1
|
Song Y, Yang L, Han Y, Li W, Wei T, Gao Y, Hu Q, Li H, Sun Y. Transcriptomics and Proteomics Analysis of the Liver of RAD52 Knockout Mice. Int J Mol Sci 2025; 26:339. [PMID: 39796194 PMCID: PMC11720713 DOI: 10.3390/ijms26010339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of RAD52 knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of RAD52 knockout (RAD52KO) mice. Proteomics analysis of RAD52KO mice shows that damage recognition proteins Cul4b and Rad23a in the process of nucleotide excision repair pathway are overexpressed. Furthermore, gene ontology and KEGG enrichment analysis (accessed on 20 November 2024) from integrated omics shows that differentially expressed genes are significantly enriched in pathways related to mitochondrial oxidative phosphorylation and nucleotide metabolism in the liver of RAD52KO mice. In addition, mRNA and protein levels of Bhmt1b are elevated in the liver of RAD52KO mice. Taken together, this study provides valuable insights into the function and mechanism of RAD52.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.S.); (L.Y.); (Y.H.); (W.L.); (T.W.); (Y.G.); (Q.H.)
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.S.); (L.Y.); (Y.H.); (W.L.); (T.W.); (Y.G.); (Q.H.)
| |
Collapse
|
2
|
Lin W, Huang D, Li M, Ren Y, Zheng X, Wu B, Miao Y. WHIRLY proteins, multi-layer regulators linking the nucleus and organelles in developmental and stress-induced senescence of plants. ANNALS OF BOTANY 2024; 134:521-536. [PMID: 38845347 PMCID: PMC11523626 DOI: 10.1093/aob/mcae092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 11/01/2024]
Abstract
Plant senescence is an integrated programme of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, and recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species. WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, reactive oxygen species and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.
Collapse
Affiliation(s)
- Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen 361023, China
| | - Mengsi Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yujun Ren
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
3
|
Roulet ME, Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Horizontally transferred mitochondrial DNA tracts become circular by microhomology-mediated repair pathways. THE NEW PHYTOLOGIST 2024; 243:2442-2456. [PMID: 39044460 DOI: 10.1111/nph.19984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The holoparasitic plant Lophophytum mirabile exhibits remarkable levels of mitochondrial horizontal gene transfer (HGT). Gathering comparative data from other individuals and host plants can provide insights into the HGT process. We sequenced the mitochondrial genome (mtDNA) from individuals of two species of Lophophytum and from mimosoid hosts. We applied a stringent phylogenomic approach to elucidate the origin of the whole mtDNAs, estimate the timing of the transfers, and understand the molecular mechanisms involved. Ancestral and recent HGT events replaced and enlarged the multichromosomal mtDNA of Lophophytum spp., with the foreign DNA ascending to 74%. A total of 14 foreign mitochondrial chromosomes originated from continuous regions in the host mtDNA flanked by short direct repeats. These foreign tracts are circularized by microhomology-mediated repair pathways and replicate independently until they are lost or they eventually recombine with other chromosomes. The foreign noncoding chromosomes are variably present in the population and likely evolve by genetic drift. We present the 'circle-mediated HGT' model in which foreign mitochondrial DNA tracts become circular and are maintained as plasmid-like molecules. This model challenges the conventional belief that foreign DNA must be integrated into the recipient genome for successful HGT.
Collapse
Affiliation(s)
- M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| |
Collapse
|
4
|
Teng X, Wang Y, Liu L, Yang H, Wu M, Chen X, Ren Y, Wang Y, Duan E, Dong H, Jiang L, Zhang Y, Zhang W, Chen R, Liu S, Liu X, Tian Y, Chen L, Wang Y, Wan J. Rice floury endosperm26 encoding a mitochondrial single-stranded DNA-binding protein is essential for RNA-splicing of mitochondrial genes and endosperm development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112151. [PMID: 38848768 DOI: 10.1016/j.plantsci.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.
Collapse
Affiliation(s)
- Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hang Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Liangming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
5
|
Negroni YL, Doro I, Tamborrino A, Luzzi I, Fortunato S, Hensel G, Khosravi S, Maretto L, Stevanato P, Lo Schiavo F, de Pinto MC, Krupinska K, Zottini M. The Arabidopsis Mitochondrial Nucleoid-Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress. PLANT & CELL PHYSIOLOGY 2024; 65:576-589. [PMID: 38591870 PMCID: PMC11094760 DOI: 10.1093/pcp/pcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.
Collapse
Affiliation(s)
- Yuri L Negroni
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Doro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Alberto Tamborrino
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Luzzi
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Götz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Solmaz Khosravi
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Karin Krupinska
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
6
|
Lee Y, Cho CH, Noh C, Yang JH, Park SI, Lee YM, West JA, Bhattacharya D, Jo K, Yoon HS. Origin of minicircular mitochondrial genomes in red algae. Nat Commun 2023; 14:3363. [PMID: 37291154 PMCID: PMC10250338 DOI: 10.1038/s41467-023-39084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Eukaryotic organelle genomes are generally of conserved size and gene content within phylogenetic groups. However, significant variation in genome structure may occur. Here, we report that the Stylonematophyceae red algae contain multipartite circular mitochondrial genomes (i.e., minicircles) which encode one or two genes bounded by a specific cassette and a conserved constant region. These minicircles are visualized using fluorescence microscope and scanning electron microscope, proving the circularity. Mitochondrial gene sets are reduced in these highly divergent mitogenomes. Newly generated chromosome-level nuclear genome assembly of Rhodosorus marinus reveals that most mitochondrial ribosomal subunit genes are transferred to the nuclear genome. Hetero-concatemers that resulted from recombination between minicircles and unique gene inventory that is responsible for mitochondrial genome stability may explain how the transition from typical mitochondrial genome to minicircles occurs. Our results offer inspiration on minicircular organelle genome formation and highlight an extreme case of mitochondrial gene inventory reduction.
Collapse
Affiliation(s)
- Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chanyoung Noh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yu Min Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
7
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
8
|
Qian J, Zheng M, Wang L, Song Y, Yan J, Hsu YF. Arabidopsis mitochondrial single-stranded DNA-binding proteins SSB1 and SSB2 are essential regulators of mtDNA replication and homologous recombination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1952-1965. [PMID: 35925893 DOI: 10.1111/jipb.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Faithful DNA replication is one of the most essential processes in almost all living organisms. However, the proteins responsible for organellar DNA replication are still largely unknown in plants. Here, we show that the two mitochondrion-targeted single-stranded DNA-binding (SSB) proteins SSB1 and SSB2 directly interact with each other and act as key factors for mitochondrial DNA (mtDNA) maintenance, as their single or double loss-of-function mutants exhibit severe germination delay and growth retardation. The mtDNA levels in mutants lacking SSB1 and/or SSB2 function were two- to four-fold higher than in the wild-type (WT), revealing a negative role for SSB1/2 in regulating mtDNA replication. Genetic analysis indicated that SSB1 functions upstream of mitochondrial DNA POLYMERASE IA (POLIA) or POLIB in mtDNA replication, as mutation in either gene restored the high mtDNA copy number of the ssb1-1 mutant back to WT levels. In addition, SSB1 and SSB2 also participate in mitochondrial genome maintenance by influencing mtDNA homologous recombination (HR). Additional genetic analysis suggested that SSB1 functions upstream of ORGANELLAR SINGLE-STRANDED DNA-BINDING PROTEIN1 (OSB1) during mtDNA replication, while SSB1 may act downstream of OSB1 and MUTS HOMOLOG1 for mtDNA HR. Overall, our results yield new insights into the roles of the plant mitochondrion-targeted SSB proteins and OSB1 in maintaining mtDNA stability via affecting DNA replication and DNA HR.
Collapse
Affiliation(s)
- Jie Qian
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Wang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
9
|
Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Cytonuclear coevolution in a holoparasitic plant with highly disparate organellar genomes. PLANT MOLECULAR BIOLOGY 2022; 109:673-688. [PMID: 35359176 DOI: 10.1007/s11103-022-01266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Contrasting substitution rates in the organellar genomes of Lophophytum agree with the DNA repair, replication, and recombination gene content. Plastid and nuclear genes whose products form multisubunit complexes co-evolve. The organellar genomes of the holoparasitic plant Lophophytum (Balanophoraceae) show disparate evolution. In the plastid, the genome has been severely reduced and presents a > 85% AT content, while in the mitochondria most protein-coding genes have been replaced by homologs acquired by horizontal gene transfer (HGT) from their hosts (Fabaceae). Both genomes carry genes whose products form multisubunit complexes with those of nuclear genes, creating a possible hotspot of cytonuclear coevolution. In this study, we assessed the evolutionary rates of plastid, mitochondrial and nuclear genes, and their impact on cytonuclear evolution of genes involved in multisubunit complexes related to lipid biosynthesis and proteolysis in the plastid and those in charge of the oxidative phosphorylation in the mitochondria. Genes from the plastid and the mitochondria (both native and foreign) of Lophophytum showed extremely high and ordinary substitution rates, respectively. These results agree with the biased loss of plastid-targeted proteins involved in angiosperm organellar repair, replication, and recombination machinery. Consistent with the high rate of evolution of plastid genes, nuclear-encoded subunits of plastid complexes showed disproportionate increases in non-synonymous substitution rates, while those of the mitochondrial complexes did not show different rates than the control (i.e. non-organellar nuclear genes). Moreover, the increases in the nuclear-encoded subunits of plastid complexes were positively correlated with the level of physical interaction they possess with the plastid-encoded ones. Overall, these results suggest that a structurally-mediated compensatory factor may be driving plastid-nuclear coevolution in Lophophytum, and that mito-nuclear coevolution was not altered by HGT.
Collapse
Affiliation(s)
- Luis F Ceriotti
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina.
| |
Collapse
|
10
|
Krupinska K, Desel C, Frank S, Hensel G. WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:880423. [PMID: 35528945 PMCID: PMC9070903 DOI: 10.3389/fpls.2022.880423] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
11
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
12
|
Cheng L, Wang W, Yao Y, Sun Q. Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biol 2021; 19:e3001357. [PMID: 34343166 PMCID: PMC8330923 DOI: 10.1371/journal.pbio.3001357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis. This study clarifies the function of mitochondrial RNase H1 in genome stability and early embryogenesis in plants, and shows that mitochondrial R-loops are involved in homologous recombination surveillance of mtDNA. Facultative re-targeting of the chloroplast RNase H1 protein to mitochondria, in response to cellular conditions, can help guarantee mitochondrial RNase H1 activity.
Collapse
Affiliation(s)
- Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
13
|
Golin S, Negroni YL, Bennewitz B, Klösgen RB, Mulisch M, La Rocca N, Cantele F, Vigani G, Lo Schiavo F, Krupinska K, Zottini M. WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana. PLANT DIRECT 2020; 4:e00229. [PMID: 32490348 PMCID: PMC7261051 DOI: 10.1002/pld3.229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 06/02/2023]
Abstract
WHIRLY2 is a single-stranded DNA binding protein associated with mitochondrial nucleoids. In the why 2-1 mutant of Arabidopsis thaliana, a major proportion of leaf mitochondria has an aberrant structure characterized by disorganized nucleoids, reduced abundance of cristae, and a low matrix density despite the fact that the macroscopic phenotype during vegetative growth is not different from wild type. These features coincide with an impairment of the functionality and dynamics of mitochondria that have been characterized in detail in wild-type and why 2-1 mutant cell cultures. In contrast to the development of the vegetative parts, seed germination is compromised in the why 2-1 mutant. In line with that, the expression level of why 2 in seeds of wild-type plants is higher than that of why 3, whereas in adult plant no difference is found. Intriguingly, in early stages of shoots development of the why 2-1 mutant, although not in seeds, the expression level of why 3 is enhanced. These results suggest that WHIRLY3 is a potential candidate to compensate for the lack of WHIRLY2 in the why 2-1 mutant. Such compensation is possible only if the two proteins are localized in the same organelle. Indeed, in organello protein transport experiments using intact mitochondria and chloroplasts revealed that WHIRLY3 can be dually targeted into both, chloroplasts and mitochondria. Together, these data indicate that the alterations of mitochondria nucleoids are tightly linked to alterations of mitochondria morphology and functionality. This is even more evident in those phases of plant life when mitochondrial activity is particularly high, such as seed germination. Moreover, our results indicate that the differential expression of why 2 and why 3 predetermines the functional replacement of WHIRLY2 by WHIRLY3, which is restricted though to the vegetative parts of the plant.
Collapse
Affiliation(s)
- Serena Golin
- Department of Biology University of Padova Padova Italy
| | | | - Bationa Bennewitz
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Ralf B Klösgen
- Institute of Biology-Plant Physiology Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Maria Mulisch
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | | | | - Gianpiero Vigani
- Department of Life Science and Systems Biology University of Turin Turin Italy
| | | | - Karin Krupinska
- Institute of Botany Christian-Albrechts University of Kiel Kiel Germany
| | | |
Collapse
|
14
|
Chevigny N, Schatz-Daas D, Lotfi F, Gualberto JM. DNA Repair and the Stability of the Plant Mitochondrial Genome. Int J Mol Sci 2020; 21:E328. [PMID: 31947741 PMCID: PMC6981420 DOI: 10.3390/ijms21010328] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The mitochondrion stands at the center of cell energy metabolism. It contains its own genome, the mtDNA, that is a relic of its prokaryotic symbiotic ancestor. In plants, the mitochondrial genetic information influences important agronomic traits including fertility, plant vigor, chloroplast function, and cross-compatibility. Plant mtDNA has remarkable characteristics: It is much larger than the mtDNA of other eukaryotes and evolves very rapidly in structure. This is because of recombination activities that generate alternative mtDNA configurations, an important reservoir of genetic diversity that promotes rapid mtDNA evolution. On the other hand, the high incidence of ectopic recombination leads to mtDNA instability and the expression of gene chimeras, with potential deleterious effects. In contrast to the structural plasticity of the genome, in most plant species the mtDNA coding sequences evolve very slowly, even if the organization of the genome is highly variable. Repair mechanisms are probably responsible for such low mutation rates, in particular repair by homologous recombination. Herein we review some of the characteristics of plant organellar genomes and of the repair pathways found in plant mitochondria. We further discuss how homologous recombination is involved in the evolution of the plant mtDNA.
Collapse
Affiliation(s)
| | | | | | - José Manuel Gualberto
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67081 Strasbourg, France; (N.C.); (D.S.-D.); (F.L.)
| |
Collapse
|
15
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
16
|
García-Medel PL, Baruch-Torres N, Peralta-Castro A, Trasviña-Arenas CH, Torres-Larios A, Brieba LG. Plant organellar DNA polymerases repair double-stranded breaks by microhomology-mediated end-joining. Nucleic Acids Res 2019; 47:3028-3044. [PMID: 30698803 PMCID: PMC6451138 DOI: 10.1093/nar/gkz039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Double-stranded breaks (DSBs) in plant organelles are repaired via genomic rearrangements characterized by microhomologous repeats. These microhomologous signatures predict the existence of an unidentified enzymatic machinery capable of repairing of DSBs via microhomology-mediated end-joining (MMEJ) in plant organelles. Here, we show that organellar DNA polymerases from Arabidopsis thaliana (AtPolIA and AtPolIB) perform MMEJ using microhomologous sequences as short as six nucleotides. AtPolIs execute MMEJ by virtue of two specialized amino acid insertions located in their thumb subdomains. Single-stranded binding proteins (SSBs) unique to plants, AtWhirly2 and organellar single-stranded binding proteins (AtOSBs), hinder MMEJ, whereas canonical mitochondrial SSBs (AtmtSSB1 and AtmtSSB2) do not interfere with MMEJ. Our data predict that organellar DNA rearrangements by MMEJ are a consequence of a competition for the 3'-OH of a DSBs. If AtWhirlies or AtOSBs gain access to the single-stranded DNA (ssDNA) region of a DSB, the reaction will shift towards high-fidelity routes like homologous recombination. Conversely MMEJ would be favored if AtPolIs or AtmtSSBs interact with the DSB. AtPolIs are not phylogenetically related to metazoan mitochondrial DNA polymerases, and the ability of AtPolIs to execute MMEJ may explain the abundance of DNA rearrangements in plant organelles in comparison to animal mitochondria.
Collapse
Affiliation(s)
- Paola L García-Medel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado postal 70-243, Mexico City 04510, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato, CP 36821, México
| |
Collapse
|
17
|
Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, Christensen AC. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet 2019; 15:e1008373. [PMID: 31469821 PMCID: PMC6742443 DOI: 10.1371/journal.pgen.1008373] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/12/2019] [Accepted: 08/16/2019] [Indexed: 01/27/2023] Open
Abstract
Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.
Collapse
Affiliation(s)
- Alexander Kozik
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Beth A. Rowan
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Dean Lavelle
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Lidija Berke
- Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
| | - M. Eric Schranz
- Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
| | - Richard W. Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Alan C. Christensen
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
18
|
Samach A, Gurevich V, Avivi-Ragolsky N, Levy AA. The effects of AtRad52 over-expression on homologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:30-40. [PMID: 29667244 DOI: 10.1111/tpj.13927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
AtRad52 homologs are involved in DNA recombination and repair, but their precise functions in different homologous recombination (HR) pathways or in gene-targeting have not been analyzed. In order to facilitate our analyses, we generated an AtRad52-1A variant that had a stronger nuclear localization than the native gene thanks to the removal of the transit peptide for mitochondrial localization and to the addition of a nuclear localization signal. Over-expression of this variant increased HR in the nucleus, compared with the native AtRad52-1A: it increased intra-chromosomal recombination and synthesis-dependent strand-annealing HR repair rates; but conversely, it repressed the single-strand annealing pathway. The effect of AtRad52-1A over-expression on gene-targeting was tested with and without the expression of small RNAs generated from an RNAi construct containing homology to the target and donor sequences. True gene-targeting events at the Arabidopsis Cruciferin locus were obtained only when combining AtRad52-1A over-expression and target/donor-specific RNAi. This suggests that sequence-specific small RNAs might be involved in AtRad52-1A-mediated HR.
Collapse
Affiliation(s)
- Aviva Samach
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vyacheslav Gurevich
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Avivi-Ragolsky
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Cai M, Li S, Sun F, Sun Q, Zhao H, Ren X, Zhao Y, Tan BC, Zhang Z, Qiu F. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:132-144. [PMID: 28346745 DOI: 10.1111/tpj.13551] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
In higher plants, many mitochondrial genes contain group II-type introns that are removed from RNAs by splicing to produce mature transcripts that are then translated into functional proteins. However, the factors involved in the splicing of mitochondrial introns and their biological functions are not well understood in maize. Here, we isolated an empty pericarp 10 (emp10) mutant and identified the underlying gene by map-based cloning. Emp10 encodes a P-type mitochondria-targeted pentatricopeptide repeat (PPR) protein with 10 PPR motifs. Loss of Emp10 function results in splicing defect of the first intron of nad2, a gene encoding subunit 2 of NADH dehydrogenase (also called complex I). The emp10 mutant has undetectable activity of complex I and has arrested development of embryo and endosperm, and thus defective seeds with empty pericarp. Additionally, the basal endosperm transfer layer cells were severely affected, indicating the deficiency of cell wall ingrowths in the emp10 kernels. Moreover, the alternative respiratory pathway involving alternative oxidase was significantly induced in the emp10 mutant. These results suggest that EMP10 is specifically required for the cis-splicing of mitochondrial nad2 intron 1, embryogenesis and endosperm development in maize.
Collapse
Affiliation(s)
- Manjun Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuzhen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Sun
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanxin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao-Cai Tan
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Gualberto JM, Newton KJ. Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:225-252. [PMID: 28226235 DOI: 10.1146/annurev-arplant-043015-112232] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes. Nuclear genes modulate these processes, and over the past decade, several of these genes have been identified. They are involved mainly in pathways of DNA repair by homologous recombination and mismatch repair, which appear to be essential for the faithful replication of the mitogenome. Mutations leading to the loss of any of these activities release error-prone repair pathways, resulting in increased ectopic recombination, genome instability, and heteroplasmy. We review the present state of knowledge of the genes and pathways underlying mitochondrial genome stability.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France;
| | - Kathleen J Newton
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
21
|
Rendeková J, Ward TA, Šimoničová L, Thomas PH, Nosek J, Tomáška Ľ, McHugh PJ, Chovanec M. Mgm101: A double-duty Rad52-like protein. Cell Cycle 2016; 15:3169-3176. [PMID: 27636878 PMCID: PMC5176325 DOI: 10.1080/15384101.2016.1231288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mgm101 has well-characterized activity for the repair and replication of the mitochondrial genome. Recent work has demonstrated a further role for Mgm101 in nuclear DNA metabolism, contributing to an S-phase specific DNA interstrand cross-link repair pathway that acts redundantly with a pathway controlled by Pso2 exonuclease. Due to involvement of FANCM, FANCJ and FANCP homologues (Mph1, Chl1 and Slx4), this pathway has been described as a Fanconi anemia-like pathway. In this pathway, Mgm101 physically interacts with the DNA helicase Mph1 and the MutSα (Msh2/Msh6) heterodimer, but its precise role is yet to be elucidated. Data presented here suggests that Mgm101 functionally overlaps with Rad52, supporting previous suggestions that, based on protein structure and biochemical properties, Mgm101 and Rad52 belong to a family of proteins with similar function. In addition, our data shows that this overlap extends to the function of both proteins at telomeres, where Mgm101 is required for telomere elongation during chromosome replication in rad52 defective cells. We hypothesize that Mgm101 could, in Rad52-like manner, preferentially bind single-stranded DNAs (such as at stalled replication forks, broken chromosomes and natural chromosome ends), stabilize them and mediate single-strand annealing-like homologous recombination event to prevent them from converting into toxic structures.
Collapse
Affiliation(s)
- Jana Rendeková
- a Department of Genetics , Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science , Bratislava , Slovak Republic
| | - Thomas A Ward
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Lucia Šimoničová
- c Department of Genetics , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Peter H Thomas
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Jozef Nosek
- d Department of Biochemistry , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Ľubomír Tomáška
- c Department of Genetics , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Peter J McHugh
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Miroslav Chovanec
- a Department of Genetics , Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science , Bratislava , Slovak Republic
| |
Collapse
|
22
|
Nair A, Agarwal R, Chittela RK. Biochemical characterization of plant Rad52 protein from rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:108-117. [PMID: 27156135 DOI: 10.1016/j.plaphy.2016.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
DNA damage in living cells is repaired by two main pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Of all the genes promoting HR, Rad52 (Radiation sensitive 52) is an important gene which is found to be highly conserved across different species. It was believed that RAD52 is absent in plant systems until lately. However, recent genetic studies have shown the presence of RAD52 homologues in plants. Rad52 homologues in plant systems have not yet been characterized biochemically. In the current study, we bring out the biochemical properties of rice Rad52-2a protein. OsRad52-2a was over-expressed in Escherichia coli BL21 (DE3) cells and the protein was purified. The identity of purified OsRad52-2a protein was confirmed via peptide mass fingerprinting. Gel filtration and native PAGE analysis indicated that the OsRad52-2a protein in its native state probably formed an undecameric structure. Purified OsRad52-2a protein showed binding to single stranded DNA, double stranded DNA. Protein also mediated the renaturation of complementary single strands into duplex DNA in both agarose gel and FRET based assays. Put together, OsRad52-2a forms oligomeric structures and binds to ssDNA/dsDNA for mediating an important function like renaturation during homologous recombination. This study represents the first report on biochemical properties of OsRad52-2a protein from important crop like rice. This information will help in dissecting the recombination and repair machinery in plant systems.
Collapse
Affiliation(s)
- Anuradha Nair
- Bio-molecular Damage and Repair Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Rachna Agarwal
- Bio-molecular Damage and Repair Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Rajani Kant Chittela
- Bio-molecular Damage and Repair Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| |
Collapse
|
23
|
Taylor ZN, Rice DW, Palmer JD. The Complete Moss Mitochondrial Genome in the Angiosperm Amborella Is a Chimera Derived from Two Moss Whole-Genome Transfers. PLoS One 2015; 10:e0137532. [PMID: 26618775 PMCID: PMC4664403 DOI: 10.1371/journal.pone.0137532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Sequencing of the 4-Mb mitochondrial genome of the angiosperm Amborella trichopoda has shown that it contains unprecedented amounts of foreign mitochondrial DNA, including four blocks of sequences that together correspond almost perfectly to one entire moss mitochondrial genome. This implies whole-genome transfer from a single moss donor but conflicts with phylogenetic results from an earlier, PCR-based study that suggested three different moss donors to Amborella. To resolve this conflict, we conducted an expanded set of phylogenetic analyses with respect to both moss lineages and mitochondrial loci. The moss DNA in Amborella was consistently placed in either of two positions, depending on the locus analyzed, as sister to the Ptychomniales or within the Hookeriales. This agrees with two of the three previously suggested donors, whereas the third is no longer supported. These results, combined with synteny analyses and other considerations, lead us to favor a model involving two successive moss-to-Amborella whole-genome transfers, followed by recombination that produced a single intact and chimeric moss mitochondrial genome integrated in the Amborella mitochondrial genome. Eight subsequent recombination events account for the state of fragmentation, rearrangement, duplication, and deletion of this chimeric moss mitochondrial genome as it currently exists in Amborella. Five of these events are associated with short-to-intermediate sized repeats. Two of the five probably occurred by reciprocal homologous recombination, whereas the other three probably occurred in a non-reciprocal manner via microhomology-mediated break-induced replication (MMBIR). These findings reinforce and extend recent evidence for an important role of MMBIR in plant mitochondrial DNA evolution.
Collapse
Affiliation(s)
- Z. Nathan Taylor
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Danny W. Rice
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Jeffrey D. Palmer
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tang M, Chen Z, Grover CE, Wang Y, Li S, Liu G, Ma Z, Wendel JF, Hua J. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics 2015; 16:770. [PMID: 26459858 PMCID: PMC4603758 DOI: 10.1186/s12864-015-1988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Methods Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. Results The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. Conclusion These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingyong Tang
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Zhiwen Chen
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| | - Shuangshuang Li
- Present address: Saskatchewan Cancer Agency, Division of Oncology, Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Guozheng Liu
- Present address: Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt, Seeland, Germany.
| | - Zhiying Ma
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Jinping Hua
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Gualberto JM, Le Ret M, Beator B, Kühn K. The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis. Nucleic Acids Res 2015; 43:6500-10. [PMID: 26048959 PMCID: PMC4513849 DOI: 10.1093/nar/gkv540] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022] Open
Abstract
Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes-CNRS-UPR2357, Université de Strasbourg, Strasbourg, France
| | - Monique Le Ret
- Institut de Biologie Moléculaire des Plantes-CNRS-UPR2357, Université de Strasbourg, Strasbourg, France
| | - Barbara Beator
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Kristina Kühn
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
26
|
Gualberto JM, Kühn K. DNA-binding proteins in plant mitochondria: Implications for transcription. Mitochondrion 2014; 19 Pt B:323-8. [DOI: 10.1016/j.mito.2014.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/24/2022]
|
27
|
Abstract
Plant mitochondrial genomes have very low mutation rates. In contrast, they also rearrange and expand frequently. This is easily understood if DNA repair in genes is accomplished by accurate mechanisms, whereas less accurate mechanisms including nonhomologous end joining or break-induced replication are used in nongenes. An important question is how different mechanisms of repair predominate in coding and noncoding DNA, although one possible mechanism is transcription-coupled repair (TCR). This work tests the predictions of TCR and finds no support for it. Examination of the mutation spectra and rates in genes and junk reveals what DNA repair mechanisms are available to plant mitochondria, and what selective forces act on the repair products. A model is proposed that mismatches and other DNA damages are repaired by converting them into double-strand breaks (DSBs). These can then be repaired by any of the DSB repair mechanisms, both accurate and inaccurate. Natural selection will eliminate coding regions repaired by inaccurate mechanisms, accounting for the low mutation rates in genes, whereas mutations, rearrangements, and expansions generated by inaccurate repair in noncoding regions will persist. Support for this model includes the structure of the mitochondrial mutS homolog in plants, which is fused to a double-strand endonuclease. The model proposes that plant mitochondria do not distinguish a damaged or mismatched DNA strand from the undamaged strand, they simply cut both strands and perform homology-based DSB repair. This plant-specific strategy for protecting future generations from mitochondrial DNA damage has the side effect of genome expansions and rearrangements.
Collapse
|
28
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
29
|
Christensen AC. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol Evol 2013; 5:1079-86. [PMID: 23645599 PMCID: PMC3698917 DOI: 10.1093/gbe/evt069] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned—a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolution—the low mutation rates in genes and the striking expansions of noncoding sequences.
Collapse
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, E249 Beadle Center, University of Nebraska-Lincoln, USA.
| |
Collapse
|
30
|
Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A. The plant mitochondrial genome: dynamics and maintenance. Biochimie 2013; 100:107-20. [PMID: 24075874 DOI: 10.1016/j.biochi.2013.09.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Plant mitochondria have a complex and peculiar genetic system. They have the largest genomes, as compared to organelles from other eukaryotic organisms. These can expand tremendously in some species, reaching the megabase range. Nevertheless, whichever the size, the gene content remains modest and restricted to a few polypeptides required for the biogenesis of the oxidative phosphorylation chain complexes, ribosomal proteins, transfer RNAs and ribosomal RNAs. The presence of autonomous plasmids of essentially unknown function further enhances the level of complexity. The physical organization of the plant mitochondrial DNA includes a set of sub-genomic forms resulting from homologous recombination between repeats, with a mixture of linear, circular and branched structures. This material is compacted into membrane-bound nucleoids, which are the inheritance units but also the centers of genome maintenance and expression. Recombination appears to be an essential characteristic of plant mitochondrial genetic processes, both in shaping and maintaining the genome. Under nuclear surveillance, recombination is also the basis for the generation of new mitotypes and is involved in the evolution of the mitochondrial DNA. In line with, or as a consequence of its complex physical organization, replication of the plant mitochondrial DNA is likely to occur through multiple mechanisms, potentially involving recombination processes. We give here a synthetic view of these aspects.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
31
|
Wang X, Mbantenkhu M, Wierzbicki S, Chen XJ. Preparation of the Mgm101 recombination protein by MBP-based tagging strategy. J Vis Exp 2013. [PMID: 23851592 DOI: 10.3791/50448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The MGM101 gene was identified 20 years ago for its role in the maintenance of mitochondrial DNA. Studies from several groups have suggested that the Mgm101 protein is involved in the recombinational repair of mitochondrial DNA. Recent investigations have indicated that Mgm101 is related to the Rad52-type recombination protein family. These proteins form large oligomeric rings and promote the annealing of homologous single stranded DNA molecules. However, the characterization of Mgm101 has been hindered by the difficulty in producing the recombinant protein. Here, a reliable procedure for the preparation of recombinant Mgm101 is described. Maltose Binding Protein (MBP)-tagged Mgm101 is first expressed in Escherichia coli. The fusion protein is initially purified by amylose affinity chromatography. After being released by proteolytic cleavage, Mgm101 is separated from MBP by cationic exchange chromatography. Monodispersed Mgm101 is then obtained by size exclusion chromatography. A yield of ~0.87 mg of Mgm101 per liter of bacterial culture can be routinely obtained. The recombinant Mgm101 has minimal contamination of DNA. The prepared samples are successfully used for biochemical, structural and single particle image analyses of Mgm101. This protocol may also be used for the preparation of other large oligomeric DNA-binding proteins that may be misfolded and toxic to bacterial cells.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, NY, USA
| | | | | | | |
Collapse
|
32
|
Mbantenkhu M, Wierzbicki S, Wang X, Guo S, Wilkens S, Chen XJ. A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101. Mol Biol Cell 2013; 24:1507-18. [PMID: 23536705 PMCID: PMC3655812 DOI: 10.1091/mbc.e13-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mgm101 is a Rad52-type single-stranded annealing protein (SSAP) required for mitochondrial DNA (mtDNA) repair and maintenance. Structurally, Mgm101 forms large oligomeric rings. Here we determine the function(s) of a 32-amino acid carboxyl-terminal tail (Mgm101(238-269)) conserved in the Mgm101 family of proteins. Mutagenic analysis shows that Lys-253, Trp-257, Arg-259, and Tyr-268 are essential for mtDNA maintenance. Mutations in Lys-251, Arg-252, Lys-260, and Tyr-266 affect mtDNA stability at 37°C and under oxidative stress. The Y268A mutation severely affects single-stranded DNA (ssDNA) binding without altering the ring structure. Mutations in the Lys-251-Arg-252-Lys-253 positive triad also affect ssDNA binding. Moreover, the C-tail alone is sufficient to mediate ssDNA binding. Finally, we find that the W257A and R259A mutations dramatically affect the conformation and oligomeric state of Mgm101. These structural alterations correlate with protein degradation in vivo. The data thus indicate that the C-tail of Mgm101, likely displayed on the ring surface, is required for ssDNA binding, higher-order structural organization, and protein stability. We speculate that an initial electrostatic and base-stacking interaction with ssDNA could remodel ring organization. This may facilitate the formation of nucleoprotein filaments competent for mtDNA repair. These findings could have broad implications for understanding how SSAPs promote DNA repair and genome maintenance.
Collapse
Affiliation(s)
- MacMillan Mbantenkhu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned--a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolution--the low mutation rates in genes and the striking expansions of noncoding sequences.
Collapse
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, E249 Beadle Center, University of Nebraska-Lincoln, USA.
| |
Collapse
|
34
|
Nardozzi JD, Wang X, Mbantenkhu M, Wilkens S, Chen XJ. A properly configured ring structure is critical for the function of the mitochondrial DNA recombination protein, Mgm101. J Biol Chem 2012; 287:37259-68. [PMID: 22948312 PMCID: PMC3481324 DOI: 10.1074/jbc.m112.389965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/11/2012] [Indexed: 11/06/2022] Open
Abstract
Mgm101 is a Rad52-type recombination protein of bacteriophage origin required for the repair and maintenance of mitochondrial DNA (mtDNA). It forms large oligomeric rings of ∼14-fold symmetry that catalyze the annealing of single-stranded DNAs in vitro. In this study, we investigated the structural elements that contribute to this distinctive higher order structural organization and examined its functional implications. A pair of vicinal cysteines, Cys-216 and Cys-217, was found to be essential for mtDNA maintenance. Mutations to the polar serine, the negatively charged aspartic and glutamic acids, and the hydrophobic amino acid alanine all destabilize mtDNA in vivo. The alanine mutants have an increased propensity of forming macroscopic filaments. In contrast, mutations to aspartic acid drastically destabilize the protein and result in unstructured aggregates with severely reduced DNA binding activity. Interestingly, the serine mutants partially disassemble the Mgm101 rings into smaller oligomers. In the case of the C216S mutant, a moderate increase in DNA binding activity was observed. By using small angle x-ray scattering analysis, we found that Mgm101 forms rings of ∼200 Å diameter in solution, consistent with the structure previously established by transmission electron microscopy. We also found that the C216A/C217A double mutant tends to form broken rings, which likely provide free ends for seeding the growth of the super-stable but functionally defective filaments. Taken together, our data underscore the importance of a delicately maintained ring structure critical for Mgm101 activity. We discuss a potential role of Cys-216 and Cys-217 in regulating Mgm101 function and the repair of damaged mtDNA under stress conditions.
Collapse
Affiliation(s)
- Jonathan D. Nardozzi
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xiaowen Wang
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - MacMillan Mbantenkhu
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Stephan Wilkens
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xin Jie Chen
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|