1
|
Shirataki H, Gudex L, Wickramasinghe SR. Modeling virus filtration: Materials, applications, and mechanism. iScience 2025; 28:111533. [PMID: 39807163 PMCID: PMC11728907 DOI: 10.1016/j.isci.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
While various methods are employed to ensure the virus safety of finished products, virus filtration (VF) stands out as the preferred method for virus removal and purification of a wide variety of products owing to its capability of separating product molecules with more than 90% recovery and no change in molecule characteristics. The modeling of the virus removal process for VF membranes is based on the principles of microfiltration (MF) and ultrafiltration (UF), but with modifications for the much narrower separation difference, which is less than 2-fold for the separation of product molecules and virus particles. In this review, we introduce the materials and application of VF highlighting the unique characteristics properties of VF membranes through the steps of invention and subsequent development. We examine the virus removal mechanism and filtration models for VF to reproduce and predict the filtration behavior and virus reduction.
Collapse
Affiliation(s)
| | - Linda Gudex
- Science & Technology, Asahi Kasei Bioprocess America, Glenview, IL 60026, USA
| | - Sumith Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Grossegesse M, Stern D, Hofmann N, Surtees R, Kohl C, Michel J, Nitsche A. Serological methods for the detection of antibodies against monkeypox virus applicable for laboratories with different biosafety levels. J Med Virol 2023; 95:e29261. [PMID: 38054557 DOI: 10.1002/jmv.29261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
The monkeypox virus (MPXV) outbreak in 2022 has renewed interest in the detection of antibodies against orthopox viruses (OPXV) and MPXV, as serological methods can aid diagnostics and are key to epidemiological studies. Here three complementary serological methods are described with different strengths to aid the development and evaluation of in-house assays: An immunofluorescence assay (IFA) for specific detection of IgG and IgM, an enzyme-linked immunosorbent assay for higher sample throughput to aid epidemiological studies and a neutralization test to detect virus neutralizing antibodies. As implementation of MPXV-specific diagnostics is often hampered by the requirement for a dedicated biosafety level 3 laboratory (BSL-3), the focus of this study is on biosafety aspects to facilitate safe testing also under BSL-2 conditions. To this aim, it was analyzed whether OPXV, which can be handled under BSL-2 conditions, could be used as less virulent alternatives to MPXV. Furthermore, an inactivation method was established to remove up to five log-steps of infectious virus particles from viraemic sera without compromising antibody detection. The results show that immunological cross-reactivity between OPXV provides an opportunity for the interchangeable usage of different OPXV species in serological assays, enabling MPXV serology outside of BSL-3 facilities.
Collapse
Affiliation(s)
- Marica Grossegesse
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| | - Daniel Stern
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Biological Toxins (ZBS 3), Berlin, Germany
| | - Natalie Hofmann
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| | - Rebecca Surtees
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| | - Claudia Kohl
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| | - Janine Michel
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| | - Andreas Nitsche
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Berlin, Germany
| |
Collapse
|
3
|
Pozzo di Borgo A, Rochette S, Gaussen A, O'Brien SF, Germain M, Renaud C, Lewin A. Transmission of Variant Creutzfeldt-Jakob Disease Through Blood Transfusion and Plasma-Derived Products: A Narrative Review of Observed and Modeled Risks. Transfus Med Rev 2023; 37:150747. [PMID: 37827587 DOI: 10.1016/j.tmrv.2023.150747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 10/14/2023]
Abstract
Secondary transmission of variant Creutzfeldt-Jakob disease (vCJD) can occur through blood transfusion or receipt of plasma-derived products. However, published reviews on this topic are outdated, focused on a single country or product type, or did not comprehensively review modeling studies on the risk of transfusion-transmission. We reviewed existing data on observed and modeled risks of transfusion-transmission of vCJD. To date, five patients are suspected to have acquired clinical vCJD or a vCJD infection after receiving a blood or plasma-derived product from a donor who later developed clinical vCJD. All of these cases received a nonleukodepleted blood-derived product in the United Kingdom between 1994 and 1999. Thus, all transfusion-associated cases occurred before the adoption of universal leukodepletion in 1999, which supports the preferential tropism of vCJD for leukocytes. In descriptive cohort studies, no cases of clinical vCJD were observed over ∼13 years of follow-up. In modeling studies, the risk of collecting a contaminated donation was generally <23 per million donations, that of infection was generally <10 per million transfusions or doses, and that of clinical vCJD was generally <2 per million transfusions or doses. These low risk estimates and the two-decade long absence of new cases of transfusion-associated vCJD suggest vCJD poses minimal risks to the safety of the blood supply. Furthermore, despite concerns of a second wave driven by individuals harboring a non-MM genotype at codon 129 of PRNP, there has been only 1 autopsy-confirmed case of clinical vCJD in an MV individual in 2016. The current trend to reassess or (in some countries) fully withdraw the blood donation criteria related to vCJD therefore seems justified, safe, and may significantly expand the donor base.
Collapse
Affiliation(s)
| | - Samuel Rochette
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada.
| | - Amaury Gaussen
- Medical Affairs and Innovation, Héma-Québec, Quebec, Quebec, Canada.
| | - Sheila F O'Brien
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada.
| | - Marc Germain
- Medical Affairs and Innovation, Héma-Québec, Quebec, Quebec, Canada.
| | - Christian Renaud
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada.
| | - Antoine Lewin
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Kindermann J, Karbiener M, Kreil TR. Orthopox viruses and the safety margins of solvent-detergent treated plasma-derived medicinal products. Transfusion 2022; 62:2454-2457. [PMID: 36146943 PMCID: PMC10087500 DOI: 10.1111/trf.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The currently ongoing outbreak of monkeypox virus in many non-endemic countries around the world has also raised concerns about the safety of plasma-derived medicinal products. Based on what is known about the poxviridae, that is, that members are exceedingly large and carry a lipid envelope, effective removal and inactivation by plasma product manufacturing processes is expected. For the widely used solvent-detergent (S/D) treatments, however, poxviruses have been reported as potentially being a bit more resistant. STUDY DESIGN AND METHODS Using a S/D mixture comprising tri-n-butyl-phosphate, polysorbate 80 and Triton X-100 (TX-100), inactivation of vaccinia virus (a model closely resembling monkeypox virus, both within the same genus, i.e., Orthopoxvirus) in a plasma-derived process intermediate was analyzed over 60 min. As use of Triton X-100 will, based on environmental concerns, be restricted, similar experiments were conducted with a physicochemically virtually identical alternative, Nereid. RESULTS Fast inactivation of vaccinia virus to the assay detection limit, that is, reduction of infectivity by greater than 4 log10 within 10-20 min, was measured for the TX-100 S/D mixture. The alternative S/D mixture (Nereid instead of TX-100) was found fully equivalent. CONCLUSION As for other lipid-enveloped viruses, treatment of process intermediates with S/D mixtures containing TX-100 or the closely related detergent Nereid are highly effective in inactivating poxviruses. Thus, the current spread of monkeypox virus does not compromise the viral safety margins of plasma-derived medicines.
Collapse
Affiliation(s)
- Johanna Kindermann
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| | - Michael Karbiener
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| | - Thomas R Kreil
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| |
Collapse
|
5
|
Karbiener M, Farcet MR, Schwaiger J, Powers N, Lenart J, Stewart JM, Tallman H, Kreil TR. Plasma from post-COVID-19 and COVID-19-Vaccinated Donors Results in Highly Potent SARS-CoV-2 Neutralization by Intravenous Immunoglobulins. J Infect Dis 2021; 224:1707-1711. [PMID: 34543421 PMCID: PMC8499975 DOI: 10.1093/infdis/jiab482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
From September 2020, some immunoglobulin (IG) lots from US plasma contained neutralizing antibodies against the newly emerged SARS-CoV-2. Paralleled by the increasing numbers of post-COVID-19 donors, IG lot antibody positivity increased to 93% by January 2021, at a mean titer of ~30 IU/mL. The correlation predicted anti-SARS-CoV-2 potency to reach 345 IU/mL by July 2021. In addition to post-COVID-19 donors, the rapidly increasing number of COVID-19 vaccinated plasma donors now result in a mean antibody titer of >600 IU/mL already in July 2021 IG lots, with SARS-CoV-2 antibody titers for several lots even higher than earlier produced hyperimmune globulin products.
Collapse
Affiliation(s)
| | - Maria R Farcet
- Global Pathogen Safety, Baxter AG (part of Takeda), Vienna, Austria
| | - Julia Schwaiger
- Global Pathogen Safety, Baxter AG (part of Takeda), Vienna, Austria
| | - Nicholas Powers
- BioLife Plasma Services, LP, Takeda, Social Circle, Georgia - USA
| | - James Lenart
- BioLife Plasma Services, LP, Takeda, Social Circle, Georgia - USA
| | - Joseph M Stewart
- BioLife Plasma Services, LP, Takeda, Social Circle, Georgia - USA
| | - Hema Tallman
- BioLife Plasma Services, LP, Takeda, Social Circle, Georgia - USA
| | - Thomas R Kreil
- Global Pathogen Safety, Baxter AG (part of Takeda), Vienna, Austria
| |
Collapse
|
6
|
Jelsma T, Wijnker JJ, van der Poel WHM, Wisselink HJ. Intestinal Viral Loads and Inactivation Kinetics of Livestock Viruses Relevant for Natural Casing Production: a Systematic Review and Meta-Analysis. Pathogens 2021; 10:pathogens10020173. [PMID: 33557372 PMCID: PMC7915499 DOI: 10.3390/pathogens10020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 01/26/2023] Open
Abstract
Animal intestines are the source of edible sausage casings, which are traded worldwide and may come from areas where notifiable infectious animal diseases are prevalent. To estimate the risks of virus contamination, knowledge about the quantity of virus and decimal reduction values of the standard preservation method by salting is of great importance. A literature search, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was performed in search engine CAB Abstracts to determine the viral load of 14 relevant animal viruses in natural casings or intestines. Only a very limited number of scientific publications per virus were found and viral loads in the intestines varied from high for ASFV (five publications), BVDV (3), CSFV (6), PPRV (3), RPV (2) and TGEV (3) to moderate for PEDV (2) and SVDV (3), low for HEV (2) and FMDV (5), very low for VESV (1) and negative for PrV (2) and VSV (1). PRRSV was found in intestines, however, viral titers were not published. Three viruses (BVDV, CSFV and PPRV) with high viral loads were selected to search for their inactivation kinetics. For casings, no inactivation data were found, however, thermal inactivation data of these viruses were available, but differed in quantity, quality and matrices. In conclusion, important data gaps still exist when it comes to the quantitative inactivation of viruses in sausage casings or livestock intestines.
Collapse
Affiliation(s)
- Tinka Jelsma
- Department of Virology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
- Correspondence:
| | - Joris J. Wijnker
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, The Netherlands;
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| | - Henk J. Wisselink
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR) Part of Wageningen University & Research (WUR), P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| |
Collapse
|
7
|
Roth NJ, Dichtelmüller HO, Fabbrizzi F, Flechsig E, Gröner A, Gustafson M, Jorquera JI, Kreil TR, Misztela D, Moretti E, Moscardini M, Poelsler G, More J, Roberts P, Wieser A, Gajardo R. Nanofiltration as a robust method contributing to viral safety of plasma-derived therapeutics: 20 years' experience of the plasma protein manufacturers. Transfusion 2020; 60:2661-2674. [PMID: 32815181 PMCID: PMC7754444 DOI: 10.1111/trf.16022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Nanofiltration entails the filtering of protein solutions through membranes with pores of nanometric sizes that have the capability to effectively retain a wide range of viruses. STUDY DESIGN AND METHODS Data were collected from 754 virus validation studies (individual data points) by Plasma Protein Therapeutics Association member companies and analyzed for the capacity of a range of nanofilters to remove viruses with different physicochemical properties and sizes. Different plasma product intermediates were spiked with viruses and filtered through nanofilters with different pore sizes using either tangential or dead-end mode under constant pressure or constant flow. Filtration was performed according to validated scaled-down laboratory conditions reflecting manufacturing processes. Effectiveness of viral removal was assessed using cell culture infectivity assays or polymerase chain reaction (PCR). RESULTS The nanofiltration process demonstrated a high efficacy and robustness for virus removal. The main factors affecting nanofiltration efficacy are nanofilter pore size and virus size. The capacity of nanofilters to remove smaller, nonenveloped viruses was dependent on filter pore size and whether the nanofiltration process was integrated and designed with the intention to provide effective parvovirus retention. Volume filtered, operating pressure, and total protein concentration did not have a significant impact on the effectiveness of virus removal capacity within the investigated ranges. CONCLUSIONS The largest and most diverse nanofiltration data collection to date substantiates the effectiveness and robustness of nanofiltration in virus removal under manufacturing conditions of different plasma-derived proteins. Nanofiltration can enhance product safety by providing very high removal capacity of viruses including small non-enveloped viruses.
Collapse
|
8
|
Gupta A, Karki R, Dandu HR, Dhama K, Bhatt ML, Saxena SK. COVID-19: benefits and risks of passive immunotherapeutics. Hum Vaccin Immunother 2020; 16:2963-2972. [PMID: 32962524 PMCID: PMC7544960 DOI: 10.1080/21645515.2020.1808410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Passive immunotherapeutics (PITs), including convalescent plasma, serum, or hyperimmune immunoglobulin, have been of clinical importance during sudden outbreaks since the early twentieth century for the treatment of viral diseases such as severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS) and swine flu (H1N1). With the recent SARS-CoV-2 pandemic, wherein effective antivirals and vaccines are still lacking, an interest in convalescent plasma therapy as a lifesaving option has resurfaced due to its capacity for antigenic neutralization and reducing viremia. This review summarizes convalescent blood products (CBPs) in terms of current technologies and the shortcomings related to the collection, manufacture, pathogen inactivation, and banking of CBPs, with a specific focus on their plausible applications, benefits, and risks in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ankur Gupta
- Ceutica & Chemie Healthcare Pvt. Ltd ., Bangalore, India
| | - Rashmi Karki
- Ceutica & Chemie Healthcare Pvt. Ltd ., Bangalore, India
| | - Himanshu R Dandu
- Department of Internal Medicine, King George's Medical University , Lucknow, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) , Bareilly, India
| | - Madan Lb Bhatt
- Department of Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU) , Lucknow, India
| | - Shailendra K Saxena
- Department of Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU) , Lucknow, India
| |
Collapse
|
9
|
Kapsch AM, Farcet MR, Wieser A, Ahmad MQ, Miyabayashi T, Baylis SA, Blümel J, Kreil TR. Antibody-enhanced hepatitis E virus nanofiltration during the manufacture of human immunoglobulin. Transfusion 2020; 60:2500-2507. [PMID: 32794187 PMCID: PMC7754313 DOI: 10.1111/trf.16014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/09/2020] [Accepted: 07/04/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Circulation of hepatitis E virus (HEV) in areas where plasma is sourced for the manufacture of plasma-derived medicinal products (PDMPs) has prompted verification of HEV clearance. HEV exists as quasi lipid-enveloped (LE) and non-lipid-enveloped (NLE) forms, which might be of relevance for HEV clearance from manufacturing processes of antibody-containing PDMPs with solvent/detergent (S/D) treatment upstream of further clearance steps. STUDY DESIGN AND METHODS Presence of different HEV particles in stocks used in clearance studies was investigated, with nanofilters graded around the assumed HEV particle sizes and by gradient centrifugation. HEV removal by 35-nm nanofiltration was investigated in the presence or absence of HEV antibodies, in buffer as well as in immunoglobulin (IG) manufacturing process intermediates. RESULTS HEV particles consistent with LE, NLE, and an "intermediate" (IM) phenotype, obtained after S/D treatment, were seen in different HEV stocks. In the absence of HEV antibodies, log reduction factors (LRFs) of 4.0 and 2.5 were obtained by 35-nm nanofiltration of LE and IM HEV, consistent with the larger and smaller sizes of these phenotypes. Addition of HEV antibodies enhanced IM HEV removal around 1000-fold (LRF, 5.6). Effective (LRF, >4.8 and >4.0) HEV removal was obtained for the nanofiltration processing step for IG intermediates with varying HEV antibody content. CONCLUSION HEV spikes used in clearance studies should be carefully selected, as differences in physicochemical properties might affect HEV clearance. Antibody-mediated enhancement of HEV nanofiltration was demonstrated in IG process intermediates even at low HEV antibody concentration, illustrating the robustness of this manufacturing step.
Collapse
Affiliation(s)
- Anna-Maria Kapsch
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| | - Maria R Farcet
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| | - Andreas Wieser
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| | | | | | - Sally A Baylis
- Division Virology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Thomas R Kreil
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| |
Collapse
|
10
|
Barro L, Nebie O, Chen MS, Wu YW, Koh MB, Knutson F, Watanabe N, Takahara M, Burnouf T. Nanofiltration of growth media supplemented with human platelet lysates for pathogen-safe xeno-free expansion of mesenchymal stromal cells. Cytotherapy 2020; 22:458-472. [PMID: 32536505 PMCID: PMC7205656 DOI: 10.1016/j.jcyt.2020.04.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023]
Abstract
Background aims Human platelet lysate can replace fetal bovine serum (FBS) for xeno-free ex vivo expansion of mesenchymal stromal cells (MSCs), but pooling of platelet concentrates (PCs) increases risks of pathogen transmission. We evaluated the feasibility of performing nanofiltration of platelet lysates and determined the impact on expansion of bone marrow–derived MSCs. Methods Platelet lysates were prepared by freeze-thawing of pathogen-reduced (Intercept) PCs suspended in 65% storage solution (SPP+) and 35% plasma, and by serum-conversion of PCs suspended in 100% plasma. Lysates were added to the MSC growth media at 10% (v/v), filtered and subjected to cascade nanofiltration on 35- and 19-nm Planova filters. Media supplemented with 10% starting platelet lysates or FBS were used as the controls. Impacts of nanofiltration on the growth media composition, removal of platelet extracellular vesicles (PEVs) and MSC expansion were evaluated. Results Nanofiltration did not detrimentally affect contents of total protein and growth factors or the biochemical composition. The clearance factor of PEVs was >3 log values. Expansion, proliferation, membrane markers, differentiation potential and immunosuppressive properties of cells in nanofiltered media were consistently better than those expanded in FBS-supplemented media. Compared with FBS, chondrogenesis and osteogenesis genes were expressed more in nanofiltered media, and there were fewer senescent cells over six passages. Conclusions Nanofiltration of growth media supplemented with two types of platelet lysates, including one prepared from pathogen-reduced PCs, is technically feasible. These data support the possibility of developing pathogen-reduced xeno-free growth media for clinical-grade propagation of human cells.
Collapse
Affiliation(s)
- Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ming-Sheng Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Mickey Bc Koh
- Department of Haematology, St George's University Hospitals Foundation NHS Trust, London, UK; Blood Sciences Group, Health Sciences Authority, Singapore
| | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | | | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Program in Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Jawhara S. Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci 2020; 21:E2272. [PMID: 32218340 PMCID: PMC7178250 DOI: 10.3390/ijms21072272] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of the novel coronavirus in Wuhan, China, which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. Most coronaviruses infect animals but can evolve into strains that cross the species barrier and infect humans. At the present, there is no single specific vaccine or efficient antiviral therapy against COVID-19. Recently, we showed that intravenous immunoglobulin (IVIg) treatment reduces inflammation of intestinal epithelial cells and eliminates overgrowth of the opportunistic human fungal pathogen Candida albicans in the murine gut. Immunotherapy with IVIg could be employed to neutralize COVID-19. However, the efficacy of IVIg would be better if the immune IgG antibodies were collected from patients who have recovered from COVID-19 in the same city, or the surrounding area, in order to increase the chance of neutralizing the virus. These immune IgG antibodies will be specific against COVID-19 by boosting the immune response in newly infected patients. Different procedures may be used to remove or inactivate any possible pathogens from the plasma of recovered coronavirus patient derived immune IgG, including solvent/detergent, 60 °C heat-treatment, and nanofiltration. Overall, immunotherapy with immune IgG antibodies combined with antiviral drugs may be an alternative treatment against COVID-19 until stronger options such as vaccines are available.
Collapse
Affiliation(s)
- Samir Jawhara
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| |
Collapse
|
12
|
Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci 2020. [PMID: 32218340 DOI: 10.3390/ijms21072272.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus in Wuhan, China, which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. Most coronaviruses infect animals but can evolve into strains that cross the species barrier and infect humans. At the present, there is no single specific vaccine or efficient antiviral therapy against COVID-19. Recently, we showed that intravenous immunoglobulin (IVIg) treatment reduces inflammation of intestinal epithelial cells and eliminates overgrowth of the opportunistic human fungal pathogen Candida albicans in the murine gut. Immunotherapy with IVIg could be employed to neutralize COVID-19. However, the efficacy of IVIg would be better if the immune IgG antibodies were collected from patients who have recovered from COVID-19 in the same city, or the surrounding area, in order to increase the chance of neutralizing the virus. These immune IgG antibodies will be specific against COVID-19 by boosting the immune response in newly infected patients. Different procedures may be used to remove or inactivate any possible pathogens from the plasma of recovered coronavirus patient derived immune IgG, including solvent/detergent, 60 °C heat-treatment, and nanofiltration. Overall, immunotherapy with immune IgG antibodies combined with antiviral drugs may be an alternative treatment against COVID-19 until stronger options such as vaccines are available.
Collapse
|
13
|
Measles virus neutralizing antibodies in immunoglobulin lots produced from plasma collected in Europe or the United States. Vaccine 2019; 37:3151-3153. [PMID: 31060953 DOI: 10.1016/j.vaccine.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 02/01/2023]
Abstract
Vaccination against measles has reduced disease, although measles virus antibody (MVAb) levels are lower after vaccination than natural infection. Immunoglobulin (IG) preparations thus contain decreasing MVAb titers. US IG lot release requires a minimum titer of MVAb, yet equivalent information is not available for other geographies. Using a measles virus neutralization assay, IG fractionated from US or EU plasma is shown to contain similar levels of MVAb always above US regulatory requirements, supportive of equivalent protection against MV infection. Thus, the dosage for post-exposure prophylaxis in the EU could be aligned with the US FDA's treatment recommendations.
Collapse
|
14
|
Ma S, Pang GL, Shao YJ, Hongo-Hirasaki T, Shang MX, Inouye M, Jian CY, Zhu MZ, Yang HH, Gao JF, Xi ZY, Song DW. Validation and implementation of Planova™ BioEX virus filters in the manufacture of a new liquid intravenous immunoglobulin in China. Biologicals 2018; 52:37-43. [DOI: 10.1016/j.biologicals.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/30/2022] Open
|
15
|
Abstract
BACKGROUND The manufacturing process of a new intravenous immune globulin (IVIG) 10% liquid product incorporates two dedicated pathogen safety steps: solvent/detergent (S/D) treatment and nanofiltration (20 nm). Ion-exchange chromatography (IEC) during protein purification also contributes to pathogen safety. The ability of these three process steps to inactivate/remove viruses and prions was evaluated. OBJECTIVES The objective of this study was to evaluate the virus and prion safety of the new IVIG 10% liquid. METHODS Bovine viral diarrhea virus (BVDV), human immunodeficiency virus type 1 (HIV-1), mouse encephalomyelitis virus (MEV), porcine parvovirus (PPV), and pseudorabies virus (PRV) were used as models for common human viruses. The hamster-adapted scrapie strain 263K (HAS 263K) was used for transmissible spongiform encephalopathies. Virus clearance capacity and robustness of virus reduction were determined for the three steps. Abnormal prion protein (PrPSc) removal and infectivity of the samples was determined. RESULTS S/D treatment and nanofiltration inactivated/removed enveloped viruses to below detection limits. IEC supplements viral safety and nanofiltration was highly effective in removing non-enveloped viruses and HAS 263K. Overall virus reduction factors were: ≥9.4 log10 (HIV-1), ≥13.2 log10 (PRV), ≥8.2 log10 (BVDV), ≥11.7 log10 (MEV), ≥11.6 log10 (PPV), and ≥10.4 log10 (HAS 263K). CONCLUSION Two dedicated and one supplementing steps in the manufacturing process of the new IVIG 10% liquid provide a high margin of pathogen safety.
Collapse
Affiliation(s)
- Kai Uwe Radomski
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Georg Lattner
- R&D Plasma, Octapharma Pharmazeutika Produktionsges.m.b.H., Oberlaaer Str. 235, Vienna, Austria
| | - Torben Schmidt
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Römisch
- R&D Plasma, Octapharma Pharmazeutika Produktionsges.m.b.H., Oberlaaer Str. 235, Vienna, Austria
| |
Collapse
|
16
|
Nikolov N, Reisinger J, Schwarz HP. 10% liquid human immunoglobulin (KIOVIG®) for immunomodulation in autoimmune disorders. Immunotherapy 2016; 8:923-40. [DOI: 10.2217/imt-2016-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intravenous immunoglobulins have been used to treat autoimmune disorders (ADs) for over 50 years. The etiologies of various ADs are not fully understood and although intravenous immunoglobulin treatment has proved its immunomodulatory properties, the roles of proposed mechanisms of action also remain a matter of speculation. A systemic search of the literature regarding KIOVIG® (Baxalta US, Inc., MA, USA) use in clinical trials on patients with ADs and a detailed review of retrieved articles revealed eight relevant publications. These articles reported KIOVIG use in multifocal motor neuropathy, chronic inflammatory demyelinating polyneuropathy, idiopathic thrombocytopenic purpura, Kawasaki disease, Guillain–Barré syndrome and other autoimmune and neurologic disorders and showed that KIOVIG is an effective, safe and well-tolerated treatment in the studied populations. Nevertheless, further studies on larger patient cohorts are needed.
Collapse
Affiliation(s)
- Nikolai Nikolov
- Baxalta GmbH, Medical Affairs, Thurgauerstrasse 130, Zurich, Switzerland
| | - Jürgen Reisinger
- Baxalta Innovations GmbH, Clinical Scientific Affairs, Industriestraße 67, 1220, Vienna, Austria
| | - Hans P Schwarz
- Baxalta Innovations GmbH, Immunology, Industriestraße 67, 1220, Vienna, Austria
| |
Collapse
|
17
|
Burnouf T. Current status and new developments in the production of plasma derivatives. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/voxs.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- T. Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
18
|
Živković S. Intravenous immunoglobulin in the treatment of neurologic disorders. Acta Neurol Scand 2016; 133:84-96. [PMID: 25997034 DOI: 10.1111/ane.12444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2015] [Indexed: 12/17/2022]
Abstract
Intravenous immunoglobulins (IVIGs) are often used in the treatment of autoimmune disorders and immunodeficiencies, and it has been estimated that neurologic indications can account for up to 43% of IVIG used in clinical practice. In neurologic clinical practice, IVIG is used for acute therapy of newly diagnosed autoimmune disorders or exacerbations of pre-existing conditions, or as long-term maintenance treatment for chronic disorders. IVIG exerts its effects on humoral and cell-based immunity through multiple pathways, without a single dominant mechanism. Clinical use of IVIG has been supported by guidelines from American Academy of Neurology and European Federation of Neurologic Societies. IVIG is generally recommended for the treatment of Guillain-Barre syndrome and chronic inflammatory demyelinating polyneuropathy in adults, multifocal motor neuropathy and myasthenia gravis, and should be considered as a treatment option for dermatomyositis in adults and Lambert-Eaton myasthenic syndrome. Additional potential indications include stiff person syndrome, multiple sclerosis during pregnancy or while breastfeeding, refractory autoimmune epilepsy, and paraneoplastic disorders. Clinical use of IVIG is mostly safe but few adverse effects may still occur with potentially severe complications, including aseptic meningitis and thromboembolism. In addition to intravenous route (IVIG), subcutaneous immunoglobulins have been used as an alternative treatment option, especially in patients with limited intravenous access. Treatment with IVIG is effective in various autoimmune diseases, but its broader use is constrained by limited supply. This review evaluates the use of immunoglobulins in treatment of neurologic diseases.
Collapse
Affiliation(s)
- S. Živković
- Department of Neurology; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
19
|
Farcet MR, Lackner C, Antoine G, Rabel PO, Wieser A, Flicker A, Unger U, Modrof J, Kreil TR. Hepatitis E virus and the safety of plasma products: investigations into the reduction capacity of manufacturing processes. Transfusion 2015; 56:383-91. [PMID: 26399175 DOI: 10.1111/trf.13343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) has been transmitted by transfusion of labile blood products and the occasional detection of HEV RNA in plasma pools indicates that HEV viremic donations might enter the manufacturing process of plasma products. To verify the safety margins of plasma products with respect to HEV, virus reduction steps commonly used in their manufacturing processes were investigated for their effectiveness to reduce HEV. STUDY DESIGN AND METHODS Detection methods for HEV removal (by reverse transcription quantitative polymerase chain reaction) and inactivation (using an infectivity assay) were established. Immunoaffinity chromatography and 20-nm virus filtration for Factor (F)VIII, cold ethanol fractionation, and low-pH treatment for immunoglobulin, heat treatment for human albumin, and 35-nm nanofiltration for FVIII inhibitor-bypassing activity (FEIBA) were investigated for their capacity to reduce HEV or the physicochemically similar viruses feline calicivirus (FCV) and hepatitis A virus (HAV). RESULTS For FVIII, HEV reduction of 3.9 and more than 3.9 log was demonstrated for immunoaffinity chromatography and 20-nm nanofiltration, respectively, and the cold ethanol fractionation for immunoglobulin removed more than 3.5 log of HEV, to below the limit of detection (LOD). Heat treatment of human albumin inactivated more than 3.1 log of HEV to below the LOD and 35-nm nanofiltration removed 4.0 log of HEV from the FEIBA intermediate. The results indicated HAV rather than FCV as the more relevant model virus for HEV. CONCLUSION Substantial HEV reduction during processes commonly used in the manufacturing of plasma products was demonstrated, similar to that previously demonstrated for HAV.
Collapse
Affiliation(s)
- Maria R Farcet
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Cornelia Lackner
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Gerhard Antoine
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Philip O Rabel
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Andreas Wieser
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Andreas Flicker
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Ulrike Unger
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Jens Modrof
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| | - Thomas R Kreil
- Global Pathogen Safety, Baxalta (previously Baxter BioScience), Vienna, Austria
| |
Collapse
|
20
|
Abolhassani H, Asgardoon MH, Rezaei N, Hammarstrom L, Aghamohammadi A. Different brands of intravenous immunoglobulin for primary immunodeficiencies: how to choose the best option for the patient? Expert Rev Clin Immunol 2015; 11:1229-43. [DOI: 10.1586/1744666x.2015.1079485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
McCutcheon S, Alejo Blanco AR, Tan BC, González L, Martin S, Mallinson G, Appleford NE, Turner ML, Manson JC, Houston EF. A prion reduction filter does not completely remove endogenous prion infectivity from sheep blood. Transfusion 2015; 55:2123-33. [PMID: 26032915 DOI: 10.1111/trf.13145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Variant Creutzfeldt-Jakob disease (vCJD) is a transmissible spongiform encephalopathy affecting humans, acquired initially through infection with bovine spongiform encephalopathy (BSE). A small number of vCJD cases have been acquired through the transfusion of blood from asymptomatic donors who subsequently developed vCJD. Filter devices that selectively bind the infectious agent associated with prion disease have been developed for removal of infection from blood. This study independently assessed one such filter, the P-CAPT filter, for efficacy in removing infectivity associated with the BSE agent in sheep blood. The sheep BSE model has previously been used to evaluate the distribution of infectivity in clinically relevant blood components. This is the first study to assess the ability of the P-CAPT filter to remove endogenous infectivity associated with blood components prepared from a large animal model. STUDY DESIGN AND METHODS Paired units of leukoreduced red blood cells (LR-RBCs) were prepared from donors at the clinical stage of infection and confirmed as having BSE. One cohort of recipients was transfused with LR-RBCs alone, whereas a parallel cohort received LR and P-CAPT-filtered RBCs (LR-RBCs-P-CAPT). RESULTS Of 14 recipients, two have been confirmed as having BSE. These sheep had received LR-RBCs and LR-RBCs-P-CAPT from the same donor. CONCLUSIONS The results indicate that, after leukoreduction and P-CAPT filtration, there can still be sufficient residual infectivity in sheep RBCs to transmit infection when transfused into a susceptible recipient.
Collapse
Affiliation(s)
- Sandra McCutcheon
- Neurobiology Division, The Roslin Institute, University of Edinburgh
| | | | - Boon Chin Tan
- Neurobiology Division, The Roslin Institute, University of Edinburgh
| | - Lorenzo González
- Animal and Plant Health Agency, Lasswade Laboratory, Edinburgh, UK
| | - Stuart Martin
- Animal and Plant Health Agency, Lasswade Laboratory, Edinburgh, UK
| | | | | | | | - Jean C Manson
- Neurobiology Division, The Roslin Institute, University of Edinburgh
| | - E Fiona Houston
- Neurobiology Division, The Roslin Institute, University of Edinburgh
| |
Collapse
|
22
|
Peter JG, Chapel H. Immunoglobulin replacement therapy for primary immunodeficiencies. Immunotherapy 2014; 6:853-69. [DOI: 10.2217/imt.14.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exogenous antibody therapy to protect patients against infections and toxins is over 100 years old, yet progress continues to be made in the manufacture, administration and application of this type of immunotherapy, known as therapeutic human immunoglobulin. For the majority of patients with primary immunodeficiencies, immunoglobulin replacement is the only life-saving therapy and treatment is life-long, since the vast majority of primary immunodeficiency patients have primary antibody failure. Successful treatment depends on multiple factors: the availability of products, the type of immunodeficiency and any comorbidities of the individual patient. Essential components include long-term follow-up, regular monitoring and a close relationship between the patient and the multidisciplinary clinical immunology team. In this article, we describe the current immunoglobulin products and the types of adverse reactions. We provide evidence for clinical decision-making regarding dosing, route of administration and location of therapy, highlighting current ‘best practice’ recommendations.
Collapse
Affiliation(s)
- Jonathan G Peter
- Primary Immunodeficiency Unit, Level 7, Nuffield Department of Medicine, Oxford University Hospital, John Radcliffe Site, Headley Way, Oxford, OX3 9DU, UK
- Division of Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Helen Chapel
- Primary Immunodeficiency Unit, Level 7, Nuffield Department of Medicine, Oxford University Hospital, John Radcliffe Site, Headley Way, Oxford, OX3 9DU, UK
| |
Collapse
|
23
|
Hohenadl C, Wodal W, Kerschbaum A, Fritz R, Howard MK, Farcet MR, Portsmouth D, McVey JK, Baker DA, Ehrlich HJ, Barrett PN, Kreil TR. Hyperimmune intravenous immunoglobulin containing high titers of pandemic H1N1 hemagglutinin and neuraminidase antibodies provides dose-dependent protection against lethal virus challenge in SCID mice. Virol J 2014; 11:70. [PMID: 24739285 PMCID: PMC3996311 DOI: 10.1186/1743-422x-11-70] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022] Open
Abstract
Background Convalescent plasma and fractionated immunoglobulins have been suggested as prophylactic or therapeutic interventions during an influenza pandemic. Findings Intravenous immunoglobulin (IVIG) preparations manufactured from human plasma collected before the 2009 H1N1 influenza pandemic, and post-pandemic hyperimmune (H)-IVIG preparations were characterized with respect to hemagglutination inhibition (HI), microneutralization (MN) and neuraminidase-inhibiting (NAi) antibody titers against pandemic H1N1 (pH1N1) and seasonal H1N1 (sH1N1) viruses. The protective efficacy of the IVIG and H-IVIG preparations was evaluated in a SCID mouse challenge model. Substantial levels of HI, MN and NAi antibodies against pH1N1 (GMTs 1:45, 1:204 and 1: 727, respectively) and sH1N1 (GMTs 1:688, 1:4,946 and 1:312, respectively) were present in pre-pandemic IVIG preparations. In post-pandemic H-IVIG preparations, HI, MN and NAi antibody GMTs against pH1N1 were 1:1,280, 1:11,404 and 1:2,488 (28-, 56- and 3.4-fold enriched), respectively, compared to pre-pandemic IVIG preparations (p < 0.001). Post-pandemic H-IVIG (HI titer 1:1,280) provided complete protection from lethality of SCID mice against pH1N1 challenge (100% of mice survived for 29 days post-challenge). Pre-pandemic IVIG (HI titer 1:70) did not provide significant protection against pH1N1 challenge (50% of mice survived 29 days post-challenge compared to 40% survival in the buffer control group). There was a highly significant correlation between circulating in vivo HI and MN antibody titers and survival (p < 0001). Conclusion The substantial enrichment of HA- and NA-specific antibodies in H-IVIG and the efficacious protection of SCID mice against challenge with pH1N1 suggests H-IVIG as a promising intervention against pandemic influenza for immunocompromised patients and other risk groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Thomas R Kreil
- Global Pathogen Safety, Baxter BioScience, Benatzkygasse 2-6, 1221 Vienna, Austria.
| |
Collapse
|
24
|
Wu YW, Champagne J, Toueille M, Gantier R, Burnouf T. Dedicated removal of immunoglobulin (Ig)A, IgM, and Factor (F)XI/activated FXI from human plasma IgG. Transfusion 2013; 54:169-78. [DOI: 10.1111/trf.12243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Yu-Wen Wu
- Institute of Medical Biomaterials and Tissue Engineering, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research and Development, Chromatography Applications; Pall Life Sciences; Cergy France
- Pall Life Sciences; Northborough Massachusetts
- Human Protein Process Sciences (HPPS); Lille France
| | - Jérôme Champagne
- Institute of Medical Biomaterials and Tissue Engineering, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research and Development, Chromatography Applications; Pall Life Sciences; Cergy France
- Pall Life Sciences; Northborough Massachusetts
- Human Protein Process Sciences (HPPS); Lille France
| | - Magali Toueille
- Institute of Medical Biomaterials and Tissue Engineering, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research and Development, Chromatography Applications; Pall Life Sciences; Cergy France
- Pall Life Sciences; Northborough Massachusetts
- Human Protein Process Sciences (HPPS); Lille France
| | - René Gantier
- Institute of Medical Biomaterials and Tissue Engineering, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research and Development, Chromatography Applications; Pall Life Sciences; Cergy France
- Pall Life Sciences; Northborough Massachusetts
- Human Protein Process Sciences (HPPS); Lille France
| | - Thierry Burnouf
- Institute of Medical Biomaterials and Tissue Engineering, College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Research and Development, Chromatography Applications; Pall Life Sciences; Cergy France
- Pall Life Sciences; Northborough Massachusetts
- Human Protein Process Sciences (HPPS); Lille France
| |
Collapse
|
25
|
Novaretti MCZ, Dinardo CL. Immunoglobulin: production, mechanisms of action and formulations. Rev Bras Hematol Hemoter 2012; 33:377-82. [PMID: 23049343 PMCID: PMC3415776 DOI: 10.5581/1516-8484.20110102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/23/2011] [Indexed: 11/27/2022] Open
Abstract
Human immunoglobulin (Ig) began to be applied in the clinical practice with the treatment of primary immunodeficiencies. Quickly, applications of Ig increased, as its anti-inflammatory and immunomodulatory functions were elucidated. Currently, Ig is the most commonly used blood product. Ig is obtained by processing plasma; methods, in particular, techniques to reduce plasma viral loads have been evolving over the years and include: pasteurization, solvent/ detergent treatment, caprylic acid treatment and nanofiltration. These methods contribute to increased safety and quality of blood products. The mechanisms of action of Ig not only involve the blockade of Fc receptors of phagocytes, but also control complement pathways, idiotype-anti-idiotype dimer formation, blockage of superantigen binding to T cells, inhibition of dendritic cells and stimulation of regulatory T cells (Tregs). There are several formulations of Ig available, each one with its own peculiar characteristics. In Brazil, there is stringent legislation regulating the quality of Ig. Only Ig products that completely fulfill the quality control criteria are released for use. These standards involve different tests from visual inspection to determination of anti-complementary activity. This paper will further review the history and current status of Ig, including its production and mechanisms of action. The formulations available in Brazil and also the criteria of quality control currently applied will be presented.
Collapse
|
26
|
Roberts PL, Dunkerley C, Walker C. Virus reduction in an intravenous immunoglobulin by solvent/detergent treatment, ion-exchange chromatography and terminal low pH incubation. Biologicals 2012; 40:345-52. [PMID: 22658506 DOI: 10.1016/j.biologicals.2012.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/02/2012] [Accepted: 04/28/2012] [Indexed: 11/25/2022] Open
Abstract
Virus reduction by several steps in the manufacturing process for the intravenous immunoglobulin Vigam(®), has been investigated. The solvent/detergent step based on treatment with 0.3% tri-n-butyl phosphate and 1% polysorbate 80 at 37 °C, was confirmed to be effective for a range of enveloped viruses. Virus infectivity was undetectable i.e. >6 log inactivation within 30 min of the standard 6 h process. This was consistent over the range of conditions tested i.e. solvent/detergent and protein concentration, temperature and pH. The ion-exchange chromatography step in the process was also able to remove some viruses. Virus spiked followed by blank column runs confirmed the effectiveness of the sanitisation step for ensuring there was no virus cross contamination between column runs. The terminal low pH incubation step was also able to inactivate enveloped viruses, as well as some non-enveloped viruses. The combination of these three steps ensures a high margin of virus safety for this product.
Collapse
Affiliation(s)
- Peter L Roberts
- Bio Products Laboratory, Dagger Lane, Elstree, Hertfordshire WD6 3BX, UK.
| | | | | |
Collapse
|
27
|
Low pH formulation of whole IgG antivenom: Impact on quality, safety, neutralizing potency and viral inactivation. Biologicals 2012; 40:129-33. [DOI: 10.1016/j.biologicals.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/16/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022] Open
|
28
|
Dichtelmüller HO, Flechsig E, Sananes F, Kretschmar M, Dougherty CJ. Effective virus inactivation and removal by steps of Biotest Pharmaceuticals IGIV production process. RESULTS IN IMMUNOLOGY 2012; 2:19-24. [PMID: 24371563 DOI: 10.1016/j.rinim.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 11/19/2022]
Abstract
The virus validation of three steps of Biotest Pharmaceuticals IGIV production process is described here. The steps validated are precipitation and removal of fraction III of the cold ethanol fractionation process, solvent/detergent treatment and 35 nm virus filtration. Virus validation was performed considering combined worst case conditions. By these validated steps sufficient virus inactivation/removal is achieved, resulting in a virus safe product.
Collapse
Affiliation(s)
| | | | - Frank Sananes
- Development Department, Biotest Pharmaceuticals, Boca Raton, FL, USA
| | | | | |
Collapse
|
29
|
Kreil TR, Mc Vey JK, Lei LSP, Camacho L, Wodal W, Kerschbaum A, Segura E, Vandamme E, Gavit P, Ehrlich HJ, Barrett PN, Baker DA. Preparation of commercial quantities of a hyperimmune human intravenous immunoglobulin preparation against an emerging infectious disease: the example of pandemic H1N1 influenza. Transfusion 2011; 52:803-9. [PMID: 21981280 DOI: 10.1111/j.1537-2995.2011.03347.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The recent H1N1 pandemic provided an opportunity to conceptually assess the possibility of rapidly providing a "hyperimmune" human immunoglobulin (H-IVIG) to an emerging infectious disease, in useful quantities with respect to public health. Commercial-scale H-IVIG production from plasma collected from donors convalescent from or vaccinated against pandemic influenza A (H1N1) virus is described. STUDY DESIGN AND METHODS A special protocol was implemented for the collection, processing, and shipment of plasma from previously qualified source plasma donors, self-identifying as convalescent from or vaccinated against H1N1 influenza. A licensed IVIG manufacturing process was utilized for the preparation of two commercial lots of approximately 50 kg 10% human IVIG preparation in total. The H1N1 hemagglutination inhibition and neutralization antibody titers of the resulting H-IVIG preparations were determined and compared with standard preparations. RESULTS Twenty-six plasma collection centers participated in the protocol. Donor enrollment exceeded 300 donors per week and within 30 days of protocol deployment plasma was being collected at a rate of more than 2000 L/week. Manufacture of both H-IVIG lots was unremarkable and both lots met the requirements for commercial release and the bulk of the product was distributed in normal commercial channels. Examination of plasma pools and final IVIG product confirmed pandemic H1N1 antibody titers substantially higher than those collected before the emergence of the pandemic H1N1 virus. CONCLUSIONS This work demonstrates the feasibility of producing a H-IVIG preparation at large scale relatively rapidly, with a significant enrichment in antibodies to the H1N1 influenza, achieved by donor self-identification.
Collapse
Affiliation(s)
- Thomas R Kreil
- Global Pathogen Safety, Quality Product Support, Viral Vaccines, Manufacturing, Research and Development, and R&D Vaccines, Baxter BioScience, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Prions represent a group of proteins with a unique capacity to fold into different conformations. One isoform is rich in beta-pleated sheets and can aggregate into amyloid that may be pathogenic. This abnormal form propagates itself by imposing its confirmation on the homologous normal host cell protein. Pathogenic prions have been shown to cause lethal neurodegenerative diseases in humans and animals. These diseases are sometimes infectious and hence referred to as transmissible spongiform encephalopathies. In the present review, the remarkable evolution of the heterodox prion concept is summarized. The origin of this phenomenon is based on information transfer between homologous proteins, without the involvement of nucleic acid-encoded mechanisms. Historically, kuru and Creutzfeldt-Jakob disease (CJD) were the first infectious prion diseases to be identified in man. It was their relationship to scrapie in sheep and experimental rodents that allowed an unravelling of the particular molecular mechanism that underlie the disease process. Transmission between humans has been documented to have occurred in particular contexts, including ritual cannibalism, iatrogenic transmission because of pituitary gland-derived growth hormone or the use in neurosurgical procedures of dura mater from cadavers, and the temporary use of a prion-contaminated protein-rich feed for cows. The latter caused a major outbreak of bovine spongiform encephalopathy, which spread to man by human consumption of contaminated meat, causing approximately 200 cases of variant CJD. All these epidemics now appear to be over because of measures taken to curtail further spread of prions. Recent studies have shown that the mechanism of protein aggregation may apply to a wider range of diseases in and possibly also outside the brain, some of which are relatively common such as Alzheimer's and Parkinson's diseases. Furthermore, it has become apparent that the phenomenon of prion aggregation may have a wider physiological importance, but a full understanding of this remains to be defined. It may involve maintaining neuronal functions and possibly contributing to the establishment of long-term memory.
Collapse
Affiliation(s)
- E Norrby
- Center for the History of Science, Royal Swedish Academy of Sciences, Stockholm, Sweden.
| |
Collapse
|
31
|
Human IgG subclasses: in vitro neutralization of and in vivo protection against West Nile virus. J Virol 2010; 85:1896-9. [PMID: 21123389 DOI: 10.1128/jvi.02155-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
West Nile virus (WNV)-neutralizing intravenous immune globulins (IVIG) were fractionated into IgG subclasses, and the contribution of each subclass to in vitro neutralization of and in vivo protection against WNV was evaluated. The results indicate that IgG1 (i) is the main subclass induced following WNV infection of humans, (ii) contained nearly all the in vitro WNV neutralization capacity, and (iii) mediates effector functions in vivo that render it superior to other subclasses in protection against WNV. The importance of human IgG1 indicates that a candidate WNV vaccine should induce an immune response that includes WNV-specific IgG1.
Collapse
|
32
|
Viral safety characteristics of Flebogamma DIF, a new pasteurized, solvent-detergent treated and Planova 20 nm nanofiltered intravenous immunoglobulin. Biologicals 2010; 38:486-93. [PMID: 20350815 DOI: 10.1016/j.biologicals.2010.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/07/2009] [Accepted: 02/08/2010] [Indexed: 11/21/2022] Open
Abstract
A new human liquid intravenous immunoglobulin product, Flebogamma DIF, has been developed. This IgG is purified from human plasma by cold ethanol fractionation, PEG precipitation and ion exchange chromatography. The manufacturing process includes three different specific pathogen clearance (inactivation/removal) steps: pasteurization, solvent/detergent treatment and Planova nanofiltration with a pore size of 20 nm. This study evaluates the pathogen clearance capacity of seven steps in the production process for a wide range of viruses through spiking experiments: the three specific steps mentioned above and also four more production steps. Infectivity of samples was measured using a Tissue Culture Infectious Dose assay (log(10) TCID(50)) or Plaque Forming Units assay (log(10) PFU). Validation studies demonstrated that each specific step cleared more than 4 log(10) for all viruses assayed. An overall viral clearance between > or =13.33 log(10) and > or =25.21 log(10), was achieved depending on the virus and the number of steps studied for each virus. It can be concluded that Flebogamma DIF has a very high viral safety profile.
Collapse
|
33
|
Gürcan HM, Keskin DB, Ahmed AR. Information for healthcare providers on general features of IGIV with emphasis on differences between commercially available products. Autoimmun Rev 2010; 9:553-9. [PMID: 20346419 DOI: 10.1016/j.autrev.2010.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/17/2010] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Intravenous immunoglobulin (IGIV) has provided an essential replacement therapy for primary and secondary immunodeficiencies patients and prophylaxis of infectious diseases in them. It is also used in several autoimmune and chronic inflammatory disorders. An overview of IGIV with information on several commercially available IGIV products is discussed. DATA SOURCES Medline databases and literature provided by the manufacturer for each product presented in the manuscript. STUDY SELECTION From the vast body of information on IGIV, only those studies were selected that were pertinent to general features of IGIV (as presented below) or information provided by the manufacturer that facilitated comparing one product to the other. DATA EXTRACTION Data was extracted on production, and purification procedures, removal of infectious agents, physical and biochemical properties and issues of safety. Data was extracted only for products available in the US. DATA SYNTHESIS IGIV is prepared using pooled plasma. The purification of IGIV is a complex and multi-step process. There is a reciprocal relationship between the purity of IgG in the product and the recovery rate from the total plasma. It is quite possible that some of the biological mediators of the inflammatory and immune systems may be present in trace amounts. Screening and removal of blood borne pathogens is necessary and there are several different techniques available. The specifics of the administration are often variable and no consistent pattern or protocol has been used. When limited dosages are required IGIV may be administered subcutaneously. The side effects associated with IGIV are usually mild and self-limiting. CONCLUSION There are differences in products produced by different manufacturers. The current data does not provide sufficient detail or information to be able to make specific recommendations for the use of a given commercial preparation in a specific disease state. The use of IGIV is associated with certain common and uncommon side effects. The identification of risk factors that might predispose a patient to developing them have been studied and reported. In choosing a IGIV preparation the user may avoid features that may predispose to certain side effects. Equally important is monitoring of patients during and after the IGIV therapy.
Collapse
Affiliation(s)
- Hakan M Gürcan
- Center for Blistering Diseases, Department of Medicine, New England Baptist Hospital, Boston, MA 02120, USA
| | | | | |
Collapse
|
34
|
Radosevich M, Burnouf T. Intravenous immunoglobulin G: trends in production methods, quality control and quality assurance. Vox Sang 2009; 98:12-28. [PMID: 19660029 DOI: 10.1111/j.1423-0410.2009.01226.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intravenous immunoglobulin G (IVIG) is now the leading product obtained by fractionation of human plasma. It is the standard replacement therapy in primary and acquired humoral deficiency, and is also used for immunomodulatory therapy in various autoimmune disorders and transplantation. Over the last 30 years, the production processes of IVIG have evolved dramatically, gradually resulting in the development of intact IgG preparations safe to administer intravenously, with normal half-life and effector functions, prepared at increased yield, and exhibiting higher pathogen safety. This article reviews the developments that have led to modern IVIG preparations, the current methods used for plasma collection and fractionation, the safety measures implemented to minimize the risks of pathogen transmission and the major quality control tests that are available for product development and as part of mandatory batch release procedures.
Collapse
|
35
|
Moore ML, Quinn JM. Subcutaneous immunoglobulin therapy in pediatric primary antibody deficiency. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/phe.09.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subcutaneous immunoglobulin (SCIG) therapy is recognized as a standard treatment for primary antibody deficiency. SCIG is efficacious for the prevention of infections and is associated with a lower risk of systemic side effects, improved quality of life for patients and families and is preferred by children when compared with intravenous immunoglobulin replacement. For pediatric patients, SCIG is an ideal treatment modality that affords children and families more freedom and less disruption of important childhood activities. This article reviews the characteristics of SCIG to provide the pediatric practitioner with an understanding of the experiences their patients receiveing SCIG may encounter.
Collapse
Affiliation(s)
- Meredith L Moore
- Department of Allergy & Immunology, Wilford Hall Medical Center, San Antonio, TX, USA
| | - James M Quinn
- Department of Allergy & Immunology, Wilford Hall Medical Center, San Antonio, TX, USA
| |
Collapse
|
36
|
Roberts PL. Virus inactivation by solvent/detergent treatment using Triton X-100 in a high purity factor VIII. Biologicals 2008; 36:330-5. [DOI: 10.1016/j.biologicals.2008.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022] Open
|
37
|
Shah SR. A newer immunoglobulin intravenous (IGIV) – Gammagard®liquid 10%: Evaluation of efficacy, safety, tolerability and impact on patient care. Expert Opin Biol Ther 2008; 8:799-804. [DOI: 10.1517/14712598.8.6.799] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|