1
|
Amatya B, Lee H, Asico LD, Konkalmatt P, Armando I, Felder RA, Jose PA. SNX-PXA-RGS-PXC Subfamily of SNXs in the Regulation of Receptor-Mediated Signaling and Membrane Trafficking. Int J Mol Sci 2021; 22:ijms22052319. [PMID: 33652569 PMCID: PMC7956473 DOI: 10.3390/ijms22052319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain, along with other functional domains that play versatile roles in cellular signaling and membrane trafficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins (GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes, while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling and endosomal trafficking. This review discusses the known and proposed functions of the SNX-PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR) and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated with retromer or other retrieval complexes for the regulation of receptor signaling and membrane trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.
Collapse
Affiliation(s)
- Bibhas Amatya
- The George Washington University, Washington, DC 20052, USA;
| | - Hewang Lee
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Prasad Konkalmatt
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Ines Armando
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
- Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
2
|
Takemura S, Isonishi A, Tanaka T, Okuda H, Tatsumi K, Yamano M, Wanaka A. Neural expression of sorting nexin 25 and its regulation of tyrosine receptor kinase B trafficking. Brain Struct Funct 2020; 225:2615-2642. [PMID: 32955616 DOI: 10.1007/s00429-020-02144-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Sorting nexin 25 (SNX25) belongs to the sorting nexin superfamily, whose members are responsible for membrane attachment to organelles of the endocytic system. Recent reports point to critical roles for SNX25 as a negative regulator of transforming growth factor β signaling, but the expression patterns of SNX25 in the central nervous system (CNS) remain almost uncharacterized. Here, we show widespread neuronal expression of SNX25 protein and Snx25 mRNA using immunohistochemistry and in situ hybridization. As an exception, SNX25 was present in the Bergmann glia of the cerebellum. SNX25 immunoreactivity was found in cholinergic and catecholaminergic neurons. Moreover, SNX25 colocalized with tropomyosin receptor kinase B (TrkB) in the neurons of the cortex and hippocampus. In vitro, SNX25 can interact with full-length TrkB, but not with its C-terminal-truncated isoform. Overexpression of SNX25 accelerated degradation of full-lengh TrkB, indicating that SNX25 promotes the trafficking of TrkB for lysosomal degradation. These findings suggest that SNX25 is a new actor in endocytic signaling, perhaps contributing to the regulation of BDNF-TrkB signaling in the CNS.
Collapse
Affiliation(s)
- Shoko Takemura
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.,Center for Diversity and Inclusion, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Hiroaki Okuda
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.,Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Mariko Yamano
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
3
|
Peddareddygari LR, Hanna PA, Igo RP, Luo YA, Won S, Hirano M, Grewal RP. Autosomal dominant hereditary spastic paraplegia with axonal sensory motor polyneuropathy maps to chromosome 21q 22.3. Int J Neurosci 2015; 126:600-6. [PMID: 26000935 DOI: 10.3109/00207454.2015.1048805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM Hereditary spastic paraplegia (HSP) are a genetically and clinically heterogeneous group of disorders. At present, 19 autosomal dominant loci for HSP have been mapped. We ascertained an American family of European descent segregating an autosomal dominant HSP associated with peripheral neuropathy. METHODS A genome wide scan was performed with 410 microsatellite repeat marker (Weber lab screening set 16) and following linkage and haplotype analysis, fine mapping was performed. Established genes or loci for HSP were excluded by direct sequencing or haplotype analysis. RESULTS All established loci for HSP were excluded. Fine mapping suggested a locus on chromosome 21q22.3 flanked by markers D21S1411 and D21S1446 with a maximum logarithm of odds score of 2.05 and was supported by haplotype analysis. A number of candidate genes in this region were analyzed and no disease-producing mutations were detected. CONCLUSION We present the clinical and genetic analysis of an American family with autosomal dominant HSP with axonal sensory motor polyneuropathy mapping to a novel locus on chromosome 21q22.3 designated SPG56.
Collapse
Affiliation(s)
| | - Philip A Hanna
- b 2 New Jersey Neuroscience Institute at JFK Medical Center , Edison , NJ , USA
| | - Robert P Igo
- c 3 Department of Epidemiology and Biostatistics , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Yuqun A Luo
- c 3 Department of Epidemiology and Biostatistics , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,d 4 Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration , Rockville , MA , USA
| | - Sungho Won
- c 3 Department of Epidemiology and Biostatistics , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,e 5 Graduate School of Public Health, Seoul National University , Seoul , Korea
| | - Michio Hirano
- f 6 Department of Neurology , Columbia University , New York , NY , USA
| | - Raji P Grewal
- g 7 Neuroscience Institute, Saint Francis Medical Center , Trenton , NJ , USA
| |
Collapse
|
4
|
Penttilä S, Jokela M, Huovinen S, Saukkonen AM, Toivanen J, Lindberg C, Baumann P, Udd B. Late-onset spinal motor neuronopathy - a common form of dominant SMA. Neuromuscul Disord 2013; 24:259-68. [PMID: 24360573 DOI: 10.1016/j.nmd.2013.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
We previously described two Finnish families with a new autosomal dominant late-onset spinal motor neuronopathy that was mapped to chromosome 22q11.2-q13.2. In the current screening study of 43 lower motor neuron disease patients from Finland and Sweden, we identified 26 new late-onset spinal motor neuronopathy patients sharing the founder haplotype. In addition to the main symptoms and signs: painful cramps, fasciculations, areflexia and slowly evolving muscle weakness, new features such as mild bulbar findings, were identified. The disease is relatively benign in terms of life expectancy and rate of disability progression, and it is therefore noteworthy that three patients were initially misdiagnosed with ALS. Significant recombinants in this new patient cohort restricted the disease locus by 90% to 1.8Mb. Late-onset spinal motor neuronopathy seems not to be very rare, at least not in Finland, with 38 patients identified in a preliminary ascertainment.
Collapse
Affiliation(s)
- Sini Penttilä
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.
| | - Manu Jokela
- Department of Neurology, Turku University Hospital, Turku, Finland.
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | | | - Jari Toivanen
- Department of Neurology, Central Hospital of Northern Karelia, Joensuu, Finland
| | - Christopher Lindberg
- Neuromuscular Center, Department of Neurology, Sahlgrenska Academy at University Gothenburg, Gothenburg, Sweden
| | - Peter Baumann
- Central Hospital of Lapland, Department of Neurology, Rovaniemi, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vasa Central Hospital, Vasa, Finland
| |
Collapse
|
5
|
Pareyson D, Marchesi C, Salsano E. Dominant Charcot-Marie-Tooth syndrome and cognate disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:817-845. [PMID: 23931817 DOI: 10.1016/b978-0-444-52902-2.00047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a group of genetically heterogeneous disorders sharing a similar phenotype, characterized by wasting and weakness mainly involving the distal muscles of lower and upper limbs, variably associated with distal sensory loss and skeletal deformities. This chapter deals with dominantly transmitted CMT and related disorders, namely hereditary neuropathy with liability to pressure palsies (HNPP) and hereditary neuralgic amyotrophy (HNA). During the last 20 years, several genes have been uncovered associated with CMT and our understanding of the underlying molecular mechanisms has greatly improved. Consequently, a precise genetic diagnosis is now possible in the majority of cases, thus allowing proper genetic counseling. Although, unfortunately, treatment is still unavailable for all types of CMT, several cellular and animal models have been developed and some compounds have proved effective in these models. The first trials with ascorbic acid in CMT type 1A have been completed and, although negative, are providing relevant information on disease course and on how to prepare for future trials.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinics of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | | | | |
Collapse
|
6
|
Rouleau GA. Addendum to 'Recent advances in the genetics of distal hereditary motor neuropathy give insight to a disease mechanism involving copper homeostasis that may extend to other motor neuron disorders'. Clin Genet 2011; 79:601-3. [PMID: 21542836 DOI: 10.1111/j.1399-0004.2011.01665.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G A Rouleau
- Centre of Excellence in Neuromics, CHUM Research Center, and Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Devic P, Petiot P. [Distal hereditary motor neuropathy]. Rev Neurol (Paris) 2011; 167:781-90. [PMID: 21529868 DOI: 10.1016/j.neurol.2011.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/15/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Distal hereditary motor neuropathy (dHMN), also known as spinal muscular atrophy, represents a group of clinically and genetically heterogeneous diseases caused by degenerations of spinal motor neurons and leading to distal muscle weakness and wasting. Nerve conduction studies reveal a pure motor axonopathy and needle examination shows chronic denervation. STATE OF ART dHMN were initially subdivided into seven subtypes according to mode of inheritance, age at onset, and clinical evolution. Recent studies have shown that these subtypes are still heterogeneous at the molecular genetic level and novel clinical and genetic entities have been characterized. To date, mutations in 11 different genes have been identified for autosomal-dominant, autosomal-recessive, and X-linked recessive dHMN. Most of the genes encode protein involved in housekeeping functions, endosomal trafficking, axonal transport, translation synthesis, RNA processing, oxidative stress response and apoptosis. PERSPECTIVES The pathophysiological mechanisms underlying dHMN seem to be related to the "length-dependent" death of motor neurons of the anterior horn of the spinal cord, likely because their large axons have higher metabolic requirements for maintenance. CONCLUSION dHMN remain heterogeneous at the clinical and molecular genetic level. The molecular pathomechanisms explaining why mutations in these ubiquitously expressed housekeeping genes result in the selective involvement of spinal motor neurons remain to be unravelled.
Collapse
Affiliation(s)
- P Devic
- Service de Neurologie Fonctionnelle et d'Épileptologie, Hôpital Neurologique Pierre-Wertheimer, 59, Boulevard Pinel, 69003 Lyon, France.
| | | |
Collapse
|
8
|
Nicholson G, Kennerson M, Brewer M, Garbern J, Shy M. Genotypes & sensory phenotypes in 2 new X-linked neuropathies (CMTX3 and dSMAX) and dominant CMT/HMN overlap syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 652:201-6. [PMID: 20225027 DOI: 10.1007/978-90-481-2813-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Classification of neuropathies into Charcot-Marie-Tooth syndrome (CMT, hereditary motor and sensory neuropathy) or purely motor neuropathies is relatively easy in single patients but subtle sensory findings can vary in different affected individuals in a family. We examined the extent of sensory involvement in different individuals in two new X-linked neuropathy syndromes (CMTX3 and dSMAX) and in some dominantly inherited mainly motor neuropathies. CMTX3 is a mild X- linked recessive CMT phenotype linked to Xq26-28. dSMAX (distal spinal muscular atrophy linked to Xq13-21). We describe a new family linked to this locus that has some sensory findings which could also be described as a motor and sensory neuropathy i.e. a form of CMT. In our dominant distal hereditary motor neuropathy (HMN) family linked to chromosome 7 (dHMN1) we also found some affected individuals with sensory signs as well as reduced sensory action potentials. In reported HMN families with known mutations in GARS, SETX, HSPB1 and HSPB8 genes and in many of our HMN families with unknown gene mutations, there is sensory involvement producing a CMT phenotype in some individuals. These disorders do not easily fit into traditional hereditary neuropathy classifications and should be recognised as CMT/HMN overlap syndromes. Recognition of overlap syndromes may assist development of more accurate gene screening paradigms.
Collapse
Affiliation(s)
- Garth Nicholson
- University of Sydney at the ANZAC Research Institute, Concord Hospital, Sydney, 2139, NSW, Australia.
| | | | | | | | | |
Collapse
|