1
|
Pan R, Wang Y, An F, Yao Y, Xue J, Zhu W, Luo X, Lai H, Chen S. Genome-wide identification and characterization of 14-3-3 gene family related to negative regulation of starch accumulation in storage root of Manihot esculenta. FRONTIERS IN PLANT SCIENCE 2023; 14:1184903. [PMID: 37711300 PMCID: PMC10497974 DOI: 10.3389/fpls.2023.1184903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/21/2023] [Indexed: 09/16/2023]
Abstract
The 14-3-3 protein family is a highly conservative member of the acid protein family and plays an important role in regulating a series of important biological activities and various signal transduction pathways. The role of 14-3-3 proteins in regulating starch accumulation still remains largely unknown. To investigate the properties of 14-3-3 proteins, the structures and functions involved in starch accumulation in storage roots were analyzed, and consequently, 16 Me14-3-3 genes were identified. Phylogenetic analysis revealed that Me14-3-3 family proteins are split into two groups (ε and non-ε). All Me14-3-3 proteins contain nine antiparallel α-helices. Me14-3-3s-GFP fusion protein was targeted exclusively to the nuclei and cytoplasm. In the early stage of starch accumulation in the storage root, Me14-3-3 genes were highly expressed in high-starch cultivars, while in the late stage of starch accumulation, Me14-3-3 genes were highly expressed in low-starch cultivars. Me14-3-3 I, II, V, and XVI had relatively high expression levels in the storage roots. The transgenic evidence from Me14-3-3II overexpression in Arabidopsis thaliana and the virus-induced gene silencing (VIGS) in cassava leaves and storage roots suggest that Me14-3-3II is involved in the negative regulation of starch accumulation. This study provides a new insight to understand the molecular mechanisms of starch accumulation linked with Me14-3-3 genes during cassava storage root development.
Collapse
Affiliation(s)
- Ranran Pan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yajie Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture of Biology and Genetic Resources of Tropical Crops, Haikou, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture of Biology and Genetic Resources of Tropical Crops, Haikou, China
| | - Jingjing Xue
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Wenli Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Xiuqin Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| | - Hanggui Lai
- College of Tropical Crops, Hainan University, Haikou, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, China
| |
Collapse
|
2
|
Lai H, Zhou Y, Chen W, Deng Y, Qiu Y, Chen X, Guo J. Changes in sucrose metabolism patterns affect the early maturation of Cassava sexual tetraploid roots. BMC PLANT BIOLOGY 2022; 22:574. [PMID: 36496357 PMCID: PMC9738016 DOI: 10.1186/s12870-022-03969-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) is an important multiuse crop grown for economic and energy purposes. Its vegetative organs are storage roots, in which the main storage material is starch. The accumulation characteristics of starch in cassava roots can directly affect the yield, starch content and maturation of cassava storage roots. In this study, we used a cassava sexual tetraploid (ST), which showed early maturation heterosis in previous work, as the main test material. We analyzed the sucrose metabolism and starch accumulation characteristics of the ST and its parents from the leaf "source" to the storage root "sink" during different developmental stages and explored the regulatory mechanisms of ST storage root early maturation by combining the transcriptome data of the storage roots during the expansion period. RESULTS The results showed that the trends in sucrose, glucose and fructose contents in the ST leaves were similar to those of the two parents during different stages of development, but the trends in the ST storage roots were significantly different from those of their parents, which showed high sucrose utilization rates during the early stage of development and decreased utilization capacity in the late developmental stage. Transcriptome data showed that the genes that were expressed differentially between ST and its parents were mainly involved in the degradation and utilization of sucrose in the storage roots, and four key enzyme genes were significantly upregulated (Invertase MeNINV8/MeVINV3, Sucrose synthase MeSuSy2, Hexokinase MeHXK2), while the expressions of key enzyme genes involved in starch synthesis were not significantly different. CONCLUSIONS The results revealed that the pattern of sucrose degradation and utilization in the cassava ST was different from that of its parents and promoted early maturation in its tuberous roots. Starch accumulation in the ST from sucrose mainly occurred during the early expansion stage of the storage roots, and the starch content during this period was higher than that of both parents, mainly due to the regulation of invertase and hexokinase activities during sucrose metabolism. This study provides a basis for further genetic improvements to cassava traits and for breeding varieties that mature early and are adapted well to provide starch supply requirements.
Collapse
Affiliation(s)
- Hanggui Lai
- Tropical Crops College of Hainan University, Haikou, 571104, China
| | - Yangjiao Zhou
- Tropical Crops College of Hainan University, Haikou, 571104, China
| | - Weiwen Chen
- Hainan Forest Tree Seeds (Saplings) Terminal, Haikou, 570203, China
| | - Yajie Deng
- Tropical Crops College of Hainan University, Haikou, 571104, China
| | - Yue Qiu
- Tropical Crops College of Hainan University, Haikou, 571104, China
| | - Xia Chen
- College of Jiyang, Zhejiang A&F University, Zhuji, 311800, China.
| | - Jianchun Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
3
|
Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, Chen B, Zheng G, Li H, Huang Y, Zhan J, Xiao D, He L. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 2022; 23:473. [PMID: 35761189 PMCID: PMC9235109 DOI: 10.1186/s12864-022-08670-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Tuberous root formation and development is a complex process in sweet potato, which is regulated by multiple genes and environmental factors. However, the regulatory mechanism of tuberous root development is unclear. Results In this study, the transcriptome of fibrous roots (R0) and tuberous roots in three developmental stages (Rl, R2, R3) were analyzed in two sweet potato varieties, GJS-8 and XGH. A total of 22,914 and 24,446 differentially expressed genes (DEGs) were identified in GJS-8 and XGH respectively, 15,920 differential genes were shared by GJS-8 and XGH. KEGG pathway enrichment analysis showed that the DEGs shared by GJS-8 and XGH were mainly involved in “plant hormone signal transduction” “starch and sucrose metabolism” and “MAPK signal transduction”. Trihelix transcription factor (Tai6.25300) was found to be closely related to tuberous root enlargement by the comprehensive analysis of these DEGs and weighted gene co-expression network analysis (WGCNA). Conclusion A hypothetical model of genetic regulatory network for tuberous root development of sweet potato is proposed, which emphasizes that some specific signal transduction pathways like “plant hormone signal transduction” “Ca2+signal” “MAPK signal transduction” and metabolic processes including “starch and sucrose metabolism” and “cell cycle and cell wall metabolism” are related to tuberous root development in sweet potato. These results provide new insights into the molecular mechanism of tuberous root development in sweet potato. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08670-x.
Collapse
Affiliation(s)
- Zhaoqin Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532406, People's Republic of China
| | - Zhipeng Cai
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jingli Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bimei Chen
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Ganghui Zheng
- Hepu Institute of Agricultural Sciences, Beihai, 536101, People's Republic of China
| | - Huifeng Li
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yongmei Huang
- Maize Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China.
| |
Collapse
|
4
|
Chen P, Yang R, Bartels D, Dong T, Duan H. Roles of Abscisic Acid and Gibberellins in Stem/Root Tuber Development. Int J Mol Sci 2022; 23:ijms23094955. [PMID: 35563355 PMCID: PMC9102914 DOI: 10.3390/ijms23094955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Root and tuber crops are of great importance. They not only contribute to feeding the population but also provide raw material for medicine and small-scale industries. The yield of the root and tuber crops is subject to the development of stem/root tubers, which involves the initiation, expansion, and maturation of storage organs. The formation of the storage organ is a highly intricate process, regulated by multiple phytohormones. Gibberellins (GAs) and abscisic acid (ABA), as antagonists, are essential regulators during stem/root tuber development. This review summarizes the current knowledge of the roles of GA and ABA during stem/root tuber development in various tuber crops.
Collapse
Affiliation(s)
- Peilei Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
| | - Ruixue Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Faculty of Natural Sciences, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany;
| | - Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (P.C.); (R.Y.); (T.D.)
- Correspondence:
| |
Collapse
|
5
|
Otun S, Escrich A, Achilonu I, Rauwane M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L. The future of cassava in the era of biotechnology in Southern Africa. Crit Rev Biotechnol 2022; 43:594-612. [PMID: 35369831 DOI: 10.1080/07388551.2022.2048791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cassava (Manihot esculenta) is a major staple food and the world's fourth source of calories. Biotechnological contributions to enhancing this crop, its advances, and present issues must be assessed regularly. Functional genomics, genomic-assisted breeding, molecular tools, and genome editing technologies, among other biotechnological approaches, have helped improve the potential of economically important crops like cassava by addressing some of its significant constraints, such as nutrient deficiency, toxicity, poor starch quality, disease susceptibility, low yield capacity, and postharvest deterioration. However, the development, improvement, and subsequent acceptance of the improved cultivars have been challenging and have required holistic approaches to solving them. This article provides an update of trends and gaps in cassava biotechnology, reviewing the relevant strategies used to improve cassava crops and highlighting the potential risk and acceptability of improved cultivars in Southern Africa.
Collapse
Affiliation(s)
- Sarah Otun
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ikechukwu Achilonu
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Molemi Rauwane
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida, South Africa
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Tribble CM, Martínez-Gómez J, Alzate-Guarín F, Rothfels CJ, Specht CD. Comparative transcriptomics of a monocotyledonous geophyte reveals shared molecular mechanisms of underground storage organ formation. Evol Dev 2021; 23:155-173. [PMID: 33465278 DOI: 10.1111/ede.12369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Many species from across the vascular plant tree-of-life have modified standard plant tissues into tubers, bulbs, corms, and other underground storage organs (USOs), unique innovations which allow these plants to retreat underground. Our ability to understand the developmental and evolutionary forces that shape these morphologies is limited by a lack of studies on certain USOs and plant clades. We take a comparative transcriptomics approach to characterizing the molecular mechanisms of tuberous root formation in Bomarea multiflora (Alstroemeriaceae) and compare these mechanisms to those identified in other USOs across diverse plant lineages; B. multiflora fills a key gap in our understanding of USO molecular development as the first monocot with tuberous roots to be the focus of this kind of research. We sequenced transcriptomes from the growing tip of four tissue types (aerial shoot, rhizome, fibrous root, and root tuber) of three individuals of B. multiflora. We identified differentially expressed isoforms between tuberous and non-tuberous roots and tested the expression of a priori candidate genes implicated in underground storage in other taxa. We identify 271 genes that are differentially expressed in root tubers versus non-tuberous roots, including genes implicated in cell wall modification, defense response, and starch biosynthesis. We also identify a phosphatidylethanolamine-binding protein, which has been implicated in tuberization signalling in other taxa and, through gene-tree analysis, place this copy in a phylogenetic context. These findings suggest that some similar molecular processes underlie the formation of USOs across flowering plants despite the long evolutionary distances among taxa and non-homologous morphologies (e.g., bulbs vs. tubers). (Plant development, tuberous roots, comparative transcriptomics, geophytes).
Collapse
Affiliation(s)
- Carrie M Tribble
- Department of Integrative Biology and, University Herbarium, University of California, Berkeley, California, USA
| | - Jesús Martínez-Gómez
- Department of Integrative Biology and, University Herbarium, University of California, Berkeley, California, USA.,School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| | - Fernando Alzate-Guarín
- Grupo de Estudios Botánicos (GEOBOTA) and Herbario Universidad de Antioquia (HUA), Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carl J Rothfels
- Department of Integrative Biology and, University Herbarium, University of California, Berkeley, California, USA
| | - Chelsea D Specht
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Ding Z, Fu L, Tie W, Yan Y, Wu C, Dai J, Zhang J, Hu W. Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7003-7017. [PMID: 32777039 DOI: 10.1093/jxb/eraa369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/01/2020] [Indexed: 05/23/2023]
Abstract
Cassava (Manihot esculenta) is an important starchy root crop that provides food for millions of people worldwide, but little is known about the regulation of the development of its tuberous root at the multi-omics level. In this study, the transcriptome, proteome, and metabolome were examined in parallel at seven time-points during the development of the tuberous root from the early to late stages of its growth. Overall, highly dynamic and stage-specific changes in the expression of genes/proteins were observed during development. Cell wall and auxin genes, which were regulated exclusively at the transcriptomic level, mainly functioned during the early stages. Starch biosynthesis, which was controlled at both the transcriptomic and proteomic levels, was mainly activated in the early stages and was greatly restricted during the late stages. Two main branches of lignin biosynthesis, coniferyl alcohol and sinapyl alcohol, also functioned during the early stages of development at both the transcriptomic and proteomic levels. Metabolomic analysis further supported the stage-specific roles of particular genes/proteins. Metabolites related to lignin and flavonoid biosynthesis showed high abundance during the early stages, those related to lipids exhibited high abundance at both the early and middle stages, while those related to amino acids were highly accumulated during the late stages. Our findings provide a comprehensive resource for broadening our understanding of tuberous root development and will facilitate future genetic improvement of cassava.
Collapse
Affiliation(s)
- Zehong Ding
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lili Fu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiwei Tie
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Yan
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunlai Wu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Dai
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaming Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
8
|
Chiewchankaset P, Siriwat W, Suksangpanomrung M, Boonseng O, Meechai A, Tanticharoen M, Kalapanulak S, Saithong T. Understanding carbon utilization routes between high and low starch-producing cultivars of cassava through Flux Balance Analysis. Sci Rep 2019; 9:2964. [PMID: 30814632 PMCID: PMC6393550 DOI: 10.1038/s41598-019-39920-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Analysis of metabolic flux was used for system level assessment of carbon partitioning in Kasetsart 50 (KU50) and Hanatee (HN) cassava cultivars to understand the metabolic routes for their distinct phenotypes. First, the constraint-based metabolic model of cassava storage roots, rMeCBM, was developed based on the carbon assimilation pathway of cassava. Following the subcellular compartmentalization and curation to ensure full network connectivity and reflect the complexity of eukaryotic cells, cultivar specific data on sucrose uptake and biomass synthesis were input, and rMeCBM model was used to simulate storage root growth in KU50 and HN. Results showed that rMeCBM-KU50 and rMeCBM-HN models well imitated the storage root growth. The flux-sum analysis revealed that both cultivars utilized different metabolic precursors to produce energy in plastid. More carbon flux was invested in the syntheses of carbohydrates and amino acids in KU50 than in HN. Also, KU50 utilized less flux for respiration and less energy to synthesize one gram of dry storage root. These results may disclose metabolic potential of KU50 underlying its higher storage root and starch yield over HN. Moreover, sensitivity analysis indicated the robustness of rMeCBM model. The knowledge gained might be useful for identifying engineering targets for cassava yield improvement.
Collapse
Affiliation(s)
- Porntip Chiewchankaset
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Wanatsanan Siriwat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Malinee Suksangpanomrung
- Plant Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani, 12120, Thailand
| | - Opas Boonseng
- Rayong Field Crops Research Center, Department of Agriculture, Rayong, 21150, Thailand
| | - Asawin Meechai
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (Bang Mod), Bangkok, 10140, Thailand
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| | - Treenut Saithong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|
9
|
Prediction of cassava protein interactome based on interolog method. Sci Rep 2017; 7:17206. [PMID: 29222529 PMCID: PMC5722940 DOI: 10.1038/s41598-017-17633-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Cassava is a starchy root crop whose role in food security becomes more significant nowadays. Together with the industrial uses for versatile purposes, demand for cassava starch is continuously growing. However, in-depth study to uncover the mystery of cellular regulation, especially the interaction between proteins, is lacking. To reduce the knowledge gap in protein-protein interaction (PPI), genome-scale PPI network of cassava was constructed using interolog-based method (MePPI-In, available at http://bml.sbi.kmutt.ac.th/ppi). The network was constructed from the information of seven template plants. The MePPI-In included 90,173 interactions from 7,209 proteins. At least, 39 percent of the total predictions were found with supports from gene/protein expression data, while further co-expression analysis yielded 16 highly promising PPIs. In addition, domain-domain interaction information was employed to increase reliability of the network and guide the search for more groups of promising PPIs. Moreover, the topology and functional content of MePPI-In was similar to the networks of Arabidopsis and rice. The potential contribution of MePPI-In for various applications, such as protein-complex formation and prediction of protein function, was discussed and exemplified. The insights provided by our MePPI-In would hopefully enable us to pursue precise trait improvement in cassava.
Collapse
|
10
|
Wang X, Chang L, Tong Z, Wang D, Yin Q, Wang D, Jin X, Yang Q, Wang L, Sun Y, Huang Q, Guo A, Peng M. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization. Sci Rep 2016; 6:19643. [PMID: 26791570 PMCID: PMC4726164 DOI: 10.1038/srep19643] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.
Collapse
Affiliation(s)
- Xuchu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Lili Chang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Zheng Tong
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dongyang Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Qi Yin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiang Jin
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Liming Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Qixing Huang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.,College of Agriculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
11
|
Saithong T, Saerue S, Kalapanulak S, Sojikul P, Narangajavana J, Bhumiratana S. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons. PLoS One 2015; 10:e0137602. [PMID: 26366737 PMCID: PMC4569563 DOI: 10.1371/journal.pone.0137602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change.
Collapse
Affiliation(s)
- Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Samorn Saerue
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Punchapat Sojikul
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
| | - Jarunya Narangajavana
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
| | - Sakarindr Bhumiratana
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thungkhru, Bangmod, Bangkok, Thailand
| |
Collapse
|
12
|
Zhang N, Zhao J, Lens F, de Visser J, Menamo T, Fang W, Xiao D, Bucher J, Basnet RK, Lin K, Cheng F, Wang X, Bonnema G. Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European turnips (Brassica rapa subsp. rapa). PLoS One 2014; 9:e114241. [PMID: 25474111 PMCID: PMC4256417 DOI: 10.1371/journal.pone.0114241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022] Open
Abstract
Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization.
Collapse
Affiliation(s)
- Ningwen Zhang
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | - Jianjun Zhao
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
- Horticultural College, Hebei Agricultural University, Baoding, China
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Joan de Visser
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | | | - Wen Fang
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | - Dong Xiao
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Johan Bucher
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | | | - Ke Lin
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Cortés Sierra SP, Chavarriaga P, Ceballos H, López Carrascal CE. EVALUACIÓN DE LA EXPRESIÓN DE GENES IMPLICADOS EN LA BIOSÍNTESIS DE ALMIDÓN EN DIFERENTES VARIEDADES DE YUCA. ACTA BIOLÓGICA COLOMBIANA 2014. [DOI: 10.15446/abc.v20n2.42875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Las raíces almacenadoras de yuca representan una fuente importante de almidón. La ruta metabólica del almidón ha sido reconstruida recientemente en yuca gracias a la liberación de la secuencia completa de su genoma. En este estudio se evaluó la expresión de los genes que codifican para las enzimas Pululanasa, Isoamilasa, α-amilasa, Enzima Desproporcionante, ADP-glucosa pirofoforilasa, Almidón sintasa unida al gránulo, Enzima ramificante del almidón y Sintasa soluble del almidón, en las raíces almacenadoras de plantas de 5 y 11 meses de edad, en un grupo de cinco variedades de yuca. Se evidenciaron diferencias importantes en la expresión de estos genes entre las variedades evaluadas y entre los dos tiempos. Las variedades CM523-7 y SM1219-2 presentaron uno de los niveles más altos de expresión para los genes ADP-glucosa pirofoforilasa y Almidón sintasa unida al gránulo mientras que el gen para α-amilasa fue el más bajo en estas dos variedades. Aunque la variedad TMS60444 presentó niveles de expresión similares en genes implicados en la síntesis de almidón, fue la que presentó el mayor nivel de expresión de la α-amilasa. Estos datos se pueden correlacionar con el relativo bajo contenido de materia seca en esta variedad. Los datos de expresión génica presentados en este trabajo permitirán complementar información sobre actividad enzimática con miras a identificar los elementos más importantes en la acumulación diferencial de almidón entre variedades de yuca.</p><p><strong>ABSTRACT</strong></p><p>Cassava storage roots represent an important starch source. Recently, the starch metabolic pathway in cassava has been reconstructed thanks to the full release of its genome. In this study gene expression was evaluated for genes coding Pullulanase, Isoamylase, α-amylase, Deproportionating enzyme, ADP-glucose pyrophosphorylase, Granule bound starch synthase, Starch branching enzyme and Soluble starch synthase, in cassava storage roots 5 and 11 months old, in 5 cassava varieties. Important gene expression differences were detected both at the variety and time level. CM523-7 and SM1219-2 showed one of the highest expression levels for AGPase and GBSS genes, while α-amylase showed the lowest level in these two varieties. TMS60444 variety showed similar expression levels in starch biosynthesis-related genes, but conversely also showed the highest α-amylase expression. This correlates with the relative low dry-matter content in TMS60444. Gene expression data reported here will allow complementing actual information on enzymatic activity, in order to identify the most relevant factors in differential starch accumulation between cassava varieties.</p><br /><p> </p>
Collapse
|
14
|
Sakurai T, Mochida K, Yoshida T, Akiyama K, Ishitani M, Seki M, Shinozaki K. Genome-wide discovery and information resource development of DNA polymorphisms in cassava. PLoS One 2013; 8:e74056. [PMID: 24040164 PMCID: PMC3770675 DOI: 10.1371/journal.pone.0074056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/29/2013] [Indexed: 01/06/2023] Open
Abstract
Cassava (Manihot esculenta Crantz) is an important crop that provides food security and income generation in many tropical countries, and is known for its adaptability to various environmental conditions. Its draft genome sequence and many expressed sequence tags are now publicly available, allowing the development of cassava polymorphism information. Here, we describe the genome-wide discovery of cassava DNA polymorphisms. Using the alignment of predicted transcribed sequences from the cassava draft genome sequence and ESTs from GenBank, we discovered 10,546 single-nucleotide polymorphisms and 647 insertions and deletions. To facilitate molecular marker development for cassava, we designed 9,316 PCR primer pairs to amplify the genomic region around each DNA polymorphism. Of the discovered SNPs, 62.7% occurred in protein-coding regions. Disease-resistance genes were found to have a significantly higher ratio of nonsynonymous-to-synonymous substitutions. We identified 24 read-through (changes of a stop codon to a coding codon) and 38 premature stop (changes of a coding codon to a stop codon) single-nucleotide polymorphisms, and found that the 5 gene ontology terms in biological process were significantly different in genes with read-through single-nucleotide polymorphisms compared with all cassava genes. All data on the discovered DNA polymorphisms were organized into the Cassava Online Archive database, which is available at http://cassava.psc.riken.jp/.
Collapse
Affiliation(s)
- Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
- RIKEN Biomass Engineering Program, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, Japan
| | - Takuhiro Yoshida
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kenji Akiyama
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Manabu Ishitani
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Kanagawa, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
- RIKEN Biomass Engineering Program, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
15
|
Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman TS, Doron-Faigenboim A, Hetzroni A, Althan L, Adani Nadir L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 2013; 14:460. [PMID: 23834507 PMCID: PMC3716973 DOI: 10.1186/1471-2164-14-460] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Background The number of fibrous roots that develop into storage roots determines sweetpotato yield. The aim of the present study was to identify the molecular mechanisms involved in the initiation of storage root formation, by performing a detailed transcriptomic analysis of initiating storage roots using next-generation sequencing platforms. A two-step approach was undertaken: (1) generating a database for the sweetpotato root transcriptome using 454-Roche sequencing of a cDNA library created from pooled samples of two root types: fibrous and initiating storage roots; (2) comparing the expression profiles of initiating storage roots and fibrous roots, using the Illumina Genome Analyzer to sequence cDNA libraries of the two root types and map the data onto the root transcriptome database. Results Use of the 454-Roche platform generated a total of 524,607 reads, 85.6% of which were clustered into 55,296 contigs that matched 40,278 known genes. The reads, generated by the Illumina Genome Analyzer, were found to map to 31,284 contigs out of the 55,296 contigs serving as the database. A total of 8,353 contigs were found to exhibit differential expression between the two root types (at least 2.5-fold change). The Illumina-based differential expression results were validated for nine putative genes using quantitative real-time PCR. The differential expression profiles indicated down-regulation of classical root functions, such as transport, as well as down-regulation of lignin biosynthesis in initiating storage roots, and up-regulation of carbohydrate metabolism and starch biosynthesis. In addition, data indicated delicate control of regulators of meristematic tissue identity and maintenance, associated with the initiation of storage root formation. Conclusions This study adds a valuable resource of sweetpotato root transcript sequences to available data, facilitating the identification of genes of interest. This resource enabled us to identify genes that are involved in the earliest stage of storage root formation, highlighting the reduction in carbon flow toward phenylpropanoid biosynthesis and its delivery into carbohydrate metabolism and starch biosynthesis, as major events involved in storage root initiation. The novel transcripts related to storage root initiation identified in this study provide a starting point for further investigation into the molecular mechanisms underlying this process.
Collapse
Affiliation(s)
- Nurit Firon
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang J, Zheng X, Lin S, Lin J, Guo L, Chen X, Chen Q. Identification of differentially expressed genes involved in laccase production in tropical white-rot fungusPolyporussp. PG15. J Basic Microbiol 2013; 54:142-51. [DOI: 10.1002/jobm.201200310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/29/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Jie Wang
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
| | - Xiaobing Zheng
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
| | - Shuoxin Lin
- Chu Kochen Honors College; Zhejiang University; Hangzhou China
| | - Junfang Lin
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
- Institute of Biomass Research; South China Agricultural University; Guangzhou China
| | - Liqiong Guo
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
- Institute of Biomass Research; South China Agricultural University; Guangzhou China
| | - Xiaoyang Chen
- Institute of Biomass Research; South China Agricultural University; Guangzhou China
| | - Qianting Chen
- Department of Bioengineering; College of Food Science, South China Agricultural University; Guangzhou China
| |
Collapse
|
17
|
Haider S, Pal R. Integrated analysis of transcriptomic and proteomic data. Curr Genomics 2013; 14:91-110. [PMID: 24082820 PMCID: PMC3637682 DOI: 10.2174/1389202911314020003] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/09/2013] [Accepted: 01/22/2013] [Indexed: 12/14/2022] Open
Abstract
Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area.
Collapse
Affiliation(s)
| | - Ranadip Pal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
18
|
Yang J, An D, Zhang P. Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:193-211. [PMID: 21205184 DOI: 10.1111/j.1744-7909.2010.01018.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanisms related to the development of cassava storage roots and starch accumulation remain largely unknown. To evaluate genome-wide expression patterns during tuberization, a 60 mer oligonucleotide microarray representing 20 840 cassava genes was designed to identify differentially expressed transcripts in fibrous roots, developing storage roots and mature storage roots. Using a random variance model and the traditional twofold change method for statistical analysis, 912 and 3 386 upregulated and downregulated genes related to the three developmental phases were identified. Among 25 significantly changed pathways identified, glycolysis/gluconeogenesis was the most evident one. Rate-limiting enzymes were identified from each individual pathway, for example, enolase, L-lactate dehydrogenase and aldehyde dehydrogenase for glycolysis/gluconeogenesis, and ADP-glucose pyrophosphorylase, starch branching enzyme and glucan phosphorylase for sucrose and starch metabolism. This study revealed that dynamic changes in at least 16% of the total transcripts, including transcription factors, oxidoreductases/transferases/hydrolases, hormone-related genes, and effectors of homeostasis. The reliability of these differentially expressed genes was verified by quantitative real-time reverse transcription-polymerase chain reaction. These studies should facilitate our understanding of the storage root formation and cassava improvement.
Collapse
Affiliation(s)
- Jun Yang
- Shanghai Center for Cassava Biotechnology, National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|