1
|
Kang W, Mu L, Hu X. Marine Colloids Boost Nitrogen Fixation in Trichodesmium erythraeum by Photoelectrophy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9236-9249. [PMID: 38748855 DOI: 10.1021/acs.est.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitrogen fixation by the diazotrophic cyanobacterium Trichodesmium contributes up to 50% of the bioavailable nitrogen in the ocean. N2 fixation by Trichodesmium is limited by the availability of nutrients, such as iron (Fe) and phosphorus (P). Although colloids are ubiquitous in the ocean, the effects of Fe limitation on nitrogen fixation by marine colloids (MC) and the related mechanisms are largely unexplored. In this study, we found that MC exhibit photoelectrochemical properties that boost nitrogen fixation by photoelectrophy in Trichodesmium erythraeum. MC efficiently promote photosynthesis in T. erythraeum, thus enhancing its growth. Photoexcited electrons from MC are directly transferred to the photosynthetic electron transport chain and contribute to nitrogen fixation and ammonia assimilation. Transcriptomic analysis revealed that MC significantly upregulates genes related to the electron transport chain, photosystem, and photosynthesis, which is consistent with elevated photosynthetic capacities (e.g., Fv/Fm and carboxysomes). As a result, MC increase the N2 fixation rate by 67.5-89.3%. Our findings highlight a proof-of-concept electron transfer pathway by which MC boost nitrogen fixation, broadening our knowledge on the role of ubiquitous colloids in marine nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Peng Y, Xiao X, Ren B, Zhang Z, Luo J, Yang X, Zhu G. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133742. [PMID: 38367436 DOI: 10.1016/j.jhazmat.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.
Collapse
Affiliation(s)
- Yazhou Peng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiang Xiao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bozhi Ren
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Luo
- Changsha Economic and Technical Development Zone Water Purification Engineering Co., Ltd, Changsha 410100, China
| | - Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
3
|
Lan Y, Chen Q, Mi H. NdhS interacts with cytochrome b 6 f to form a complex in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:706-716. [PMID: 37493543 DOI: 10.1111/tpj.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Cyclic electron transport (CET) around photosystem I (PSI) is crucial for photosynthesis to perform photoprotection and sustain the balance of ATP and NADPH. However, the critical component of CET, cyt b6 f complex (cyt b6 f), functions in CET has yet to be understood entirely. In this study, we found that NdhS, a subunit of NADPH dehydrogenase-like (NDH) complex, interacted with cyt b6 f to form a complex in Arabidopsis. This interaction depended on the N-terminal extension of NdhS, which was conserved in eukaryotic plants but defective in prokaryotic algae. The migration of NdhS was much more in cyt b6 f than in PSI-NDH super-complex. Based on these results, we suggested that NdhS and NADP+ oxidoreductase provide a docking domain for the mobile electron carrier ferredoxin to transfer electrons to the plastoquinone pool via cyt b6 f in eukaryotic photosynthesis.
Collapse
Affiliation(s)
- Yixin Lan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| | - Qi Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, 300 Fenglin Road, Shanghai, 200032, P.R. China
| |
Collapse
|
4
|
Kondo K, Yoshimi R, Apdila ET, Wakabayashi KI, Awai K, Hisabori T. Changes in intracellular energetic and metabolite states due to increased galactolipid levels in Synechococcus elongatus PCC 7942. Sci Rep 2023; 13:259. [PMID: 36604524 PMCID: PMC9816115 DOI: 10.1038/s41598-022-26760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
The lipid composition of thylakoid membranes is conserved from cyanobacteria to green plants. However, the biosynthetic pathways of galactolipids, the major components of thylakoid membranes, are known to differ substantially between cyanobacteria and green plants. We previously reported on a transformant of the unicellular rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, namely SeGPT, in which the synthesis pathways of the galactolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol are completely replaced by those of green plants. SeGPT exhibited increased galactolipid content and could grow photoautotrophically, but its growth rate was slower than that of wild-type S. elongatus PCC 7942. In the present study, we investigated pleiotropic effects that occur in SeGPT and determined how its increased lipid content affects cell proliferation. Microscopic observations revealed that cell division and thylakoid membrane development are impaired in SeGPT. Furthermore, physiological analyses indicated that the bioenergetic state of SeGPT is altered toward energy storage, as indicated by increased levels of intracellular ATP and glycogen. We hereby report that we have identified a new promising candidate as a platform for material production by modifying the lipid synthesis system in this way.
Collapse
Affiliation(s)
- Kumiko Kondo
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan
| | - Rina Yoshimi
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503 Japan
| | - Egi Tritya Apdila
- grid.263536.70000 0001 0656 4913Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-Ku, Shizuoka, 422-8529 Japan
| | - Ken-ichi Wakabayashi
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503 Japan
| | - Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-Ku, Shizuoka, 422-8529, Japan.
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
5
|
Zhang S, Zou B, Cao P, Su X, Xie F, Pan X, Li M. Structural insights into photosynthetic cyclic electron transport. MOLECULAR PLANT 2023; 16:187-205. [PMID: 36540023 DOI: 10.1016/j.molp.2022.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
During photosynthesis, light energy is utilized to drive sophisticated biochemical chains of electron transfers, converting solar energy into chemical energy that feeds most life on earth. Cyclic electron transfer/flow (CET/CEF) plays an essential role in efficient photosynthesis, as it balances the ATP/NADPH ratio required in various regulatory and metabolic pathways. Photosystem I, cytochrome b6f, and NADH dehydrogenase (NDH) are large multisubunit protein complexes embedded in the thylakoid membrane of the chloroplast and key players in NDH-dependent CEF pathway. Furthermore, small mobile electron carriers serve as shuttles for electrons between these membrane protein complexes. Efficient electron transfer requires transient interactions between these electron donors and acceptors. Structural biology has been a powerful tool to advance our knowledge of this important biological process. A number of structures of the membrane-embedded complexes, soluble electron carrier proteins, and transient complexes composed of both have now been determined. These structural data reveal detailed interacting patterns of these electron donor-acceptor pairs, thus allowing us to visualize the different parts of the electron transfer process. This review summarizes the current state of structural knowledge of three membrane complexes and their interaction patterns with mobile electron carrier proteins.
Collapse
Affiliation(s)
- Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baohua Zou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- College of Life Science, Capital Normal University, Beijing, China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Wang Z, Zeng Y, Cheng K, Cai Z, Zhou J. The quorum sensing system of Novosphingobium sp. ERN07 regulates aggregate formation that promotes cyanobacterial growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158354. [PMID: 36041622 DOI: 10.1016/j.scitotenv.2022.158354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Microbial aggregates play key roles in cyanobacterial blooms. Being a bacterial communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. However, the regulatory role of QS in the formation of cyanobacteria-associated bacterial aggregates remains poorly understood. Here, we present insight into the role of QS in regulating bacterial aggregate formation in a representative bacterial strain, Novosphingobium sp. ERN07, which was isolated from Microcystis blooms in Lake Taihu. A biosensor assay showed that ERN07 exhibits significant AHL-producing capacity. Biochemical and microscopic analysis revealed that this strain possesses the ability to form aggregated communities. Gene knockout experiments indicated that the AHL-mediated QS system positively regulates bacterial aggregation. The aggregated communities possess the ability to enhance the production of extracellular polymeric substances (EPS), alter EPS composition ratios, and affect biofilm formation. The addition of aggregated substances also has a significant growth-promoting effect on M. aeruginosa. Transcriptomic analysis revealed that the aggregated substances positively regulate photosynthetic efficiency and energy metabolism of M. aeruginosa. These findings show that QS can mediate the aggregation phenotype and associated substrate spectrum composition, contributing to a better understanding of microalgal-bacterial interactions and mechanisms of Microcystis bloom maintenance in the natural environment.
Collapse
Affiliation(s)
- Zhaoyi Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Yanhua Zeng
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, Hainan Province, PR China
| | - Keke Cheng
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
7
|
Ma J, Guo T, Ren M, Chen L, Song X, Zhang W. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic–heterotrophic coculture system revealed by integrated omics analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:69. [PMID: 35733176 PMCID: PMC9219151 DOI: 10.1186/s13068-022-02163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/04/2022] [Indexed: 01/21/2023]
Abstract
Background Light-driven consortia, which consist of sucrose-secreting cyanobacteria and heterotrophic species, have attracted considerable attention due to their capability for the sustainable production of valuable chemicals directly from CO2. In a previous study, we achieved a one-step conversion of sucrose secreted from cyanobacteria to fine chemicals by constructing an artificial coculture system consisting of sucrose-secreting Synechococcus elongateus cscB+ and 3-hydroxypropionic acid (3-HP) producing Escherichia coli ABKm. Analyses of the coculture system showed that the cyanobacterial cells grew better than their corresponding axenic cultures. To explore the underlying mechanism and to identify the metabolic nodes with the potential to further improve the coculture system, we conducted integrated transcriptomic, proteomic and metabolomic analyses. Results We first explored how the relieved oxidative stress affected cyanobacterial cell growth in a coculture system by supplementing additional ascorbic acid to CoBG-11 medium. We found that the cell growth of cyanobacteria was clearly improved with an additional 1 mM ascorbic acid under axenic culture; however, its growth was still slower than that in the coculture system, suggesting that the improved growth of Synechococcus cscB+ may be caused by multiple factors, including reduced oxidative stress. To further explore the cellular responses of cyanobacteria in the system, quantitative transcriptomics, proteomics and metabolomics were applied to Synechococcus cscB+. Analyses of differentially regulated genes/proteins and the abundance change of metabolites in the photosystems revealed that the photosynthesis of the cocultured Synechococcus cscB+ was enhanced. The decreased expression of the CO2 transporter suggested that the heterotrophic partner in the system might supplement additional CO2 to support the cell growth of Synechococcus cscB+. In addition, the differentially regulated genes and proteins involved in the nitrogen and phosphate assimilation pathways suggested that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient. Conclusion An artificial coculture system capable of converting CO2 to fine chemicals was established and then analysed by integrated omics analysis, which demonstrated that in the coculture system, the relieved oxidative stress and increased CO2 availability improved the cell growth of cyanobacteria. In addition, the results also showed that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient, which paves a new path towards the optimization of the coculture system in the future. Taken together, these results from the multiple omics analyses provide strong evidence that beneficial interactions can be achieved from cross-feeding and competition between phototrophs and prokaryotic heterotrophs and new guidelines for engineering more intelligent artificial consortia in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02163-5.
Collapse
|
8
|
Srivastava A, Biswas S, Yadav S, Kumar S, Srivastava V, Mishra Y. Acute cadmium toxicity and post-stress recovery: Insights into coordinated and integrated response/recovery strategies of Anabaena sp. PCC 7120. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124822. [PMID: 33858073 DOI: 10.1016/j.jhazmat.2020.124822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria, the first photoautotrophs have remarkable adaptive capabilities against most abiotic stresses, including Cd. A model cyanobacterium, Anabaena sp. PCC 7120 has been commonly used to understand cyanobacterial plasticity under different environmental stresses. However, very few studies have focused on the acute Cd toxicity. In this context, Anabaena was subjected to 100 μM Cd for 48 h (acute Cd stress, ACdS) and then transferred into the fresh medium for post-stress recovery (PSR). We further investigated the dynamics of morpho-ultrastructure, physiology, cytosolic proteome, thylakoidal complexes, chelators, and transporters after ACdS, as well as during early (ER), mid (MR), and late (LR) phases of PSR. The findings revealed that ACdS induced intracellular Cd accumulation and ROS production, altered morpho-ultrastructure, reduced photosynthetic pigments, and affected the structural organization of PSII, which subsequently hindered photosynthetic efficiency. Anabaena responded to ACdS and recovered during PSR by reprogramming the expression pattern of proteins/genes involved in cellular defense and repair; CO2 access, Calvin-Benson cycle, glycolysis, and pentose phosphate pathway; protein biosynthesis, folding, and degradation; regulatory functions; PSI-based cyclic electron flow; Cd chelation; and efflux. These modulations occurred in an integrated and coordinated manner that facilitated Anabaena to detoxify Cd and repair ACdS-induced cellular damage.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sandhya Yadav
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochem J 2020; 476:2743-2756. [PMID: 31654059 DOI: 10.1042/bcj20190365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022]
Abstract
The thylakoid NAD(P)H dehydrogenase-like (NDH) complex is a large protein complex that reduces plastoquinone and pumps protons into the lumen generating protonmotive force. In plants, the complex consists of both nuclear and chloroplast-encoded subunits. Despite its perceived importance for stress tolerance and ATP generation, chloroplast-encoded NDH subunits have been lost numerous times during evolution in species occupying seemingly unrelated environmental niches. We have generated a phylogenetic tree that reveals independent losses in multiple phylogenetic lineages, and we use this tree as a reference to discuss possible evolutionary contexts that may have relaxed selective pressure for retention of ndh genes. While we are still yet unable to pinpoint a singular specific lifestyle that negates the need for NDH, we are able to rule out several long-standing explanations. In light of this, we discuss the biochemical changes that would be required for the chloroplast to dispense with NDH functionality with regards to known and proposed NDH-related reactions.
Collapse
|
10
|
Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148256. [PMID: 32622739 DOI: 10.1016/j.bbabio.2020.148256] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/18/2023]
Abstract
Flavodiiron proteins (FDPs) of photosynthetic organisms play a photoprotective role by reducing oxygen to water and thus avoiding the accumulation of excess electrons on the photosystem I (PSI) acceptor side under stress conditions. In Synechocystis sp. PCC 6803 grown under high CO2, both FDPs Flv1 and Flv3 are indispensable for oxygen reduction. We performed a detailed in vivo kinetic study of wild-type (WT) and Δflv1/3 strains of Synechocystis using light-induced NADPH fluorescence and near-infrared absorption of iron-sulfur clusters from ferredoxin and the PSI acceptors (FAFB), collectively named FeS. These measurements were performed under conditions where the Calvin-Benson cycle is inactive or poorly activated. Under such conditions, the NADPH decay following a short illumination decays in parallel in both strains and exhibits a time lag which is correlated to the presence of reduced FeS. On the contrary, reduced FeS decays much faster in WT than in Δflv1/3 (13 vs 2 s-1). These data unambiguously show that reduced ferredoxin, or possibly reduced FAFB, is the direct electron donor to the Flv1/Flv3 heterodimer. Evidences for large reduction of (FAFB) and recombination reactions within PSI were also provided by near-infrared absorption. Mutants lacking either the NDH1-L complex, the homolog of complex I of respiration, or the Pgr5 protein show no difference with WT in the oxidation of reduced FeS following a short illumination. These observations question the participation of a significant cyclic electron flow in cyanobacteria during the first seconds of the induction phase of photosynthesis.
Collapse
|
11
|
Pan X, Cao D, Xie F, Xu F, Su X, Mi H, Zhang X, Li M. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. Nat Commun 2020; 11:610. [PMID: 32001694 PMCID: PMC6992706 DOI: 10.1038/s41467-020-14456-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 11/23/2022] Open
Abstract
NAD(P)H dehydrogenase-like (NDH) complex NDH-1L of cyanobacteria plays a crucial role in cyclic electron flow (CEF) around photosystem I and respiration processes. NDH-1L couples the electron transport from ferredoxin (Fd) to plastoquinone (PQ) and proton pumping from cytoplasm to the lumen that drives the ATP production. NDH-1L-dependent CEF increases the ATP/NADPH ratio, and is therefore pivotal for oxygenic phototrophs to function under stress. Here we report two structures of NDH-1L from Thermosynechococcus elongatus BP-1, in complex with one Fd and an endogenous PQ, respectively. Our structures represent the complete model of cyanobacterial NDH-1L, revealing the binding manner of NDH-1L with Fd and PQ, as well as the structural elements crucial for proper functioning of the NDH-1L complex. Together, our data provides deep insights into the electron transport from Fd to PQ, and its coupling with proton translocation in NDH-1L. NAD(P)H dehydrogenase-like complex NDH-1L couples the electron transport from ferredoxin (Fd) to plastoquinone (PQ) and proton pumping from cytoplasm to the lumen. Here authors report two structures of NDH-1L from Thermosynechococcus elongatus BP-1, in complex with one Fd and an endogenous PQ, respectively.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.,National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, PR China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, PR China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China. .,University of Chinese Academy of Sciences, Beijing, 100049, PR China. .,Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
12
|
Dong C, Zhang H, Yang Y, He X, Liu L, Fu J, Shi J, Wu Z. Physiological and transcriptomic analyses to determine the responses to phosphorus utilization in Nostoc sp. HARMFUL ALGAE 2019; 84:10-18. [PMID: 31128794 DOI: 10.1016/j.hal.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phosphorus (P) is an important factor driving algal growth in aquatic ecosystems. In the present study, the growth, P uptake and utilization, photosynthesis, and transcriptome profile of Nostoc sp. were measured when Nostoc sp. cultured in media containing β-glycerol phosphate (β-gly, containing COP bonds), 2-aminoethylphosphonic acid (2-amin, containing CP bonds), or orthophosphate (K2HPO4), and in P-free (NP) medium. The results revealed that NP treatment adversely affected the growth and photosynthesis of Nostoc sp. and significantly down-regulated the expression of genes related to nutrient transport and material metabolism. Furthermore, 2-amin treatment reduced the growth of Nostoc sp. but did not significantly reduce photosynthesis, and the treatments of NP and 2-amin up-regulated the expressions of genes related antioxidation and stress. Additionally, there were no obvious differences in growth, photosynthesis, and phosphorus utilization between the β-gly and K2HPO4 treatments. These results suggested that Nostoc had a flexible ability to utilize P, which might play an important role in its widespread distribution in the environment.
Collapse
Affiliation(s)
- Congcong Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Hongbo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Yanjun Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Xinyu He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Li Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junke Fu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
13
|
Aryal UK, Ding Z, Hedrick V, Sobreira TJP, Kihara D, Sherman LA. Analysis of Protein Complexes in the Unicellular Cyanobacterium Cyanothece ATCC 51142. J Proteome Res 2018; 17:3628-3643. [PMID: 30216071 DOI: 10.1021/acs.jproteome.8b00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unicellular cyanobacterium Cyanothece ATCC 51142 is capable of oxygenic photosynthesis and biological N2 fixation (BNF), a process highly sensitive to oxygen. Previous work has focused on determining protein expression levels under different growth conditions. A major gap of our knowledge is an understanding on how these expressed proteins are assembled into complexes and organized into metabolic pathways, an area that has not been thoroughly investigated. Here, we combined size-exclusion chromatography (SEC) with label-free quantitative mass spectrometry (MS) and bioinformatics to characterize many protein complexes from Cyanothece 51142 cells grown under a 12 h light-dark cycle. We identified 1386 proteins in duplicate biological replicates, and 64% of those proteins were identified as putative complexes. Pairwise computational prediction of protein-protein interaction (PPI) identified 74 822 putative interactions, of which 2337 interactions were highly correlated with published protein coexpressions. Many sequential glycolytic and TCA cycle enzymes were identified as putative complexes. We also identified many membrane complexes that contain cytoplasmic domains. Subunits of NDH-1 complex eluted in a fraction with an approximate mass of ∼669 kDa, and subunits composition revealed coexistence of distinct forms of NDH-1 complex subunits responsible for respiration, electron flow, and CO2 uptake. The complex form of the phycocyanin beta subunit was nonphosphorylated, and the monomer form was phosphorylated at Ser20, suggesting phosphorylation-dependent deoligomerization of the phycocyanin beta subunit. This study provides an analytical platform for future studies to reveal how these complexes assemble and disassemble as a function of diurnal and circadian rhythms.
Collapse
|
14
|
Guerreiro AC, Penning R, Raaijmakers LM, Axman IM, Heck AJ, Altelaar AM. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics. J Proteomics 2016; 142:33-44. [DOI: 10.1016/j.jprot.2016.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/11/2016] [Accepted: 04/19/2016] [Indexed: 01/18/2023]
|
15
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Wang Y, Chen L, Zhang W. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:209. [PMID: 27757169 PMCID: PMC5053081 DOI: 10.1186/s13068-016-0627-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND 3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. In our previous study, the biosynthetic pathway of 3-HP was constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803, which led to 3-HP production directly from CO2 at a level of 837.18 mg L-1 (348.8 mg/g dry cell weight). As the production and accumulation of 3-HP in cells affect cellular metabolism, a better understanding of cellular responses to 3-HP synthesized internally in Synechocystis will be important for further increasing 3-HP productivity in cyanobacterial chassis. RESULTS Using a engineered 3-HP-producing SM strain, in this study, the cellular responses to 3-HP internally produced were first determined using a quantitative iTRAQ-LC-MS/MS proteomics approach and a LC-MS-based targeted metabolomics. A total of 2264 unique proteins were identified, which represented about 63 % of all predicted protein in Synechocystis in the proteomic analysis; meanwhile intracellular abundance of 24 key metabolites was determined by a comparative metabolomic analysis of the 3-HP-producing strain SM and wild type. Among all identified proteins, 204 proteins were found up-regulated and 123 proteins were found down-regulated, respectively. The proteins related to oxidative phosphorylation, photosynthesis, ribosome, central carbon metabolism, two-component systems and ABC-type transporters were up-regulated, along with the abundance of 14 metabolites related to central metabolism. The results suggested that the supply of ATP and NADPH was increased significantly, and the precursor malonyl-CoA and acetyl-CoA may also be supplemented when 3-HP was produced at a high level in Synechocystis. Confirmation of proteomic and metabolomic results with RT-qPCR and gene-overexpression strains of selected genes was also conducted, and the overexpression of three transporter genes putatively involved in cobalt/nickel, manganese and phosphate transporting (i.e., sll0385, sll1598 and sll0679) could lead to an increased 3-HP production in Synechocystis. CONCLUSIONS The integrative analysis of up-regulated proteome and metabolome data showed that to ensure the high-efficient production of 3-HP and the normal growth of Synechocystis, multiple aspects of cells metabolism including energy, reducing power supply, central carbon metabolism, the stress responses and protein synthesis were enhanced in Synechocystis. The study provides an important basis for further engineering cyanobacteria for high 3-HP production.
Collapse
Affiliation(s)
- Yunpeng Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| |
Collapse
|
17
|
Menning KJ, Menon BB, Fox G, Scott KM. Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation. Arch Microbiol 2015; 198:149-59. [PMID: 26581415 DOI: 10.1007/s00203-015-1172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022]
Abstract
The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.
Collapse
Affiliation(s)
- Kristy J Menning
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Balaraj B Menon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS, USA
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Gordon Fox
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Kathleen M Scott
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA.
| |
Collapse
|
18
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
19
|
[NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark. Sci Rep 2015. [PMID: 26215212 PMCID: PMC4517062 DOI: 10.1038/srep12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases.
Collapse
|
20
|
Ma W, Ogawa T. Oxygenic photosynthesis-specific subunits of cyanobacterial NADPH dehydrogenases. IUBMB Life 2015; 67:3-8. [DOI: 10.1002/iub.1341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Weimin Ma
- Department of Biology; College of Life and Environment Sciences; Shanghai Normal University; Shanghai China
| | - Teruo Ogawa
- Bioscience Center; Nagoya University; Chikusa Nagoya Japan
| |
Collapse
|
21
|
Zhao J, Gao F, Zhang J, Ogawa T, Ma W. NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803. J Biol Chem 2014; 289:26669-26676. [PMID: 25107904 DOI: 10.1074/jbc.m114.553925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two mutants that grew faster than the wild-type (WT) strain under high light conditions were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in ssl1690 encoding NdhO. Deletion of ndhO increased the activity of NADPH dehydrogenase (NDH-1)-dependent cyclic electron transport around photosystem I (NDH-CET), while overexpression decreased the activity. Although deletion and overexpression of ndhO did not have significant effects on the amount of other subunits such as NdhH, NdhI, NdhK, and NdhM in the cells, the amount of these subunits in the medium size NDH-1 (NDH-1M) complex was higher in the ndhO-deletion mutant and much lower in the overexpression strain than in the WT. NdhO strongly interacts with NdhI and NdhK but not with other subunits. NdhI interacts with NdhK and the interaction was blocked by NdhO. The blocking may destabilize the NDH-1M complex and repress the NDH-CET activity. When cells were transferred from growth light to high light, the amounts of NdhI and NdhK increased without significant change in the amount of NdhO, thus decreasing the relative amount of NdhO. This might have decreased the blocking, thereby stabilizing the NDH-1M complex and increasing the NDH-CET activity under high light conditions.
Collapse
Affiliation(s)
- Jiaohong Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Fudan Gao
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Jingsong Zhang
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Teruo Ogawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Weimin Ma
- College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and.
| |
Collapse
|
22
|
Uchiyama J, Asakura R, Moriyama A, Kubo Y, Shibata Y, Yoshino Y, Tahara H, Matsuhashi A, Sato S, Nakamura Y, Tabata S, Ohta H. Sll0939 is induced by Slr0967 in the cyanobacterium Synechocystis sp. PCC6803 and is essential for growth under various stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:36-43. [PMID: 24629663 DOI: 10.1016/j.plaphy.2014.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
In this study, the genes expressed in response to low pH stress were identified in the unicellular cyanobacterium Synechocystis sp. PCC 6803 using DNA microarrays. The expression of slr0967 and sll0939 constantly increased throughout 4-h acid stress conditions. Overexpression of these two genes under the control of the trc promoter induced the cells to become tolerant to acid stress. The Δslr0967 and Δsll0939 mutant cells exhibited sensitivity to osmotic and salt stress, whereas the trc mutants of these genes exhibited tolerance to these types of stress. Microarray analysis of the Δslr0967 mutant under acid stress conditions showed that expression of the high light-inducible protein ssr2595 (HliB) and the two-component response regulator slr1214 (rre15) were out of regulation due to gene inactivation, whereas they were upregulated by acid stress in the wild-type cells. Microarray analysis and real-time quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of sll0939 was significantly repressed in the slr0967 deletion mutant. These results suggest that sll0939 is directly involved in the low pH tolerance of Synechocystis sp. PCC 6803 and that slr0967 may be essential for the induction of acid stress-responsive genes.
Collapse
Affiliation(s)
- Junji Uchiyama
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ryosuke Asakura
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Atsushi Moriyama
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Yuko Kubo
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Yousuke Shibata
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Yuka Yoshino
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Hiroko Tahara
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Ayumi Matsuhashi
- Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hisataka Ohta
- Research Center for RNA Science, RIST, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Department of Biology, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan.
| |
Collapse
|
23
|
Zhang J, Gao F, Zhao J, Ogawa T, Wang Q, Ma W. NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803. J Biol Chem 2014; 289:18770-81. [PMID: 24847053 PMCID: PMC4081920 DOI: 10.1074/jbc.m114.553404] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/05/2014] [Indexed: 12/22/2022] Open
Abstract
Two major complexes of NADPH dehydrogenase (NDH-1) have been identified in cyanobacteria. A large complex (NDH-1L) contains NdhD1 and NdhF1, which are absent in a medium size complex (NDH-1M). They play important roles in respiration, cyclic electron transport around photosystem I, and CO2 acquisition. Two mutants sensitive to high light for growth and impaired in NDH-1-mediated cyclic electron transfer were isolated from Synechocystis sp. strain PCC 6803 transformed with a transposon-bearing library. Both mutants had a tag in sml0013 encoding NdhP, a single transmembrane small subunit of the NDH-1 complex. During prolonged incubation of the wild type thylakoid membrane with n-dodecyl β-d-maltoside (DM), about half of the NDH-1L was disassembled to NDH-1M and the rest decomposed completely without forming NDH-1M. In the ndhP deletion mutant (ΔndhP), disassembling of NDH-1L to NDH-1M occurred even on ice, and decomposition to a small piece occurred at room temperature much faster than in the wild type. Deletion of the C-terminal tail of NdhP gave the same result. The C terminus of NdhP was tagged by YFP-His6. Blue native gel electrophoresis of the DM-treated thylakoid membrane of this strain and Western analysis using the antibody against GFP revealed that NdhP-YFP-His6 was exclusively confined to NDH-1L. During prolonged incubation of the thylakoid membrane of the tagged strain with DM at room temperature, NDH-1L was partially disassembled to NDH-1M and the 160-kDa band containing NdhP-YFP-His6 and possibly NdhD1 and NdhF1. We therefore conclude that NdhP, especially its C-terminal tail, is essential to assemble NdhD1 and NdhF1 and stabilize the NDH-1L complex.
Collapse
Affiliation(s)
- Jingsong Zhang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Fudan Gao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Jiaohong Zhao
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Teruo Ogawa
- the Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Quanxi Wang
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Weimin Ma
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| |
Collapse
|
24
|
Dai H, Zhang L, Zhang J, Mi H, Ogawa T, Ma W. Identification of a cyanobacterial CRR6 protein, Slr1097, required for efficient assembly of NDH-1 complexes in Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:858-866. [PMID: 23725563 DOI: 10.1111/tpj.12251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/25/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Despite significant progress in clarifying the subunit compositions and functions of the multiple NADPH dehydrogenase (NDH-1) complexes in cyanobacteria, the subunit maturation and assembly of their NDH-1 complexes are poorly understood. By transformation of wild-type cells with a transposon-tagged library, we isolated three mutants of Synechocystis sp. PCC 6803 defective in NDH-1-mediated cyclic electron transfer and unable to grow under high light conditions. All the mutants were tagged in the same slr1097 gene, encoding an unknown protein that shares significant homology with the Arabidopsis protein chlororespiratory reduction 6 (CRR6). The slr1097 product was localized in the cytoplasm and was required for efficient assembly of NDH-1 complexes. Analysis of the interaction of Slr1097 with 18 subunits of NDH-1 complexes using a yeast two-hybrid system indicated a strong interaction with NdhI but not with other Ndh subunits. Absence of Slr1097 resulted in a significant decrease of NdhI in the cytoplasm, but not of other Ndh subunits including NdhH, NdhK and NdhM; the decrease was more evident in the cytoplasm than in the thylakoid membranes. In the ∆slr1097 mutant, NdhH, NdhI, NdhK and NdhM were hardly detectable in the NDH-1M complex, whereas almost half the wild-type levels of these subunits were present in NDH-1L complex; similar results were observed in the NdhI-less mutant. These results suggest that Slr1097 is involved in the maturation of NdhI, and that assembly of the NDH-1M complex is strongly dependent on this factor. Maturation of NdhI appears not to be crucial to assembly of the NDH-1L complex.
Collapse
Affiliation(s)
- Huiling Dai
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | | | | | | | | | | |
Collapse
|
25
|
Ogawa T, Harada T, Ozaki H, Sonoike K. Disruption of the ndhF1 Gene Affects Chl Fluorescence through State Transition in the Cyanobacterium Synechocystis sp. PCC 6803, Resulting in Apparent High Efficiency of Photosynthesis. ACTA ACUST UNITED AC 2013; 54:1164-71. [DOI: 10.1093/pcp/pct068] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Dickson DJ, Luterra MD, Ely RL. Transcriptomic responses of Synechocystis sp. PCC 6803 encapsulated in silica gel. Appl Microbiol Biotechnol 2012; 96:183-96. [PMID: 22846903 DOI: 10.1007/s00253-012-4307-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/26/2022]
Abstract
Global gene expression of Synechocystis sp. PCC 6803 encapsulated in silica gel was examined by microarray analysis. Cultures were encapsulated in gels derived from aqueous precursors or from alkoxide precursors and incubated under constant light for 24 h prior to RNA extraction. Cultures suspended in liquid media were exposed to 500 mM salt stress and incubated under identical conditions for comparison purposes. The expression of 414 genes was significantly altered by encapsulation in aqueous-derived gels (fold change ≥1.5 and P value < 0.01), the expression of 1,143 genes was significantly altered by encapsulation in alkoxide-derived gels, and only 243 genes were common to both encapsulation chemistries. Additional qRT-PCR analyses of four selected genes, ggpS, cpcG2, slr5055, and sll5057, confirmed microarray results for those genes. These results illustrate that encapsulation stress is quite different than salt stress in terms of gene expression response. Furthermore, a number of hypothetical and unknown proteins associated with encapsulation and alcohol stress have been identified with implications for improving encapsulation protocols and rationally engineering microorganisms for direct biofuel production.
Collapse
Affiliation(s)
- David J Dickson
- Biological and Ecological Engineering Department, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
27
|
Vu TT, Stolyar SM, Pinchuk GE, Hill EA, Kucek LA, Brown RN, Lipton MS, Osterman A, Fredrickson JK, Konopka AE, Beliaev AS, Reed JL. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comput Biol 2012; 8:e1002460. [PMID: 22529767 PMCID: PMC3329150 DOI: 10.1371/journal.pcbi.1002460] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/20/2012] [Indexed: 11/22/2022] Open
Abstract
Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values. Cyanobacteria have been promoted as platforms for biofuel production due to their useful physiological properties such as photosynthesis, relatively rapid growth rates, ability to accumulate high amounts of intracellular compounds and tolerance to extreme environments. However, development of a computational model is an important step to synthesize biochemical, physiological and regulatory understanding of photoautotrophic metabolism (either qualitatively or quantitatively) at a systems level, to make metabolic engineering of these organisms tractable. When integrated with other genome-scale data (e.g., expression data), numerical simulations can provide experimentally testable predictions of carbon fluxes and reductant partitioning to different biosynthetic pathways and macromolecular synthesis. This work is the first to computationally explore the interactions between components of photosynthetic and respiratory systems in detail. In silico predictions obtained from model analysis provided insights into the effects of light quantity and quality upon fluxes through electron transport pathways, alternative pathways for reductant consumption and carbon metabolism. The model will not only serve as a platform to develop genome-scale metabolic models for other cyanobacteria, but also as an engineering tool for manipulation of photosynthetic microorganisms to improve biofuel production.
Collapse
Affiliation(s)
- Trang T. Vu
- Department of Chemical and Biological Engineering, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sergey M. Stolyar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Grigoriy E. Pinchuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Eric A. Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Leo A. Kucek
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Roslyn N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Andrei Osterman
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Jim K. Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Allan E. Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Alexander S. Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail: (ASB); (JLR)
| | - Jennifer L. Reed
- Department of Chemical and Biological Engineering, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- * E-mail: (ASB); (JLR)
| |
Collapse
|
28
|
Fukuzawa H, Ogawa T, Kaplan A. The Uptake of CO2 by Cyanobacteria and Microalgae. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Cramer WA, Zakharov SD, Saif Hasan S, Zhang H, Baniulis D, Zhalnina MV, Soriano GM, Sharma O, Rochet JC, Ryan C, Whitelegge J, Kurisu G, Yamashita E. Membrane proteins in four acts: function precedes structure determination. Methods 2011; 55:415-20. [PMID: 22079407 DOI: 10.1016/j.ymeth.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/30/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022] Open
Abstract
Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/proton translocation. (1) Crystal structures of the eight subunit hetero-oligomeric trans-membrane dimeric cytochrome b(6)f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of 17 monotopic and polytopic hetero-subunits. (II) β-Barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B(12) binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins [1]. A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a "fishing pole" model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained [2]. A crystal structure of the N-terminal translocation domain of colicin E3 complexed to OmpF established the role of OmpF as an import channel for colicin nuclease cytotoxins. (IV) α-Synuclein, associated with the etiology of Parkinson's Disease, is an example of a protein, which is soluble and disordered in solution, but which can assume an ordered predominantly α-helical conformation upon binding to membranes. When subjected in its membrane-bound form to a trans-membrane electrical potential, α-synuclein can form voltage-gated ion channels. Summary of methods to assay functions/activities: (i) sensitive spectrophotometric assay to measure electron transfer activities; (ii) hydrophobic chromatography to deplete lipids, allowing reconstitution with specific lipids for studies on lipid-protein interactions; (iii) microbiological screen to assay high affinity binding of colicin receptor domains to Escherichia coli outer membrane receptors; (iv) electrophysiology/channel analysis (a) to select channel-occluding ligands for co-crystallization with ion channels of OmpF, and (b) to provide a unique description of voltage-gated ion channels of α-synuclein.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Purdue University, Hall of Structural Biology, 240 Hockmeyer Hall, West Lafayette, IN 47907-1354, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Grouneva I, Rokka A, Aro EM. The Thylakoid Membrane Proteome of Two Marine Diatoms Outlines Both Diatom-Specific and Species-Specific Features of the Photosynthetic Machinery. J Proteome Res 2011; 10:5338-53. [DOI: 10.1021/pr200600f] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina Grouneva
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, Tykistökatu 6A, FI-20520, University of Turku, Finland
| | - Anne Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, Tykistökatu 6A, FI-20520, University of Turku, Finland
| |
Collapse
|
31
|
Battchikova N, Wei L, Du L, Bersanini L, Aro EM, Ma W. Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of Synechocystis sp. PCC 6803. J Biol Chem 2011; 286:36992-7001. [PMID: 21880717 PMCID: PMC3196108 DOI: 10.1074/jbc.m111.263780] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/25/2011] [Indexed: 11/06/2022] Open
Abstract
Cyanobacterial NADPH:plastoquinone oxidoreductase, or type I NAD(P)H dehydrogenase, or the NDH-1 complex is involved in plastoquinone reduction and cyclic electron transfer (CET) around photosystem I. CET, in turn, produces extra ATP for cell metabolism particularly under stressful conditions. Despite significant achievements in the study of cyanobacterial NDH-1 complexes during the past few years, the entire subunit composition still remains elusive. To identify missing subunits, we screened a transposon-tagged library of Synechocystis 6803 cells grown under high light. Two NDH-1-mediated CET (NDH-CET)-defective mutants were tagged in the same ssl0352 gene encoding a short unknown protein. To clarify the function of Ssl0352, the ssl0352 deletion mutant and another mutant with Ssl0352 fused to yellow fluorescent protein (YFP) and the His(6) tag were constructed. Immunoblotting, mass spectrometry, and confocal microscopy analyses revealed that the Ssl0352 protein resides in the thylakoid membrane and associates with the NDH-1L and NDH-1M complexes. We conclude that Ssl0352 is a novel subunit of cyanobacterial NDH-1 complexes and designate it NdhS. Deletion of the ssl0352 gene considerably impaired the NDH-CET activity and also retarded cell growth under high light conditions, indicating that NdhS is essential for efficient operation of NDH-CET. However, the assembly of the NDH-1L and NDH-1M complexes and their content in the cells were not affected in the mutant. NdhS contains a Src homology 3-like domain and might be involved in interaction of the NDH-1 complex with an electron donor.
Collapse
Affiliation(s)
- Natalia Battchikova
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland
| | - Lanzhen Wei
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Lingyu Du
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| | - Luca Bersanini
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, FI-20520 Turku, Finland
| | - Weimin Ma
- From the College of Life and Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai 200234, China and
| |
Collapse
|
32
|
Alexova R, Haynes PA, Ferrari BC, Neilan BA. Comparative protein expression in different strains of the bloom-forming cyanobacterium Microcystis aeruginosa. Mol Cell Proteomics 2011; 10:M110.003749. [PMID: 21610102 DOI: 10.1074/mcp.m110.003749] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin production in algal blooms presents a significant problem for the water industry. Of particular concern is microcystin, a potent hepatotoxin produced by the unicellular freshwater species Microcystis aeruginosa. In this study, the proteomes of six toxic and nontoxic strains of M. aeruginosa were analyzed to gain further knowledge in elucidating the role of microcystin production in this microorganism. This represents the first comparative proteomic study in a cyanobacterial species. A large diversity in the protein expression profiles of each strain was observed, with a significant proportion of the identified proteins appearing to be strain-specific. In total, 475 proteins were identified reproducibly and of these, 82 comprised the core proteome of M. aeruginosa. The expression of several hypothetical and unknown proteins, including four possible operons was confirmed. Surprisingly, no proteins were found to be produced only by toxic or nontoxic strains. Quantitative proteome analysis using the label-free normalized spectrum abundance factor approach revealed nine proteins that were differentially expressed between toxic and nontoxic strains. These proteins participate in carbon-nitrogen metabolism and redox balance maintenance and point to an involvement of the global nitrogen regulator NtcA in toxicity. In addition, the switching of a previously inactive toxin-producing strain to microcystin synthesis is reported.
Collapse
Affiliation(s)
- Ralitza Alexova
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | |
Collapse
|
33
|
Haimovich-Dayan M, Kahlon S, Hihara Y, Hagemann M, Ogawa T, Ohad I, Lieman-Hurwitz J, Kaplan A. Cross-talk between photomixotrophic growth and CO2-concentrating mechanism in Synechocystis sp. strain PCC 6803. Environ Microbiol 2011; 13:1767-77. [DOI: 10.1111/j.1462-2920.2011.02481.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Yamamoto H, Peng L, Fukao Y, Shikanai T. An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. THE PLANT CELL 2011; 23:1480-93. [PMID: 21505067 PMCID: PMC3101538 DOI: 10.1105/tpc.110.080291] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 05/18/2023]
Abstract
Some subunits of chloroplast NAD(P)H dehydrogenase (NDH) are related to those of the respiratory complex I, and NDH mediates photosystem I (PSI) cyclic electron flow. Despite extensive surveys, the electron donor and its binding subunits have not been identified. Here, we identified three novel components required for NDH activity. CRRJ and CRRL are J- and J-like proteins, respectively, and are components of NDH subcomplex A. CRR31 is an Src homology 3 domain-like fold protein, and its C-terminal region may form a tertiary structure similar to that of PsaE, a ferredoxin (Fd) binding subunit of PSI, although the sequences are not conserved between CRR31 and PsaE. Although CRR31 can accumulate in thylakoids independently of NDH, its accumulation requires CRRJ, and CRRL accumulation depends on CRRJ and NDH. CRR31 was essential for the efficient operation of Fd-dependent plastoquinone reduction in vitro. The phenotype of crr31 pgr5 suggested that CRR31 is required for NDH activity in vivo. We propose that NDH functions as a PGR5-PGRL1 complex-independent Fd:plastoquinone oxidoreductase in chloroplasts and rename it the NADH dehydrogenase-like complex.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Lianwei Peng
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
35
|
Schwarz D, Nodop A, Hüge J, Purfürst S, Forchhammer K, Michel KP, Bauwe H, Kopka J, Hagemann M. Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT PHYSIOLOGY 2011; 155:1640-55. [PMID: 21282404 PMCID: PMC3091134 DOI: 10.1104/pp.110.170225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The amount of inorganic carbon is one of the main limiting environmental factors for photosynthetic organisms such as cyanobacteria. Using Synechococcus elongatus PCC 7942, we characterized metabolic and transcriptomic changes in cells that had been shifted from high to low CO(2) levels. Metabolic phenotyping indicated an activation of glycolysis, the oxidative pentose phosphate cycle, and glycolate metabolism at lowered CO(2) levels. The metabolic changes coincided with a general reprogramming of gene expression, which included not only increased transcription of inorganic carbon transporter genes but also genes for enzymes involved in glycolytic and photorespiratory metabolism. In contrast, the mRNA content for genes from nitrogen assimilatory pathways decreased. These observations indicated that cyanobacteria control the homeostasis of the carbon-nitrogen ratio. Therefore, results obtained from the wild type were compared with the MP2 mutant of Synechococcus 7942, which is defective for the carbon-nitrogen ratio-regulating PII protein. Metabolites and genes linked to nitrogen assimilation were differentially regulated, whereas the changes in metabolite concentrations and gene expression for processes related to central carbon metabolism were mostly similar in mutant and wild-type cells after shifts to low-CO(2) conditions. The PII signaling appears to down-regulate the nitrogen metabolism at lowered CO(2), whereas the specific shortage of inorganic carbon is recognized by different mechanisms.
Collapse
|
36
|
Peng L, Shikanai T. Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1629-39. [PMID: 21278308 PMCID: PMC3091109 DOI: 10.1104/pp.110.171264] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/23/2011] [Indexed: 05/18/2023]
Abstract
In higher plants, the chloroplast NADH dehydrogenase-like complex (NDH) interacts with photosystem I (PSI) to form the NDH-PSI supercomplex via two minor light-harvesting complex I (LHCI) proteins, Lhca5 and Lhca6. Previously, we showed that in lhca5 and lhca6, NDH still associates with PSI to form smaller versions of the NDH-PSI supercomplex, although their molecular masses are far smaller than that of the full-size NDH-PSI supercomplex. In this study, we show that the NDH complex is present in the monomeric form in Arabidopsis (Arabidopsis thaliana) lhca5 lhca6, implying that NDH interacts with multiple copies of PSI. NDH subunit levels were slightly reduced in immature leaves and more drastically (approximately 50%) in mature leaves of the lhca5 lhca6 double mutant compared with the wild type. Chlorophyll fluorescence analyses detected NDH activity of lhca5 lhca6, suggesting that the supercomplex formation is not essential for NDH activity. However, the severe phenotypes of the lhca5 lhca6 proton gradient regulation5 triple mutant in both plant growth rate and photosynthesis suggest that the function of NDH was impaired in this mutant in vivo. Accumulation of NDH subunits was drastically reduced in lhca5 lhca6 when the light intensity was shifted from 50 to 500 μmol photons m(-2) s(-1). Furthermore, the half-life of NDH subunits, especially that of NDH18, was shorter in monomeric NDH than in the NDH-PSI supercomplex under the high-light conditions. We propose that NDH-PSI supercomplex formation stabilizes NDH and that the process is especially required under stress conditions.
Collapse
|
37
|
Alperovitch-Lavy A, Sharon I, Rohwer F, Aro EM, Glaser F, Milo R, Nelson N, Béjà O. Reconstructing a puzzle: existence of cyanophages containing both photosystem-I and photosystem-II gene suites inferred from oceanic metagenomic datasets. Environ Microbiol 2011; 13:24-32. [PMID: 20649642 DOI: 10.1111/j.1462-2920.2010.02304.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria play a key role in marine photosynthesis, which contributes to the global carbon cycle and to the world oxygen supply. Genes encoding the photosystem-II (PSII) reaction centre are found in many cyanophage genomes, and it was suggested that the horizontal transfer of these genes might be involved in increasing phage fitness. Recently, evidence for the existence of phages carrying Photosystem-I (PSI) genes was also reported. Here, using a combination of different marine metagenomic datasets and a unique crossing of the datasets, we now describe the finding of phages that, as in plants and cyanobacteria, contain both PSII and PSI genes. In addition, these phages also contain NADH dehydrogenase genes. The presence of modified PSII and PSI genes in the same viral entities in combination with electron transfer proteins like NAD(P)H dehydrogenase (NDH-1) strongly points to a role in perturbation of the cyanobacterial host photosynthetic electron flow. We therefore suggest that, depending on the physiological condition of the infected cyanobacterial host, the viruses may use different options to maximize survival. The modified PSI may alternate between functioning with PSII in linear electron transfer and contributing to the production of both NADPH and ATP or functioning independently of PSII in cyclic mode via the NDH-1 complex and thus producing only ATP.
Collapse
Affiliation(s)
- Ariella Alperovitch-Lavy
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itai Sharon
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Forest Rohwer
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eva-Mari Aro
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fabian Glaser
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Milo
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Béjà
- Faculty of BiologyFaculty of Computer ScienceBioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, IsraelDepartment of BiologyCenter for Microbial Sciences San Diego State University, San Diego, CA 92182, USADepartment of Biochemistry and Food Chemistry, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, FinlandDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, IsraelDepartment of Biochemistry, George S. Wise Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Ludwig M, Bryant DA. Transcription Profiling of the Model Cyanobacterium Synechococcus sp. Strain PCC 7002 by Next-Gen (SOLiD™) Sequencing of cDNA. Front Microbiol 2011; 2:41. [PMID: 21779275 PMCID: PMC3133671 DOI: 10.3389/fmicb.2011.00041] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/22/2011] [Indexed: 11/24/2022] Open
Abstract
The genome of the unicellular, euryhaline cyanobacterium Synechococcus sp. PCC 7002 encodes about 3200 proteins. Transcripts were detected for nearly all annotated open reading frames by a global transcriptomic analysis by Next-Generation (SOLiD™) sequencing of cDNA. In the cDNA samples sequenced, ∼90% of the mapped sequences were derived from the 16S and 23S ribosomal RNAs and ∼10% of the sequences were derived from mRNAs. In cells grown photoautotrophically under standard conditions [38°C, 1% (v/v) CO(2) in air, 250 μmol photons m(-2) s(-1)], the highest transcript levels (up to 2% of the total mRNA for the most abundantly transcribed genes; e.g., cpcAB, psbA, psaA) were generally derived from genes encoding structural components of the photosynthetic apparatus. High-light exposure for 1 h caused changes in transcript levels for genes encoding proteins of the photosynthetic apparatus, Type-1 NADH dehydrogenase complex and ATP synthase, whereas dark incubation for 1 h resulted in a global decrease in transcript levels for photosynthesis-related genes and an increase in transcript levels for genes involved in carbohydrate degradation. Transcript levels for pyruvate kinase and the pyruvate dehydrogenase complex decreased sharply in cells incubated in the dark. Under dark anoxic (fermentative) conditions, transcript changes indicated a global decrease in transcripts for respiratory proteins and suggested that cells employ an alternative phosphoenolpyruvate degradation pathway via phosphoenolpyruvate synthase (ppsA) and the pyruvate:ferredoxin oxidoreductase (nifJ). Finally, the data suggested that an apparent operon involved in tetrapyrrole biosynthesis and fatty acid desaturation, acsF2-ho2-hemN2-desF, may be regulated by oxygen concentration.
Collapse
Affiliation(s)
- Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
39
|
Comparative metagenomics of microbial traits within oceanic viral communities. ISME JOURNAL 2011; 5:1178-90. [PMID: 21307954 DOI: 10.1038/ismej.2011.2] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral genomes often contain genes recently acquired from microbes. In some cases (for example, psbA) the proteins encoded by these genes have been shown to be important for viral replication. In this study, using a unique search strategy on the Global Ocean Survey (GOS) metagenomes in combination with marine virome and microbiome pyrosequencing-based datasets, we characterize previously undetected microbial metabolic capabilities concealed within the genomes of uncultured marine viral communities. A total of 34 microbial gene families were detected on 452 viral GOS scaffolds. The majority of auxiliary metabolic genes found on these scaffolds have never been reported in phages. Host genes detected in viruses were mainly divided between genes encoding for different energy metabolism pathways, such as electron transport and newly identified photosystem genes, or translation and post-translation mechanism related. Our findings suggest previously undetected ways, in which marine phages adapt to their hosts and improve their fitness, including translation and post-translation level control over the host rather than the already known transcription level control.
Collapse
|
40
|
Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 2010; 74:529-51. [PMID: 21119016 PMCID: PMC3008169 DOI: 10.1128/mmbr.00033-10] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H(2) as a source of combustible energy. To enhance the rates of H(2) production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H(2) formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zülpicher Str. 47b, D-50923 Cologne, Germany.
| | | | | | | |
Collapse
|
41
|
Distinct roles of multiple NDH-1 complexes in the cyanobacterial electron transport network as revealed by kinetic analysis of P700+ reduction in various Ndh-deficient mutants of Synechocystis sp. strain PCC6803. J Bacteriol 2010; 193:292-5. [PMID: 21036997 DOI: 10.1128/jb.00984-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While methyl viologen had only a small effect on P700(+) rereduction kinetics after far-red pulses in KCN-treated wild-type Synechocystis sp. strain PCC6803 and an NdhF3/NdhF4 (NdhF3/F4)-defective mutant, it involved a rather slow P700(+) rereduction in an NdhF1-defective mutant. This strongly indicates that (i) active electron flow from metabolites to plastoquinone is suppressed upon deletion of ndhF1 and (ii) photosystem 1-mediated cyclic electron transport is dependent on NdhF3/F4-type NDH-1 complexes.
Collapse
|
42
|
Peng L, Yamamoto H, Shikanai T. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:945-53. [PMID: 21029720 DOI: 10.1016/j.bbabio.2010.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/15/2010] [Accepted: 10/17/2010] [Indexed: 11/19/2022]
Abstract
Eleven genes (ndhA-ndhK) encoding proteins homologous to the subunits of bacterial and mitochondrial NADH dehydrogenase (complex I) were found in the plastid genome of most land plants. These genes encode subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex involved in photosystem I (PSI) cyclic electron transport and chlororespiration. Although the chloroplast NDH is believed to be closely and functionally related to the cyanobacterial NDH-1L complex, extensive proteomic, genetic and bioinformatic studies have discovered many novel subunits that are specific to higher plants. On the basis of extensive mutant characterization, the chloroplast NDH complex is divided into four parts, the A, B, membrane and lumen subcomplexes, of which subunits in the B and lumen subcomplexes are specific to higher plants. These results suggest that the structure of NDH has been drastically altered during the evolution of land plants. Furthermore, chloroplast NDH interacts with multiple copies of PSI to form the unique NDH-PSI supercomplex. Two minor light-harvesting-complex I (LHCI) proteins, Lhca5 and Lhca6, are required for the specific interaction between NDH and PSI. The evolution of chloroplast NDH in land plants may be required for development of the function of NDH to alleviate oxidative stress in chloroplasts. In this review, we summarize recent progress on the subunit composition and structure of the chloroplast NDH complex, as well as the information on some factors involved in its assembly. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Lianwei Peng
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
43
|
Battchikova N, Vainonen JP, Vorontsova N, Keranen M, Carmel D, Aro EM. Dynamic changes in the proteome of Synechocystis 6803 in response to CO(2) limitation revealed by quantitative proteomics. J Proteome Res 2010; 9:5896-912. [PMID: 20795750 DOI: 10.1021/pr100651w] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacteria developed efficient carbon concentrating mechanisms which significantly improve the photosynthetic performance and survival of cells under limiting CO(2) conditions. Dynamic changes of the Synechocystis proteome to CO(2) limitation were investigated using shotgun LC-MS/MS approach with isobaric tag for relative and absolute quantification (iTRAQ) technique. Synechocystis cells grown at high (3%) CO(2) were shifted to air-level CO(2) followed by protein extraction after 6, 24, and 72 h. About 19% of the cyanobacterial proteome was identified and the expression changes were quantified for 17% of theoretical ORFs. For 76 proteins, up- or down-regulation was found to be significant (more than 1.5 or less than 0.7). Major changes were observed in proteins participating in inorganic carbon uptake, CO(2) fixation, nitrogen transport and assimilation, as well as in the protection of the photosynthetic machinery from excess of light. Further, a number of hypothetical proteins with unknown functions were discovered. In general, the cells appear to acclimate to low CO(2) without a significant stress since the stress-related molecular chaperones were down-regulated and only a minor decline was detected for proteins of phycobilisomes, photosynthetic complexes, and translation machinery. The results of iTRAQ experiment were validated by the Western blot analysis for selected proteins.
Collapse
Affiliation(s)
- Natalia Battchikova
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, University of Turku, Finland.
| | | | | | | | | | | |
Collapse
|
44
|
Birungi M, Folea M, Battchikova N, Xu M, Mi H, Ogawa T, Aro EM, Boekema EJ. Possibilities of subunit localization with fluorescent protein tags and electron microscopy examplified by a cyanobacterial NDH-1 study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1681-6. [DOI: 10.1016/j.bbabio.2010.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/26/2022]
|
45
|
Peng L, Cai W, Shikanai T. Chloroplast stromal proteins, CRR6 and CRR7, are required for assembly of the NAD(P)H dehydrogenase subcomplex A in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:203-211. [PMID: 20444231 DOI: 10.1111/j.1365-313x.2010.04240.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In higher plants, the chloroplast NAD(P)H dehydrogenase (NDH) complex mediates chlororespiration and photosystem I (PSI) cyclic electron transport in thylakoid membranes. Because of its low abundance and fragility, our knowledge on the assembly of chloroplast NDH is very limited, and some nuclear-encoded factors may be involved in this process. We show here that two Arabidopsis proteins, CHLORORESPIRATORY REDUCTION 6 (CRR6) and CRR7, which were previously identified in mutants specifically defective in NDH accumulation, are present in the stroma, and their stability is independent of the NDH complex, suggesting that they are unlikely to be NDH subunits. Blue native PAGE analysis showed that the accumulation of NDH subcomplex A, which is a core part of NDH that is conserved in divergent species, was specifically impaired in the crr6 and crr7-1 mutants. However, the expression of plastid-encoded genes encoding the subcomplex A subunits was not affected, suggesting that CRR6 and CRR7 are involved in post-translational steps during the biogenesis of subcomplex A. We also discovered that a substantial quantity of NdhH is present in several protein complexes in the chloroplast stroma, possibly as early assembly intermediates of subcomplex A. Although the accumulation of these stromal complexes was not affected in crr6 or crr7-1, CRR6 was co-purified with NdhH, implying that CRR6 functions in the later step of subcomplex-A biogenesis. Accumulation of CRR7 was independent of that of CRR6; we propose that CRR7 functions in a different step in subcomplex-A biogenesis from CRR6.
Collapse
Affiliation(s)
- Lianwei Peng
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Wenhe Cai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
46
|
Suorsa M, Sirpiö S, Paakkarinen V, Kumari N, Holmström M, Aro EM. Two proteins homologous to PsbQ are novel subunits of the chloroplast NAD(P)H dehydrogenase. PLANT & CELL PHYSIOLOGY 2010; 51:877-83. [PMID: 20460499 DOI: 10.1093/pcp/pcq070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The PsbQ-like (PQL) proteins 1 and 2, previously shown to be located in the thylakoid lumen of Arabidopsis thaliana, are homologous to PSII oxygen-evolving complex protein PsbQ. Nevertheless, pql mutants showed no defects in PSII but instead the activity of the chloroplast NAD(P)H dehydrogenease (NDH) complex was severely impaired. In line with this observation, the NDH subunits were low in abundance in pql mutants, and, conversely, ndh mutants strongly down-regulated the accumulation of the PQL proteins. In addition, the PQL2 protein was up-regulated in mutant plants deficient in the PSI complex or the thylakoid membrane-bound ferredoxin-NADP(+) oxidoreductase, whereas in pql mutants the PSI complex was slightly up-regulated. Taken together, the two PQL proteins are shown to be novel subunits of the lumenal protuberance of the NDH complex.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biochemistry and Food Chemistry, Molecular Plant Biology, FI-20014 University of Turku, Finland
| | | | | | | | | | | |
Collapse
|
47
|
Rodea-Palomares I, Petre AL, Boltes K, Leganés F, Perdigón-Melón JA, Rosal R, Fernández-Piñas F. Application of the combination index (CI)-isobologram equation to study the toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. WATER RESEARCH 2010; 44:427-438. [PMID: 19683324 DOI: 10.1016/j.watres.2009.07.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 05/28/2023]
Abstract
Pharmaceuticals in the aquatic environment do not appear singly and usually occur as complex mixtures, whose combined effect may exhibit toxicity to the aquatic biota. We report an environmental application of the combination index (CI)-isobologram equation, a method widely used in pharmacology to study drug interactions, to determine the nature of toxicological interactions of three fibrates toward two aquatic bioluminescent organisms, Vibrio fischeri and the self-luminescent cyanobacterial recombinant strain Anabaena CPB4337. The combination index-isobologram equation method allows computerized quantitation of synergism, additive effect and antagonism. In the Vibrio test, the fibrate combinations showed antagonism at low effect levels that turned into an additive effect or synergism at higher effect levels; by contrast, in the Anabaena test, the fibrate combinations showed a strong synergism at the lowest effect levels and a very strong antagonism at high effect levels. We also evaluated the nature of the interactions of the three fibrates with a real wastewater sample in the cyanobacterial test. We propose that the combination index-isobologram equation method can serve as a useful tool in ecotoxicological assessment.
Collapse
Affiliation(s)
- Ismael Rodea-Palomares
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 2 Darwin Street, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Elanskaya IV, Toporova VA, Grivennikova VG, Muronets EM, Lukashev EP, Timofeev KN. Reduction of photosystem I reaction center by recombinant DrgA protein in isolated thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. BIOCHEMISTRY (MOSCOW) 2009; 74:1080-7. [DOI: 10.1134/s0006297909100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Suorsa M, Sirpiö S, Aro EM. Towards characterization of the chloroplast NAD(P)H dehydrogenase complex. MOLECULAR PLANT 2009; 2:1127-40. [PMID: 19995722 DOI: 10.1093/mp/ssp052] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The NAD(P)H dehydrogenase (NDH) complex in chloroplast thylakoid membranes functions in cyclic electron transfer, and in chlororespiration. NDH is composed of at least 15 subunits, including both chloroplast- and nuclear-encoded proteins. During the past few years, extensive proteomic and genetic research on the higher plant NDH complex has been carried out, resulting in identification of several novel nuclear-encoded subunits. In addition, a number of auxiliary proteins, which mainly regulate the expression of chloroplast-encoded ndh genes as well as the assembly and stabilization of the NDH complex, have been discovered and characterized. In the absence of detailed crystallographic data, the structure of the NDH complex has remained obscure, and therefore the role of several NDH-associated nuclear-encoded proteins either as auxiliary proteins or structural subunits remains uncertain. In this review, we summarize the current knowledge on the subunit composition and assembly process of the chloroplast NDH complex. In addition, a novel oligomeric structure of NDH, the PSI/NDH supercomplex, is discussed.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, FI-20014 Turku, Finland
| | | | | |
Collapse
|
50
|
Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T. Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. THE PLANT CELL 2009; 21:3623-40. [PMID: 19903870 PMCID: PMC2798312 DOI: 10.1105/tpc.109.068791] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 10/01/2009] [Accepted: 10/23/2009] [Indexed: 05/18/2023]
Abstract
In higher plants, the chloroplast NAD(P)H dehydrogenase (NDH) complex mediates photosystem I (PSI) cyclic and chlororespiratory electron transport. We reported previously that NDH interacts with the PSI complex to form a supercomplex (NDH-PSI). In this study, NDH18 and FKBP16-2 (FK506 Binding Protein 16-2), detected in the NDH-PSI supercomplex by mass spectrometry, were shown to be NDH subunits by the analysis of their knockdown lines. On the basis of extensive mutant characterization, we propose a structural model for chloroplast NDH, whereby NDH is divided into four subcomplexes. The subcomplex A and membrane subcomplex are conserved in cyanobacteria, but the subcomplex B and lumen subcomplex are specific to chloroplasts. Two minor light-harvesting complex I proteins, Lhca5 and Lhca6, were required for the full-size NDH-PSI supercomplex formation. Similar to crr pgr5 double mutants that completely lack cyclic electron flow activity around PSI, the lhca6 pgr5 double mutant exhibited a severe defect in growth. Consistent with the impaired NDH activity, photosynthesis was also severely affected in mature leaves of lhca6 pgr5. We conclude that chloroplast NDH became equipped with the novel subcomplexes and became associated with PSI during the evolution of land plants, and this process may have facilitated the efficient operation of NDH.
Collapse
Affiliation(s)
- Lianwei Peng
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichiro Fukao
- Plant Science Education Unit, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101, Japan
| | - Masayuki Fujiwara
- Plant Science Education Unit, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101, Japan
| | - Tsuneaki Takami
- Graduate School of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|