1
|
Pandolfi F, Franza L, Altamura S, Mandolini C, Cianci R, Ansari A, Kurnick JT. Integrins: Integrating the Biology and Therapy of Cell-cell Interactions. Clin Ther 2017; 39:2420-2436. [PMID: 29203050 DOI: 10.1016/j.clinthera.2017.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Although the role of integrins has been described in a variety of diseases, these roles seem to be distinct. To date, no study has attempted to provide links to the various pathways by which such integrins can be involved in these diverse disease settings. The purpose of this review was to address this gap in our knowledge with the hypothesis that there is, in fact, a common pathway by which integrins may function. METHODS This article provides an in-depth perspective on the discovery, development, and design of therapeutics that modulate cellular function by targeting integrin:ligand interactions by reviewing the literature on this subject; the review included the most recent results of clinical and subclinical studies. A MEDLINE search was conducted for articles pertaining to the various issues related to integrins, and the most relevant articles are discussed (ie, not only those published in journals with a higher impact factor). FINDINGS It seems that the ligation of the integrins with their cognate ligands plays a major role in translating membrane dialogue into biological function. In addition, they also seem to play a major regulatory role that can enhance or inhibit biological function depending on the context within which such receptor:ligand interactions occur and the organ and tissues at which interactions occurs and is manipulated. Those studies that used statistical analyses have been included where appropriate. IMPLICATIONS Our findings show that anti-integrin treatment has the potential to become a valid coadjuvant in the treatment of several diseases including cancer, inflammatory diseases, HIv infection and cardiovascular diseases.
Collapse
Affiliation(s)
- Franco Pandolfi
- Institute of Internal Medicine, Catholic University, Rome, Italy.
| | - Laura Franza
- Institute of Internal Medicine, Catholic University, Rome, Italy
| | - Simona Altamura
- Institute of Internal Medicine, Catholic University, Rome, Italy
| | | | - Rossella Cianci
- Institute of Internal Medicine, Catholic University, Rome, Italy
| | - Aftab Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - James T Kurnick
- CytoCure LLC, Beverly, Massachusetts; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Gonzalez-Salinas R, Hernández-Zimbrón LF, Gulias-Cañizo R, Sánchez-Vela MA, Ochoa-De La Paz L, Zamora R, Quiroz-Mercado H. Current Anti-Integrin Therapy for Ocular Disease. Semin Ophthalmol 2017; 33:634-642. [DOI: 10.1080/08820538.2017.1388411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Rosario Gulias-Cañizo
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Cell Biology Department, Advanced Research Center, I.P.N. (CINVESTAV), Mexico City, Mexico
| | | | - Lenin Ochoa-De La Paz
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Biochemistry Department, Universidad Nacional Autónoma de Mexico, School of Medicine, Mexico City, Mexico
| | - Ruben Zamora
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
| | - Hugo Quiroz-Mercado
- Research Department, Asociación para Evitar la Ceguera en México I.A.P, Mexico City, Mexico
- Department of Ophthalmology, University of Colorado, Denver, CO, USA
| |
Collapse
|
3
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
4
|
Teoh CM, Tan SSL, Tran T. Integrins as Therapeutic Targets for Respiratory Diseases. Curr Mol Med 2016; 15:714-34. [PMID: 26391549 PMCID: PMC5427774 DOI: 10.2174/1566524015666150921105339] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 01/14/2023]
Abstract
Integrins are a large family of transmembrane heterodimeric proteins that constitute the main receptors for extracellular matrix components. Integrins were initially thought to be primarily involved in the maintenance of cell adhesion and tissue integrity. However, it is now appreciated that integrins play important roles in many other biological processes such as cell survival, proliferation, differentiation, migration, cell shape and polarity. Lung cells express numerous combinations and permutations of integrin heterodimers. The complexity and diversity of different integrin heterodimers being implicated in different lung diseases present a major challenge for drug development. Here we provide a comprehensive overview of the current knowledge of integrins from studies in cell culture to integrin knockout mouse models and provide an update of results from clinical trials for which integrins are therapeutic targets with a focus on respiratory diseases (asthma, emphysema, pneumonia, lung cancer, pulmonary fibrosis and sarcoidosis).
Collapse
Affiliation(s)
| | | | - T Tran
- Department of Physiology, MD9, 2 Medical Drive, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
5
|
Phillips JE, Renteria L, Burns L, Harris P, Peng R, Bauer CMT, Laine D, Stevenson CS. Btk Inhibitor RN983 Delivered by Dry Powder Nose-only Aerosol Inhalation Inhibits Bronchoconstriction and Pulmonary Inflammation in the Ovalbumin Allergic Mouse Model of Asthma. J Aerosol Med Pulm Drug Deliv 2016; 29:233-41. [PMID: 27111445 DOI: 10.1089/jamp.2015.1210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In allergen-induced asthma, activated mast cells start the lung inflammatory process with degranulation, cytokine synthesis, and mediator release. Bruton's tyrosine kinase (Btk) activity is required for the mast cell activation during IgE-mediated secretion. METHODS This study characterized a novel inhaled Btk inhibitor RN983 in vitro and in ovalbumin allergic mouse models of the early (EAR) and late (LAR) asthmatic response. RESULTS RN983 potently, selectively, and reversibly inhibited the Btk enzyme. RN983 displayed functional activities in human cell-based assays in multiple cell types, inhibiting IgG production in B-cells with an IC50 of 2.5 ± 0.7 nM and PGD2 production from mast cells with an IC50 of 8.3 ± 1.1 nM. RN983 displayed similar functional activities in the allergic mouse model of asthma when delivered as a dry powder aerosol by nose-only inhalation. RN983 was less potent at inhibiting bronchoconstriction (IC50(RN983) = 59 μg/kg) than the β-agonist salbutamol (IC50(salbutamol) = 15 μg/kg) in the mouse model of the EAR. RN983 was more potent at inhibiting the antigen induced increase in pulmonary inflammation (IC50(RN983) = <3 μg/kg) than the inhaled corticosteroid budesonide (IC50(budesonide) = 27 μg/kg) in the mouse model of the LAR. CONCLUSIONS Inhalation of aerosolized RN983 may be effective as a stand-alone asthma therapy or used in combination with inhaled steroids and β-agonists in severe asthmatics due to its potent inhibition of mast cell activation.
Collapse
Affiliation(s)
- Jonathan E Phillips
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Lorena Renteria
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Lisa Burns
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Paul Harris
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Ruoqi Peng
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Carla M T Bauer
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Dramane Laine
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| | - Christopher S Stevenson
- Hoffmann-La Roche Inc. , Pharma Research and Early Development, DTA Inflammation, Nutley, New Jersey
| |
Collapse
|
6
|
Krauss AH, Corrales RM, Pelegrino FSA, Tukler-Henriksson J, Pflugfelder SC, de Paiva CS. Improvement of Outcome Measures of Dry Eye by a Novel Integrin Antagonist in the Murine Desiccating Stress Model. Invest Ophthalmol Vis Sci 2015; 56:5888-95. [PMID: 26348638 DOI: 10.1167/iovs.15-17249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We investigated the effects of GW559090, a novel, competitive, and high-affinity α4 integrin antagonist, in a murine model of dry eye. Through interaction with vascular cell adhesion molecule 1 (VCAM-1) and fibronectin α4β1 integrin is involved in leukocyte trafficking and activation. METHODS Female C57BL/6 mice, aged 6 to 8 weeks, were subjected to desiccating stress (DS). Bilateral topical twice daily treatment with GW559090 was compared to vehicle-treated controls. Treatment was initiated at the time of DS induction. Treatment effects were assessed on corneal staining with Oregon Green Dextran (OGD) and expression of inflammatory markers in ocular surface tissues by real time PCR. Dendritic cell activation was measured in draining cervical lymph nodes (CLN) by flow cytometry. Separate groups of mice received GW559090 subcutaneously to evaluate the effects of systemic administration on corneal staining and cells in CLN. RESULTS Topical GW559090 significantly reduced corneal uptake of OGD compared to vehicle-treated disease controls in a dose-dependent manner (1, 3, 10, and 30 mg/mL) with 30 mg/mL showing the greatest reduction in OGD staining. When administered topically, corneal expression of IL-1α, matrix metalloproteinase (MMP)-9, chemokine ligand 9 (CXCL9), and TGF-β1 was reduced in GW559090-treated eyes. Topical treatment with GW559090 decreased dendritic cell activation in lymph nodes. The effects on corneal staining and cellular composition in CLN were not reproduced by systemic administration of GW559090, suggestive of a local role for integrin antagonism in the treatment of dry eye. CONCLUSION The novel α4 integrin antagonist, GW559090, improved outcome measures of corneal staining and ocular surface inflammation in this murine model of dry eye. These results indicate the potential of this novel agent for the treatment of dry eye disease.
Collapse
Affiliation(s)
- Achim H Krauss
- GSK Ophthalmology King of Prussia, Pennsylvania, United States
| | - Rosa M Corrales
- Ocular Surface Center, Cullen Eye Institute, Deptartment of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Flavia S A Pelegrino
- Ocular Surface Center, Cullen Eye Institute, Deptartment of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Johanna Tukler-Henriksson
- Ocular Surface Center, Cullen Eye Institute, Deptartment of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Stephen C Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Deptartment of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Deptartment of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
7
|
Sjögren's syndrome associated dry eye in a mouse model is ameliorated by topical application of integrin α4 antagonist GW559090. Exp Eye Res 2015; 143:1-8. [PMID: 26463157 DOI: 10.1016/j.exer.2015.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/17/2023]
Abstract
Sjögren's syndrome is an autoimmune disease associated with inflammation of exocrine glands with clinical manifestations of dry eye and dry mouth. Dry eye in this disease involves inflammation of the ocular surface tissues - cornea and conjunctiva. While systemic blockade of adhesion molecules has been used to treat autoimmune diseases, the purpose of this study was to determine the therapeutic efficacy of topical application of an integrin α4 adhesion molecule antagonist in a mouse model of dry eye associated with Sjögren's syndrome. To assess this spontaneously developed ocular surface inflammation related to Sjögren's syndrome in TSP-1null mice (12 wks) was evaluated. Mice were treated with topical formulations containing 0.1% dexamethasone or 30 mg/ml GW559090 or vehicle control. Corneal fluorescein staining and conjunctival goblet cell density were assessed. Real-time PCR analysis was performed to assess expression of the inflammatory marker IL-1β in the cornea and Tbet and RORγt in the draining lymph nodes. Ocular surface inflammation was detectable in TSP-1null mice (≥12 wk old), which resulted in increased corneal fluorescein staining indicative of corneal barrier disruption and reduced conjunctival goblet cell density. These changes were accompanied by increased corneal expression of IL-1β as compared to WT controls and an altered balance of Th1 (Tbet) and Th17 (RORγt) markers in the draining lymph nodes. Topically applied dexamethasone and GW559090 significantly reduced corneal fluorescein staining compared to vehicle treatment (p = 0.023 and p < 0.001, respectively). This improved corneal barrier integrity upon adhesion molecule blockade was consistent with significantly reduced corneal expression of pro-inflammatory IL-1β compared to vehicle treated groups (p < 0.05 for both treatments). Significant improvement in goblet cell density was also noted in mice treated with 0.1% dexamethasone and GW559090 (p < 0.05 for both). We conclude that similar to topical dexamethasone, topically administered GW559090 successfully improved corneal barrier integrity and inflammation in an established ocular surface disease associated with Sjögren's syndrome.
Collapse
|
8
|
Abstract
Environmental allergens are an important cause of asthma and can contribute to loss of asthma control and exacerbations. Allergen inhalation challenge has been a useful clinical model to examine the mechanisms of allergen-induced airway responses and inflammation. Allergen bronchoconstrictor responses are the early response, which reaches a maximum within 30 min and resolves by 1-3 h, and late responses, when bronchoconstriction recurs after 3-4 h and reaches a maximum over 6-12 h. Late responses are followed by an increase in airway hyperresponsiveness. These responses occur when IgE on mast cells is cross-linked by an allergen, causing degranulation and the release of histamine, neutral proteases and chemotactic factors, and the production of newly formed mediators, such as cysteinyl leukotrienes and prostaglandin D2. Allergen-induced airway inflammation consists of an increase in airway eosinophils, basophils and, less consistently, neutrophils. These responses are mediated by the trafficking and activation of myeloid dendritic cells into the airways, probably as a result of the release of epithelial cell-derived thymic stromal lymphopoietin, and the release of pro-inflammatory cytokines from type 2 helper T-cells. Allergen inhalation challenge has also been a widely used model to study potential new therapies for asthma and has an excellent negative predictive value for this purpose.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Firestone Institute for Respiratory Health and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amani I El-Gammal
- Firestone Institute for Respiratory Health and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul M O'Byrne
- Firestone Institute for Respiratory Health and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Goswami S. Importance of integrin receptors in the field of pharmaceutical & medical science. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.32028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
11
|
Mullane K. Asthma translational medicine: report card. Biochem Pharmacol 2011; 82:567-85. [PMID: 21741955 DOI: 10.1016/j.bcp.2011.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/21/2023]
Abstract
Over the last 30 years, scientific research into asthma has focused almost exclusively on one component of the disorder - airway inflammation - as being the key underlying feature. These studies have provided a remarkably detailed and comprehensive picture of the events following antigen challenge that lead to an influx of T cells and eosinophils in the airways. Indeed, in basic research, even the term "asthma" has become synonymous with a T helper 2 cell-mediated disorder. From this cascade of cellular activation processes and mediators that have been identified it has been possible to pinpoint critical junctures for therapeutic intervention, leading experimentalists to produce therapies that are very effective in decreasing airway inflammation in animal models. Many of these compounds have now completed early Phase 2 "proof-of-concept" clinical trials so the translational success of the basic research model can be evaluated. This commentary discusses clinical results from 39 compounds and biologics acting at 23 different targets, and while 6 of these drugs can be regarded as a qualified success, none benefit the bulk of asthma sufferers. Despite this disappointing rate of success, the same immune paradigm and basic research models, with a few embellishments to incorporate newly identified cells and mediators, continue to drive target identification and drug discovery efforts. It is time to re-evaluate the focus of these efforts.
Collapse
Affiliation(s)
- Kevin Mullane
- Profectus Pharma Consulting, Inc, San Jose, CA 95125, United States.
| |
Collapse
|
12
|
Small animals models for drug discovery. Pulm Pharmacol Ther 2011; 24:513-24. [PMID: 21601000 DOI: 10.1016/j.pupt.2011.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 12/17/2022]
Abstract
There has been an explosion of studies of animal models of asthma in the past 20 years. The elucidation of fundamental immunological mechanisms underlying the development of allergy and the complex cytokine and chemokines networks underlying the responses have been substantially unraveled. Translation of findings to human asthma have been slow and hindered by the varied phenotypes that human asthma represents. New areas for expansion of modeling include virally mediated airway inflammation, oxidant stress, and the interactions of stimuli triggering innate immune and adaptive immune responses.
Collapse
|
13
|
Abstract
Integrins are heterodimeric, transmembrane receptors that function as mechanosensors, adhesion molecules and signal transduction platforms in a multitude of biological processes. As such, integrins are central to the etiology and pathology of many disease states. Therefore, pharmacological inhibition of integrins is of great interest for the treatment and prevention of disease. In the last two decades several integrin-targeted drugs have made their way into clinical use, many others are in clinical trials and still more are showing promise as they advance through preclinical development. Herein, this review examines and evaluates the various drugs and compounds targeting integrins and the disease states in which they are implicated.
Collapse
|
14
|
Nials AT, Uddin S. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech 2009; 1:213-20. [PMID: 19093027 DOI: 10.1242/dmm.000323] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Asthma is defined as a chronic inflammatory disease of the airways; however, the underlying physiological and immunological processes are not fully understood. Animal models have been used to elucidate asthma pathophysiology, and to identify and evaluate novel therapeutic targets. Several recent review articles (Epstein, 2004; Lloyd, 2007; Boyce and Austen, 2005; Zosky and Sly, 2007) have discussed the potential value of these models. Allergen challenge models reproduce many features of clinical asthma and have been widely used by investigators; however, the majority involve acute allergen challenge procedures. It is recognised that asthma is a chronic inflammatory disease resulting from continued or intermittent allergen exposure, usually via inhalation, and there has been a recent focus on developing chronic allergen exposure models, predominantly in mice. Here, we review the acute and chronic exposure mouse models, and consider their potential role and impact in the field of asthma research.
Collapse
Affiliation(s)
- Anthony T Nials
- Discovery Biology, Respiratory Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | | |
Collapse
|
15
|
An alpha4beta1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice. Eur J Pharmacol 2008; 603:138-46. [PMID: 19103195 DOI: 10.1016/j.ejphar.2008.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 11/17/2008] [Accepted: 11/27/2008] [Indexed: 01/24/2023]
Abstract
Inhibition of the alpha4 subunit of both the alpha4beta1 and alpha4beta7 integrins has shown promise in decreasing airway inflammation and airway hyperresponsiveness in various animal models. We hypothesized that a novel, high-affinity alpha4beta1 antagonist (LLP2A) would decrease the migration of eosinophils to the lung and ameliorate the airway hyperresponsiveness in a mouse model of ovalbumin-induced airway inflammation. To test this hypothesis, we administered LLP2A, or scrambled LLP2A (a negative control), prior to exposure of sensitized BALB/c mice to ovalbumin aerosol. We can partially prevent, or reverse, the airway inflammatory response, but not airways hyperresponsiveness, by treatment of mice with LLP2A, a synthetic peptidomimetic alpha4beta1 antagonist. Specifically engineered, PEGylated (PEG) formulations of this antagonist further reduce the airway inflammatory response to ovalbumin, presumably by improving the circulating half-life of the drug.
Collapse
|
16
|
Abstract
Asthma is a chronic inflammatory disease that affects about 300 million people worldwide, a total that is expected to rise to about 400 million over the next 15-20 years. Most asthmatic individuals respond well to the currently available treatments of inhaled corticosteroids and beta-adrenergic agonists; however, 5-10% have severe disease that responds poorly. Improved knowledge of asthma mechanisms has led to the recognition of different asthma phenotypes that might reflect distinct types of inflammation, explaining the effectiveness of anti-leucotrienes and the anti-IgE monoclonal antibody omalizumab in some patients. However, more knowledge of the inflammatory mechanisms within the airways is required. Improvements in available therapies-such as the development of fast-onset, once-a-day combination drugs with better safety profiles-will occur. Other drugs, such as inhaled p38 MAPK inhibitors and anti-oxidants, that target specific pathways or mediators could prove useful as monotherapies, but could also, in combination with corticosteroids, reduce the corticosteroid insensitivity often seen in severe asthma. Biological agents directed against the interleukin-13 pathway and new immunoregulatory agents that modulate functions of T-regulatory and T-helper-17 cells are likely to be successful. Patient-specific treatments will depend on the development of discriminatory handprints of distinct asthma subtypes and are probably over the horizon. Although a cure is unlikely to be developed in the near future, a greater understanding of disease mechanisms could bring such a situation nearer to reality.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
17
|
|
18
|
Rådinger M, Bossios A, Alm AS, Jeurink P, Lu Y, Malmhäll C, Sjöstrand M, Lötvall J. Regulation of allergen-induced bone marrow eosinophilopoiesis: role of CD4+ and CD8+ T cells. Allergy 2007; 62:1410-8. [PMID: 17983375 DOI: 10.1111/j.1398-9995.2007.01509.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanisms of the distant stimulation of the bone marrow (BM) after airway allergen exposure remain largely obscure. T cells have been implicated in allergic airway inflammation but their role in allergen-induced BM eosinophilopoiesis is poorly understood. The aim of this study was to determine the role of CD4(+) and CD8(+) T cells in allergen-induced BM eosinophilopoiesis. METHODS Ovalbumin (OVA)-sensitized wild type (WT), CD4 knockout (CD4-/-) and CD8 knockout (CD8-/-) mice were exposed intranasally to OVA or saline. Bromo-deoxyuridine (BrdU) was used to label newly produced cells. Bone marrow, blood and bronchoalveolar lavage (BAL) were sampled 24 h after the final exposure. Immunostaining for newly produced eosinophils (i.e. BrdU(+)/MBP(+)) and BM eosinophil progenitor [CD34(+)/CD45(+)/interleukin-5 (IL-5)Ralpha(+)] cells was performed. RESULTS The number of newly produced BM eosinophils (BrdU(+)/MBP(+) cells) was significantly reduced in allergen exposed CD4-/- or CD8-/- mice compared with allergen exposed WT mice, which was followed by a subsequent decrease in newly produced blood and airway eosinophils. Furthermore, BM eosinophil progenitors were significantly reduced in allergen exposed CD4-/- and CD8-/- mice compared with WT mice. Finally, serum IL-5 and Bronchoalveolar lavage fluid eotaxin-2 levels were abolished in allergen exposed CD4-/- mice to levels seen in saline exposed WT mice. CONCLUSIONS These data suggests that both CD4(+) and CD8(+) T cells have a regulatory role in allergen-induced BM eosinophilopoiesis, whereas CD4(+) T cells are obligatory for allergen-induced airway eosinophilia. The subsequent traffic of eosinophils to the airways is likely to be at least partly regulated by a CD4(+) T-cell-dependent local airway eotaxin-2 production.
Collapse
Affiliation(s)
- M Rådinger
- Lung Pharmacology Group, Institite of Medicine, Department of Internal Medicine/Respiratory Medicine and Allergology, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Barthel SR, Johansson MW, McNamee DM, Mosher DF. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J Leukoc Biol 2007; 83:1-12. [PMID: 17906117 PMCID: PMC2859217 DOI: 10.1189/jlb.0607344] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eosinophilic inflammation is a characteristic feature of asthma. Integrins are highly versatile cellular receptors that regulate extravasation of eosinophils from the postcapillary segment of the bronchial circulation to the airway wall and airspace. Such movement into the asthmatic lung is described as a sequential, multistep paradigm, whereby integrins on circulating eosinophils become activated, eosinophils tether in flow and roll on bronchial endothelial cells, integrins on rolling eosinophils become further activated as a result of exposure to cytokines, eosinophils arrest firmly to adhesive ligands on activated endothelium, and eosinophils transmigrate to the airway in response to chemoattractants. Eosinophils express seven integrin heterodimeric adhesion molecules: alpha 4 beta 1 (CD49d/29), alpha 6 beta 1 (CD49f/29), alpha M beta 2 (CD11b/18), alpha L beta 2 (CD11a/18), alpha X beta 2 (CD11c/18), alpha D beta2 (CD11d/18), and alpha 4 beta 7 (CD49d/beta 7). The role of these integrins in eosinophil recruitment has been elucidated by major advances in the understanding of integrin structure, integrin function, and modulators of integrins. Such findings have been facilitated by cellular experiments of eosinophils in vitro, studies of allergic asthma in humans and animal models in vivo, and crystal structures of integrins. Here, we elaborate on how integrins cooperate to mediate eosinophil movement to the asthmatic airway. Antagonists that target integrins represent potentially promising therapies in the treatment of asthma.
Collapse
Affiliation(s)
- Steven R. Barthel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1532
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706-1532
| | - Mats W. Johansson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706-1532
| | - Dawn M. McNamee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1532
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706-1532
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1532
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706-1532
| |
Collapse
|
20
|
Ravensberg AJ, van Rensen ELJ, Grootendorst DC, de Kluijver J, Diamant Z, Ricciardolo FLM, Sterk PJ. Validated safety predictions of airway responses to house dust mite in asthma. Clin Exp Allergy 2007; 37:100-7. [PMID: 17210047 DOI: 10.1111/j.1365-2222.2006.02617.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND House dust mite (HDM) is the most common aeroallergen causing sensitization in many Western countries and is often used in allergen inhalation challenges. The concentration of inhaled allergen causing an early asthmatic reaction [provocative concentration of inhaled allergen causing a 20% fall of forced expiratory volume in 1 s (FEV(1))(PC(20) allergen)] needs to be predicted for safety reasons to estimate accurately the severity of allergen-induced airway responsiveness. This can be accomplished by using the degree of non-specific airway responsiveness and skin sensitivity to allergen. OBJECTIVE We derived prediction equations for HDM challenges using PC(20) histamine or PC(20) methacholine and skin sensitivity data obtained from patients with mild to moderate persistent asthma and validated these equations in an independent asthma population. METHODS PC(20) histamine or PC(20) methacholine, skin sensitivity, and PC(20) allergen were collected retrospectively from 159 asthmatic patients participating in allergen challenge trials. Both the histamine and methacholine groups (n=75 and n=84, respectively), were divided randomly into a reference group to derive new equations to predict PC(20) allergen, and a validation group to test the new equations. RESULTS Multiple linear regression analysis revealed that PC(20) allergen could be predicted either from PC(20) methacholine only ((10)log PC(20) allergen=-0.902+0.741.(10)log PC(20) methacholine) or from PC(20) histamine and skin sensitivity (SS) ((10)log PC(20) allergen=-0.494+0.231.(10)log SS+0.546.(10)log PC(20) histamine). In the validation study, these new equations accurately predicted PC(20) allergen following inhalation of HDM allergen allowing a safe starting concentration of allergen of three doubling concentrations below predicted PC(20) allergen in all cases. CONCLUSION The early asthmatic response to inhaled HDM extract is predominantly determined by non-specific airway responsiveness to methacholine or histamine, whereas the influence of the cutaneous sensitivity to HDM appears to be rather limited. Our new equations accurately predict PC(20) allergen and hence are suitable for implementation in HDM inhalation studies.
Collapse
Affiliation(s)
- A J Ravensberg
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|