1
|
Faber AIE, van der Zwaag M, Schepers H, Eggens-Meijer E, Kanon B, IJsebaart C, Kuipers J, Giepmans BNG, Freire R, Grzeschik NA, Rabouille C, Sibon OCM. Vps13 is required for timely removal of nurse cell corpses. Development 2020; 147:dev.191759. [PMID: 32994170 DOI: 10.1242/dev.191759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
Programmed cell death and consecutive removal of cellular remnants is essential for development. During late stages of Drosophila melanogaster oogenesis, the small somatic follicle cells that surround the large nurse cells promote non-apoptotic nurse cell death, subsequently engulf them, and contribute to the timely removal of nurse cell corpses. Here, we identify a role for Vps13 in the timely removal of nurse cell corpses downstream of developmental programmed cell death. Vps13 is an evolutionarily conserved peripheral membrane protein associated with membrane contact sites and lipid transfer. It is expressed in late nurse cells, and persistent nurse cell remnants are observed when Vps13 is depleted from nurse cells but not from follicle cells. Microscopic analysis revealed enrichment of Vps13 in close proximity to the plasma membrane and the endoplasmic reticulum in nurse cells undergoing degradation. Ultrastructural analysis uncovered the presence of an underlying Vps13-dependent membranous structure in close association with the plasma membrane. The newly identified structure and function suggests the presence of a Vps13-dependent process required for complete degradation of bulky remnants of dying cells.
Collapse
Affiliation(s)
- Anita I E Faber
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Marianne van der Zwaag
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Ellie Eggens-Meijer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Bart Kanon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Carmen IJsebaart
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Raimundo Freire
- Unidad de Investigación/FIISC, Hospital Universitario de Canarias, Ofra s/n, La Cuesta, 38320 San Cristóbal de La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Nicola A Grzeschik
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Catherine Rabouille
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands.,Hubrecht Institute, University of Utrecht, 3584 CT, Utrecht, The Netherlands
| | - Ody C M Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, The University of Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
2
|
Guo Y, Hoffmann AA, Xu XQ, Zhang X, Huang HJ, Ju JF, Gong JT, Hong XY. Wolbachia-induced apoptosis associated with increased fecundity in Laodelphax striatellus (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2018; 27:796-807. [PMID: 29989657 DOI: 10.1111/imb.12518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wolbachia influence the fitness of their invertebrate hosts. They have effects on reproductive incompatibility and egg production. Although the former are well characterized, the mechanistic basis of the latter is unclear. Here, we investigate whether apoptosis, which has been implicated in fecundity in model insects, influences the interaction between fecundity and Wolbachia in the planthopper Laodelphax striatellus. Wolbachia-infected females produced about 30% more eggs than uninfected females. We used the terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling staining to visualize apoptosis. Microscopic observations indicated that the Wolbachia strain wStri increased the number of ovarioles that contained apoptotic nurse cells in both young and aged adult females. The frequency of apoptosis was much higher in the infected females. The increased fecundity appeared to be a result of apoptosis of nurse cells, which provide nutrients to the growing oocytes. In addition, cell apoptosis inhibition by caspase messenger RNA interference in Wolbachia-infected L. striatellus markedly decreased egg numbers. Together, these data suggest that wStri might enhance fecundity by increasing the number of apoptotic cells in the ovaries in a caspase-dependent manner. Our findings establish a link between Wolbachia-induced apoptosis and egg production effects mediated by Wolbachia, although the way in which the endosymbiont influences caspase levels remains to be determined.
Collapse
Affiliation(s)
- Y Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - A A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - X-Q Xu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - H-J Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-F Ju
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-T Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Non-apoptotic cell death in animal development. Cell Death Differ 2017; 24:1326-1336. [PMID: 28211869 DOI: 10.1038/cdd.2017.20] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.
Collapse
|
4
|
Ronai I, Oldroyd BP, Vergoz V. Queen pheromone regulates programmed cell death in the honey bee worker ovary. INSECT MOLECULAR BIOLOGY 2016; 25:646-652. [PMID: 27321063 DOI: 10.1111/imb.12250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid-oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue.
Collapse
Affiliation(s)
- I Ronai
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| | - V Vergoz
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Sagioglou NE, Manta AK, Giannarakis IK, Skouroliakou AS, Margaritis LH. Apoptotic cell death duringDrosophilaoogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure. Electromagn Biol Med 2014; 35:40-53. [DOI: 10.3109/15368378.2014.971959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Proteasome inhibition induces developmentally deregulated programs of apoptotic and autophagic cell death during Drosophila melanogaster oogenesis. Cell Biol Int 2011; 35:15-27. [PMID: 20819072 DOI: 10.1042/cbi20100191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ubiquitin/proteasome-mediated degradation of eukaryotic proteins is critically implicated in a number of signalling pathways and cellular processes. To specifically impair proteasome activities, in vitro developing Drosophila melanogaster egg chambers were exposed to the MG132 or epoxomicin proteasome inhibitors, while a GAL4/UAS binary genetic system was employed to generate double transgenic flies overexpressing β2 and β6 conditional mutant proteasome subunits in a cell type-specific manner. MG132 and epoxomicin administration resulted in severe deregulation of in vitro developing egg chambers, which was tightly associated with precocious induction of nurse cell-specific apoptotic and autophagic death programmes, featured by actin cytoskeleton disorganization, nuclear chromatin condensation, DRICE caspase activation and autophagosome accumulation. In vivo targeted overexpression of β2 and β6 conditional mutants, specifically in the nurse cell compartment, led to a notable up-regulation of sporadic apoptosis potency during early and mid-oogenesis 'checkpoints', thus reasonably justifying the observed reduction in eclosion efficiency. Furthermore, in response to the intracellular abundance of β2 and β6 conditional mutant forms, specifically in numerous tissues of third instar larval stage, the developmental course was arrested, and lethal phenotypes were obtained at this particular embryonic period, with the double transgenic heterozygote embryos being unable to further proceed to complete maturation to adult flies. Our data demonstrate that physiological proteasome function is required to ensure normal oogenesis and embryogenesis in D. melanogaster, since targeted and cell type-dependent proteasome inactivation initiates developmentally deregulated apoptotic and autophagic mechanisms.
Collapse
|
7
|
Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjørkøy G, Johansen T, Rusten TE, Brech A, Baehrecke EH, Stenmark H. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. ACTA ACUST UNITED AC 2010; 190:523-31. [PMID: 20713604 PMCID: PMC2928014 DOI: 10.1083/jcb.201002035] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Blocking autophagy protects the apoptosis inhibitor dBruce from destruction and promotes nurse cell survival in developing egg chambers. Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.
Collapse
Affiliation(s)
- Ioannis P Nezis
- Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The Drosophila melanogaster ovary is a powerful yet simple system with only a few cell types. Cell death in the ovary can be induced in response to multiple developmental and environmental signals. These cell deaths occur at distinct stages of oogenesis and involve unique mechanisms utilizing apoptotic, autophagic and perhaps necrotic processes. In this review, we summarize recent progress characterizing cell death mechanisms in the fly ovary.
Collapse
|
9
|
Abstract
Oogenesis is a fundamental physiological process in insects. Successful oogenesis is critical for evolutionary success by transferring genetic information to the next generation. This is achieved by the normal maturation of the egg chamber (egg), which is accomplished through cell death of the cells that accompany the oocyte. Recent studies demonstrate that autophagy contributes to this cell death process. Hence, comprehension of the mechanisms that implicates autophagy during cell death in insect eggs is very important. Herein, we describe some experimental approaches that can be used to monitor autophagy in insect eggs.
Collapse
Affiliation(s)
- Ioannis P Nezis
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Athens, Greece
| | | |
Collapse
|
10
|
Bass BP, Cullen K, McCall K. The axon guidance gene lola is required for programmed cell death in the Drosophila ovary. Dev Biol 2007; 304:771-85. [PMID: 17336958 PMCID: PMC1905497 DOI: 10.1016/j.ydbio.2007.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 01/18/2007] [Accepted: 01/20/2007] [Indexed: 11/22/2022]
Abstract
longitudinals-lacking (lola) was identified in Drosophila as a gene encoding several alternatively spliced transcription factors involved in axon guidance. Here we report that lola also plays a critical role in programmed cell death in the ovary. lola mutant germline clones show a high percentage of egg chambers with nurse cell nuclei persisting past stage 13, indicating a block in developmental nurse cell death. Mutants also show a disruption in the induced programmed cell death that occurs during mid-oogenesis in response to starvation. Further characterization revealed that lola germline clones exhibit abnormal nuclear organization which becomes increasingly severe with age. Chromatin appears diffuse and fails to condense properly or undergo DNA fragmentation in dying nurse cells. Masses of nuclear material accumulate in the ovaries of older flies containing lola germline clones. We propose that lola is necessary for complete chromatin condensation which occurs during programmed cell death in the ovary. Alleles differed in the strength of their phenotypes but interestingly, the severity of their ovarian phenotypes was independent of the strength of their neuronal phenotypes, suggesting a differential requirement for individual lola isoforms in the ovary and nervous system.
Collapse
Affiliation(s)
- B. Paige Bass
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston Massachusetts 02215
| | - Kristen Cullen
- Department of Biology, Boston University, Boston Massachusetts 02215
| | - Kimberly McCall
- Department of Biology, Boston University, Boston Massachusetts 02215
| |
Collapse
|
11
|
Panagopoulos DJ, Chavdoula ED, Nezis IP, Margaritis LH. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 626:69-78. [PMID: 17045516 DOI: 10.1016/j.mrgentox.2006.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/08/2006] [Accepted: 08/28/2006] [Indexed: 11/28/2022]
Abstract
In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay--a well known technique widely used for detecting fragmented DNA in various types of cells--was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells constituting an egg chamber (follicle cells, nurse cells and the oocyte) and in all stages of the early and mid-oogenesis, from germarium to stage 10, during which programmed cell death does not physiologically occur. Germarium and stages 7-8 were found to be the most sensitive developmental stages also in response to electromagnetic stress induced by the GSM and DCS fields and, moreover, germarium was found to be even more sensitive than stages 7-8.
Collapse
Affiliation(s)
- Dimitris J Panagopoulos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece.
| | | | | | | |
Collapse
|
12
|
Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH. Mechanisms of programmed cell death during oogenesis in Drosophila virilis. Cell Tissue Res 2006; 327:399-414. [PMID: 17004067 DOI: 10.1007/s00441-006-0298-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/29/2006] [Indexed: 12/01/2022]
Abstract
We describe the features of programmed cell death occurring in the egg chambers of Drosophila virilis during mid-oogenesis and late oogenesis. During mid-oogenesis, the spontaneously degenerating egg chambers exhibit typical characteristics of apoptotic cell death. As revealed by propidium iodide, rhodamine-conjugated phalloidin staining, and the TUNEL assay, respectively, the nurse cells contain condensed chromatin, altered actin cytoskeleton, and fragmented DNA. In vitro caspase activity assays and immunostaining procedures demonstrate that the atretic egg chambers possess high levels of caspase activity. Features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining, together with an ultrastructural examination by transmission electron microscopy. During the late stages of oogenesis in D. virilis, once again, the two mechanisms, viz., nurse cell cluster apoptosis and autophagy, operate together, manifesting features of cell death similar to those detailed above. Moreover, an altered form of cytochrome c seems to be released from the mitochondria in the nurse cells proximal to the oocyte. We propose that apoptosis and autophagy function synergistically during oogenesis in D. virilis in order to achieve a more efficient elimination of the degenerated nurse cells and abnormal egg chambers.
Collapse
Affiliation(s)
- Athanassios D Velentzas
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Panepistimiopolis 15784, Athens, Greece
| | | | | | | | | |
Collapse
|
13
|
Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev Growth Differ 2006; 48:419-28. [PMID: 16961589 DOI: 10.1111/j.1440-169x.2006.00878.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study, we describe the features of programmed cell death of the ovarian nurse cells occurring during vitellogenesis of the silkmoth Bombyx mori. At developmental stage 5, the nurse cells occupy one-half of the follicular volume and obtain a rather spherical shape, while the nurse cell nuclei appear large and elongated, forming impressive projections. At the following stage, stage 6, the nurse cells decrease in size and their shape becomes elliptic. The nuclei remain elongated, being also characterized by large lobes. The lobes of the ramified nurse cell nuclei seem to retain the nucleus in the center of the cell during the dumping of the nurse cell cytoplasm into the growing oocyte. At stage 7, membrane enclosed vacuoles can be easily detected into the nurse cells cytoplasm. Ultrastructural analysis and fluorescent microscopy using mono-dansyl-cadaverine staining of these vacuoles also reveal that they represent autolysosomes. Caspase activity is detected during stage 7, as it is demonstrated by using the Red-VAD-FMK staining reagent. At developmental stages 8 and 9, the nurse cells exhibit chromatin condensation, DNA fragmentation and caspase activity. Finally, during the following stage 10, the nuclear remnants are assembled into apoptotic vesicles, which, after being phagocytosed, are observed in the cytoplasm of adjacent follicle cells. We propose that apoptosis and autophagy operate synergistically during vitellogenesis of B. mori, in order to achieve an efficient and rapid clearance of the degenerated nurse cell cluster.
Collapse
Affiliation(s)
- Vicky E Mpakou
- Faculty of Biology, Department of Cell Biology and Biophysics, University of Athens, Panepistimiopolis 15784, Athens, Greece
| | | | | | | | | |
Collapse
|