble sugar (fructose, glucose, sucrose) content was investigated using high-performance liquid chromatography with refractive index detection and was found to increase significantly in tomato (Solanum lycopersicum, Sl) leaves and roots during early infection by root-knot nematodes (RKNs). To further analyze whether sugar transporters played a role in this process, the expression levels of sucrose transporter (SUT/SUC), Sugars Will Eventually be Exported Transporter (SWEET), tonoplast monosaccharide transporter (TMT), and vacuolar glucose transporter (VGT) gene family members were examined by qRT-PCR analysis after RKN infection. The results showed that three SlSUTs, 17 SlSWEETs, three SlTMTs, and SlVGT1 were upregulated in the leaves, whereas three SlSUTs, 17 SlSWEETs, two SlTMTs, and SlVGT1 were induced in the roots. To determine the function of the sugar transporters in the RKN infection process, we examined post-infection responses in the Atsuc2 mutant and pAtSUC2-GUS lines. β-glucuronidase expression was strongly induced at the infection sites, and RKN development was significantly arrested in the Atsuc2 mutant. Taken together, our analyses provide useful information for understanding the sugar transporter responses during early infection by RKNs in tomato.
Collapse
|
16
|
Abstract
The phloem plays a central role in transporting resources and signalling molecules from fully expanded leaves to provide precursors for, and to direct development of, heterotrophic organs located throughout the plant body. We review recent advances in understanding mechanisms regulating loading and unloading of resources into, and from, the phloem network; highlight unresolved questions regarding the physiological significance of the vast array of proteins and RNAs found in phloem saps; and evaluate proposed structure/function relationships considered to account for bulk flow of sap, sustained at high rates and over long distances, through the transport phloem.
Collapse
Affiliation(s)
- Johannes Liesche
- Biomass Energy Center for Arid and Semi-arid lands, Northwest A&F University, Yangling, China
- College of Life Science, Northwest A&F University, Yangling , China
| | - John Patrick
- Department of Biological Sciences, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
17
|
Lü J, Sui X, Ma S, Li X, Liu H, Zhang Z. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. PLANT MOLECULAR BIOLOGY 2017; 95:1-15. [PMID: 28608281 PMCID: PMC5594042 DOI: 10.1007/s11103-017-0621-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 06/02/2017] [Indexed: 05/09/2023]
Abstract
Stachyose is the main transporting sugar in phloem of Raffinose family oligosaccharides-transporting species. Stachyose synthase (STS) is a key enzyme for stachyose biosynthesis, but the gene encoding STS is poorly characterized in cucumber (Cucumis sativus L.), which is a model plant for studying stachyose metabolism and phloem function. In this research, stachyose synthase gene (CsSTS) from cucumber was isolated and its physiological functions were analyzed. CsSTS expressed mainly in the phloem of the minor veins in mature leaves and localized to companion cells. Reverse genetics with CsSTS RNAi lines revealed obviously reductions in STS activity and stachyose content along with a small amount of starch accumulation in leaves, suggesting that CsSTS is involved in phloem loading of cucumber leaves. After 6 °C low temperature stress, malondialdehyde content and electrical conductivity increased, especially in CsSTS-RNAi plants. But CsSTS expression was up-regulated, STS activity and stachyose level increased, the activities of reactive-oxygen-scavenging enzyme in cucumber seedlings improved significantly and starch accumulation reduced, especially in CsSTS-OE lines. These results demonstrate clearly that CsSTS is involved in phloem loading, carbohydrate distribution and tolerance of cucumber seedlings to low temperature stress.
Collapse
Affiliation(s)
- Jianguo Lü
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Agricultural and Biological Sciences, Dali University, Dali, 671003, Yunnan, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
El Aou-Ouad H, Pou A, Tomás M, Montero R, Ribas-Carbo M, Medrano H, Bota J. Combined effect of virus infection and water stress on water flow and water economy in grapevines. PHYSIOLOGIA PLANTARUM 2017; 160:171-184. [PMID: 28044321 DOI: 10.1111/ppl.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 05/21/2023]
Abstract
Water limitation is one of the major threats affecting grapevine production. Thus, improving water-use efficiency (WUE) is crucial for a sustainable viticulture industry in Mediterranean regions. Under field conditions, water stress (WS) is often combined with viral infections as those are present in major grape-growing areas worldwide. Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting grapevines. Indeed, the optimization of water use in a real context of virus infection is an important topic that needs to be understood. In this work, we have focused our attention on determining the interaction of biotic and abiotic stresses on WUE and hydraulic conductance (Kh ) parameters in two white grapevine cultivars (Malvasia de Banyalbufar and Giró Ros). Under well-watered (WW) conditions, virus infection provokes a strong reduction (P < 0.001) in Kpetiole in both cultivars; however, Kleaf was only reduced in Malvasia de Banyalbufar. Moreover, the presence of virus also reduced whole-plant hydraulic conductance (Khplant ) in 2013 and 2014 for Malvasia de Banyalbufar and in 2014 for Giró Ros. Thus, the effect of virus infection on water flow might explain the imposed stomatal limitation. Under WS conditions, the virus effect on Kplant was negligible, because of the bigger effect of WS than virus infection. Whole-plant WUE (WUEWP ) was not affected by the presence of virus neither under WW nor under WS conditions, indicating that plants may adjust their physiology to counteract the virus infection by maintaining a tight stomatal control and by sustaining a balanced carbon change.
Collapse
Affiliation(s)
- Hanan El Aou-Ouad
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Alicia Pou
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Magdalena Tomás
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Rafael Montero
- Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Conselleria d'Agricultura, Medi Ambient i Territori, Govern de les Illes Balears, C/Eusebio Estada no. 145, 07009, Palma de Mallorca, Balears, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Hipólito Medrano
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Josefina Bota
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| |
Collapse
|
19
|
Leach KA, Tran TM, Slewinski TL, Meeley RB, Braun DM. Sucrose transporter2 contributes to maize growth, development, and crop yield. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:390-408. [PMID: 28206710 DOI: 10.1111/jipb.12527] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/10/2017] [Indexed: 05/24/2023]
Abstract
During daylight, plants produce excess photosynthates, including sucrose, which is temporarily stored in the vacuole. At night, plants remobilize sucrose to sustain metabolism and growth. Based on homology to other sucrose transporter (SUT) proteins, we hypothesized the maize (Zea mays) SUCROSE TRANSPORTER2 (ZmSUT2) protein functions as a sucrose/H+ symporter on the vacuolar membrane to export transiently stored sucrose. To understand the biological role of ZmSut2, we examined its spatial and temporal gene expression, determined the protein subcellular localization, and characterized loss-of-function mutations. ZmSut2 mRNA was ubiquitously expressed and exhibited diurnal cycling in transcript abundance. Expressing a translational fusion of ZmSUT2 fused to a red fluorescent protein in maize mesophyll cell protoplasts revealed that the protein localized to the tonoplast. Under field conditions, zmsut2 mutant plants grew slower, possessed smaller tassels and ears, and produced fewer kernels when compared to wild-type siblings. zmsut2 mutants also accumulated two-fold more sucrose, glucose, and fructose as well as starch in source leaves compared to wild type. These findings suggest (i) ZmSUT2 functions to remobilize sucrose out of the vacuole for subsequent use in growing tissues; and (ii) its function provides an important contribution to maize development and agronomic yield.
Collapse
Affiliation(s)
- Kristen A Leach
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia MO 65211 USA
| | - Thu M Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia MO 65211 USA
| | - Thomas L Slewinski
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Robert B Meeley
- DuPont Pioneer Research & Development, Johnston, Iowa 50131, USA
| | - David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, Missouri Maize Center, University of Missouri, Columbia MO 65211 USA
| |
Collapse
|
20
|
Liesche J. Sucrose transporters and plasmodesmal regulation in passive phloem loading. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:311-321. [PMID: 28429873 DOI: 10.1111/jipb.12548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
An essential step for the distribution of carbon throughout the whole plant is the loading of sugars into the phloem in source organs. In many plants, accumulation of sugars in the sieve element-companion cell (SE-CC) complex is mediated and regulated by active processes. However, for poplar and many other tree species, a passive symplasmic mechanism of phloem loading has been proposed, characterized by symplasmic continuity along the pre-phloem pathway and the absence of active sugar accumulation in the SE-CC complex. A high overall leaf sugar concentration is thought to enable diffusion of sucrose into the phloem. In this review, we critically evaluate current evidence regarding the mechanism of passive symplasmic phloem loading, with a focus on the potential influence of active sugar transport and plasmodesmal regulation. The limited experimental data, combined with theoretical considerations, suggest that a concomitant operation of passive symplasmic and active phloem loading in the same minor vein is unlikely. However, active sugar transport could well play an important role in how passively loading plants might modulate the rate of sugar export from leaves. Insights into the operation of this mechanism has direct implications for our understanding of how these plants utilize assimilated carbon.
Collapse
Affiliation(s)
- Johannes Liesche
- College of Life Science, Northwest A&F University, No 3 Taicheng Road, Yangling 712100, China
- Biomass Energy Center for Arid and Semi-arid lands, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
21
|
Öner-Sieben S, Rappl C, Sauer N, Stadler R, Lohaus G. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4807-19. [PMID: 26022258 PMCID: PMC4507781 DOI: 10.1093/jxb/erv255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior.
Collapse
Affiliation(s)
- Soner Öner-Sieben
- Molekulare Pflanzenforschung/Pflanzenbiochemie (Botanik), Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
| | - Christine Rappl
- Lehrstuhl Molekulare Pflanzenphysiologie Department Biologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Lehrstuhl Molekulare Pflanzenphysiologie Department Biologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Ruth Stadler
- Lehrstuhl Molekulare Pflanzenphysiologie Department Biologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Gertrud Lohaus
- Molekulare Pflanzenforschung/Pflanzenbiochemie (Botanik), Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
| |
Collapse
|
22
|
Yadav UP, Ayre BG, Bush DR. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. FRONTIERS IN PLANT SCIENCE 2015; 6:275. [PMID: 25954297 PMCID: PMC4405696 DOI: 10.3389/fpls.2015.00275] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 05/18/2023]
Abstract
The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in the earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.
Collapse
Affiliation(s)
- Umesh P. Yadav
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Brian G. Ayre
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Wigoda N, Moshelion M, Moran N. Is the leaf bundle sheath a "smart flux valve" for K+ nutrition? JOURNAL OF PLANT PHYSIOLOGY 2014; 171:715-722. [PMID: 24629888 DOI: 10.1016/j.jplph.2013.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Evidence has started to accumulate that the bundle sheath regulates the passage of water, minerals and metabolites between the mesophyll and the conducting vessels of xylem and phloem within the leaf veins which it envelops. Although potassium (K(+)) nutrition has been studied for several decades, and much is known about the uptake and recirculation of K(+) within the plant, the potential regulatory role of bundle sheath with regard to K(+) fluxes has just begun to be addressed. Here we have collected some facts and ideas about these processes.
Collapse
Affiliation(s)
- Noa Wigoda
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Menachem Moshelion
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Moran
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Öner-Sieben S, Lohaus G. Apoplastic and symplastic phloem loading in Quercus robur and Fraxinus excelsior. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1905-16. [PMID: 24591056 PMCID: PMC3978624 DOI: 10.1093/jxb/eru066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Whereas most of the research on phloem loading is performed on herbaceous plants, less is known about phloem loading strategies in trees. In this study, the phloem loading mechanisms of Quercus robur and Fraxinus excelsior were analysed. The following features were examined: the minor vein structure, the sugar concentrations in phloem sap by the laser-aphid-stylet technique, the distribution of photoassimilates in the mesophyll cells by non-aqueous fractionation, gradients of sugar concentrations and osmotic pressure, and the expression of sucrose transporters. The minor vein configurations of Q. robur and F. excelsior belong to the open type. Quercus robur contained companion cells in the minor veins whereas F. excelsior showed intermediary cells in addition to ordinary companion cells. The main carbon transport form in Q. robur was sucrose (~1M). In F. excelsior high amounts of raffinose and stachyose were also transported. However, in both tree species, the osmolality of phloem sap was higher than the osmolality of the mesophyll cells. The concentration gradients between phloem sap and the cytoplasm of mesophyll cells for sucrose were 16-fold and 14-fold for Q. robur and F. excelsior, respectively. Independent of the type of translocated sugars, sucrose transporter cDNAs were cloned from both species. The results indicate that phloem loading of sucrose and other metabolites must involve active loading steps in both tree species. Quercus robur seems to be an apoplastic phloem loader while F. excelsior shows indications of being a symplastic or mixed symplastic-apoplastic phloem loader.
Collapse
|
25
|
Braun DM, Wang L, Ruan YL. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1713-35. [PMID: 24347463 DOI: 10.1093/jxb/ert416] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sucrose is produced in, and translocated from, photosynthetically active leaves (sources) to support non-photosynthetic tissues (sinks), such as developing seeds, fruits, and tubers. Different plants can utilize distinct mechanisms to transport sucrose into the phloem sieve tubes in source leaves. While phloem loading mechanisms have been extensively studied in dicot plants, there is less information about phloem loading in monocots. Maize and rice are major dietary staples, which have previously been proposed to use different cellular routes to transport sucrose from photosynthetic cells into the translocation stream. The anatomical, physiological, and genetic evidence supporting these conflicting hypotheses is examined. Upon entering sink cells, sucrose often is degraded into hexoses for a wide range of metabolic and storage processes, including biosynthesis of starch, protein, and cellulose, which are all major constituents for food, fibre, and fuel. Sucrose, glucose, fructose, and their derivate, trehalose-6-phosphate, also serve as signalling molecules to regulate gene expression either directly or through cross-talk with other signalling pathways. As such, sugar transport and metabolism play pivotal roles in plant development and realization of crop yield that needs to be increased substantially to meet the projected population demand in the foreseeable future. This review will discuss the current understanding of the control of carbon partitioning from the cellular to whole-plant levels, focusing on (i) the pathways employed for phloem loading in source leaves, particularly in grasses, and the routes used in sink organs for phloem unloading; (ii) the transporter proteins responsible for sugar efflux and influx across plasma membranes; and (iii) the key enzymes regulating sucrose metabolism, signalling, and utilization. Examples of how sugar transport and metabolism can be manipulated to improve crop productivity and stress tolerance are discussed.
Collapse
Affiliation(s)
- David M Braun
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
26
|
Chen LQ. SWEET sugar transporters for phloem transport and pathogen nutrition. THE NEW PHYTOLOGIST 2014; 201:1150-5. [PMID: 24649486 DOI: 10.1111/nph.12445] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many intercellular solute transport processes require an apoplasmic step, that is, efflux from one cell and subsequent uptake by an adjacent cell. Cellular uptake transporters have been identified for many solutes, including sucrose; however, efflux transporters have remained elusive for a long time. Cellular efflux of sugars plays essential roles in many processes, such as sugar efflux as the first step in phloem loading, sugar efflux for nectar secretion, and sugar efflux for supplying symbionts such as mycorrhiza, and maternal efflux for filial tissue development. Furthermore, sugar efflux systems can be hijacked by pathogens for access to nutrition from hosts. Mutations that block recruitment of the efflux mechanism by the pathogen thus cause pathogen resistance. Until recently, little was known regarding the underlying mechanism of sugar efflux. The identification of sugar efflux carriers, SWEETs (Sugars Will Eventually be Exported Transporters), has shed light on cellular sugar efflux. SWEETs appear to function as uniporters, facilitating diffusion of sugars across cell membranes. Indeed, SWEETs probably mediate sucrose efflux from putative phloem parenchyma into the phloem apoplasm, a key step proceeding phloem loading. Engineering of SWEET mutants using transcriptional activator-like effector nuclease (TALEN)-based genomic editing allowed the engineering of pathogen resistance. The widespread expression of the SWEET family promises to provide insights into many other cellular efflux mechanisms.
Collapse
|
27
|
Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. FRONTIERS IN PLANT SCIENCE 2013; 4:272. [PMID: 23898339 PMCID: PMC3721551 DOI: 10.3389/fpls.2013.00272] [Citation(s) in RCA: 561] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.
Collapse
Affiliation(s)
- Remi Lemoine
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Sylvain La Camera
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Rossitza Atanassova
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Fabienne Dédaldéchamp
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Thierry Allario
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Nathalie Pourtau
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jean-Louis Bonnemain
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Maryse Laloi
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Pierre Coutos-Thévenot
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Laurence Maurousset
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mireille Faucher
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Christine Girousse
- Diversité et Ecophysiologie des Céréales, Unités Mixtes de RechercheClermont Ferrand, France
| | - Pauline Lemonnier
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jonathan Parrilla
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mickael Durand
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| |
Collapse
|
28
|
Patrick JW. Does Don Fisher's high-pressure manifold model account for phloem transport and resource partitioning? FRONTIERS IN PLANT SCIENCE 2013; 4:184. [PMID: 23802003 PMCID: PMC3685801 DOI: 10.3389/fpls.2013.00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/21/2013] [Indexed: 05/03/2023]
Abstract
The pressure flow model of phloem transport envisaged by Münch (1930) has gained wide acceptance. Recently, however, the model has been questioned on structural and physiological grounds. For instance, sub-structures of sieve elements may reduce their hydraulic conductances to levels that impede flow rates of phloem sap and observed magnitudes of pressure gradients to drive flow along sieve tubes could be inadequate in tall trees. A variant of the Münch pressure flow model, the high-pressure manifold model of phloem transport introduced by Donald Fisher may serve to reconcile at least some of these questions. To this end, key predicted features of the high-pressure manifold model of phloem transport are evaluated against current knowledge of the physiology of phloem transport. These features include: (1) An absence of significant gradients in axial hydrostatic pressure in sieve elements from collection to release phloem accompanied by transport properties of sieve elements that underpin this outcome; (2) Symplasmic pathways of phloem unloading into sink organs impose a major constraint over bulk flow rates of resources translocated through the source-path-sink system; (3) Hydraulic conductances of plasmodesmata, linking sieve elements with surrounding phloem parenchyma cells, are sufficient to support and also regulate bulk flow rates exiting from sieve elements of release phloem. The review identifies strong circumstantial evidence that resource transport through the source-path-sink system is consistent with the high-pressure manifold model of phloem transport. The analysis then moves to exploring mechanisms that may link demand for resources, by cells of meristematic and expansion/storage sinks, with plasmodesmal conductances of release phloem. The review concludes with a brief discussion of how these mechanisms may offer novel opportunities to enhance crop biomass yields.
Collapse
Affiliation(s)
- John W. Patrick
- School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
29
|
Golan G, Betzer R, Wolf S. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:329. [PMID: 23986770 PMCID: PMC3750518 DOI: 10.3389/fpls.2013.00329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/04/2013] [Indexed: 05/05/2023]
Abstract
Phloem sap contains a large repertoire of macromolecules in addition to sugars, amino acids, growth substances and ions. The transcription profile of melon phloem sap contains over 1000 mRNA molecules, most of them associated with signal transduction, transcriptional control, and stress and defense responses. Heterografting experiments have established the long-distance trafficking of numerous mRNA molecules. Interestingly, several trafficking transcripts are involved in the auxin response, including two molecules coding for auxin/indole acetic acid (Aux/IAA). To further explore the biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette containing the coding sequence of this gene under a phloem-specific promoter was introduced into tomato plants. The number of lateral roots was significantly higher in transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A similar effect on root development was obtained after transient expression of CmF-308 in source leaves of N. benthamiana plants. An auxin-response assay showed that CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to the altered root development, phloem-specific expression of CmF-308 resulted in shorter plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling reduced apical dominance. In contrast to the root response, cotyledons of the transgenic plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes in leaves and an increase in the relative expression of a cytokinin-response regulator, TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.
Collapse
Affiliation(s)
| | | | - Shmuel Wolf
- *Correspondence: Shmuel Wolf, The Robert H. Smith Faculty of Agriculture, Food and Environment, Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 761001, Israel e-mail:
| |
Collapse
|
30
|
Slewinski TL, Zhang C, Turgeon R. Structural and functional heterogeneity in phloem loading and transport. FRONTIERS IN PLANT SCIENCE 2013; 4:244. [PMID: 23847646 PMCID: PMC3701861 DOI: 10.3389/fpls.2013.00244] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/18/2013] [Indexed: 05/05/2023]
Abstract
The phloem is often regarded as a relatively straightforward transport system composed of loading (collection), long-distance (transport), and unloading (release) zones. While this simple view is necessary and useful in many contexts, it belies the reality, which is that the phloem is inherently complex. At least three types of sieve element-companion cell complexes are found in minor veins of leaves. Individual species may have more than one type, indicating that they employ multiple loading strategies, even in the same vein. Gene expression data in particular point to heterogeneity in sieve element-companion cell complexes of minor veins, perhaps in all flowering plants. Phloem heterogeneity in the transport phloem is also evident in many species based on anatomical, biochemical and gene expression data. In this regard, members of the Cucurbitaceae are especially complex and interesting. We conclude that a hidden world of specialized phloem function awaits discovery.
Collapse
Affiliation(s)
- Thomas L. Slewinski
- *Correspondence: Thomas L. Slewinski and Robert Turgeon, Department of Plant Biology, 262 Plant Science, Cornell University, Ithaca, NY, USA e-mail: ;
| | | | - Robert Turgeon
- *Correspondence: Thomas L. Slewinski and Robert Turgeon, Department of Plant Biology, 262 Plant Science, Cornell University, Ithaca, NY, USA e-mail: ;
| |
Collapse
|
31
|
Batashev DR, Pakhomova MV, Razumovskaya AV, Voitsekhovskaja OV, Gamalei YV. Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes. FRONTIERS IN PLANT SCIENCE 2013; 4:312. [PMID: 23970890 PMCID: PMC3748319 DOI: 10.3389/fpls.2013.00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/24/2013] [Indexed: 05/05/2023]
Abstract
The discovery of abundant plasmodesmata at the bundle sheath/phloem interface in Oleaceae (Gamalei, 1974) and Cucurbitaceae (Turgeon et al., 1975) raised the questions as to whether these plasmodesmata are functional in phloem loading and how widespread symplasmic loading would be. Analysis of over 800 dicot species allowed the definition of "open" and "closed" types of the minor vein phloem depending on the abundance of plasmodesmata between companion cells and bundle sheath (Gamalei, 1989, 1990). These types corresponded to potential symplasmic and apoplasmic phloem loaders, respectively; however, this definition covered a spectrum of diverse structures of phloem endings. Here, a review of detailed cytological analyses of minor veins in 320 species from the subclass Asteridae is presented, including data on companion cell types and their combinations which have not been reported previously. The percentage of Asteridae species with "open" minor vein cytology which also contain sieve-element-companion cell complexes with "closed" cytology, i.e., that show specialization for both symplasmic and apoplasmic phloem loading, was determined. Along with recent data confirming the dissimilar functional specialization of structurally different parts of minor vein phloem in the stachyose-translocating species Alonsoa meridionalis (Voitsekhovskaja et al., 2009), these findings suggest that apoplasmic loading is indispensable in a large group of species previously classified as putative symplasmic loaders. Altogether, this study provides formal classifications of companion cells and of minor veins, respectively, in 24 families of the Asteridae based on their structural features, opening the way to a close investigation of the relationship between structure and function in phloem loading.
Collapse
Affiliation(s)
| | | | | | - Olga V. Voitsekhovskaja
- *Correspondence: Olga V. Voitsekhovskaja, Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova, 2, 197376 St. Petersburg, Russia e-mail:
| | | |
Collapse
|
32
|
Gil L, Ben-Ari J, Turgeon R, Wolf S. Effect of CMV infection and high temperatures on the enzymes involved in raffinose family oligosaccharide biosynthesis in melon plants. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:965-970. [PMID: 22575056 DOI: 10.1016/j.jplph.2012.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/30/2012] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Ultrastructural and molecular studies have provided experimental evidence for the classification of cucurbits as symplastic loaders, mainly translocating the raffinose family oligosaccharides (RFOs) raffinose and stachyose. Earlier studies established that cucumber mosaic virus (CMV) infection causes a significant increase in the sucrose-to-RFO ratio in the phloem sap of melon plants. The alteration in phloem sap sugar composition was associated with upregulation of CmSUT1 transcript within the vascular bundles. The current research aimed to explore the effect of CMV infection on the enzymes involved in symplastic phloem loading and RFO biosynthesis. Viral infection did not affect the activity of either raffinose or stachyose synthases in source leaves, but caused upregulation of the respective transcripts. Interestingly, activity of galactinol synthase was higher in CMV-infected leaves, associated with upregulation of CmGAS2. A significant increase in CmGAS2 expression in source leaves of melon plants exposed to high temperatures indicated that this response is common for both biotic and abiotic stresses. However, the effect of CMV or heat stress on phloem sap sugar composition is not due to alteration in RFO biosynthesis.
Collapse
Affiliation(s)
- Lidor Gil
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
33
|
Wippel K, Sauer N. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:669-79. [PMID: 22021573 PMCID: PMC3254675 DOI: 10.1093/jxb/err255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 05/18/2023]
Abstract
Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H(+) symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully.
Collapse
Affiliation(s)
- Kathrin Wippel
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. MOLECULAR PLANT 2011; 4:377-94. [PMID: 21502663 DOI: 10.1093/mp/ssr014] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose is the principal product of photosynthesis used for the distribution of assimilated carbon in plants. Transport mechanisms and efficiency influence photosynthetic productivity by relieving product inhibition and contribute to plant vigor by controlling source/sink relationships and biomass partitioning. Sucrose is synthesized in the cytoplasm and may move cell to cell through plasmodesmata or may cross membranes to be compartmentalized or exported to the apoplasm for uptake into adjacent cells. As a relatively large polar compound, sucrose requires proteins to facilitate efficient membrane transport. Transport across the tonoplast by facilitated diffusion, antiport with protons, and symport with protons have been proposed; for transport across plasma membranes, symport with protons and a mechanism resembling facilitated diffusion are evident. Despite decades of research, only symport with protons is well established at the molecular level. This review aims to integrate recent and older studies on sucrose flux across membranes with principles of whole-plant carbon partitioning.
Collapse
Affiliation(s)
- Brian G Ayre
- University of North Texas, Department of Biological Sciences, Denton, Texas, USA.
| |
Collapse
|