1
|
Li Y, Xu S, Wang L, Shi H, Wang H, Fang Z, Hu Y, Jin J, Du Y, Deng M, Wang L, Zhu Z. Gut microbial genetic variation modulates host lifespan, sleep, and motor performance. THE ISME JOURNAL 2023; 17:1733-1740. [PMID: 37550381 PMCID: PMC10504343 DOI: 10.1038/s41396-023-01478-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Recent studies have shown that gut microorganisms can modulate host lifespan and activities, including sleep quality and motor performance. However, the role of gut microbial genetic variation in regulating host phenotypes remains unclear. In this study, we investigated the links between gut microbial genetic variation and host phenotypes using Saccharomyces cerevisiae and Drosophila melanogaster as research models. Our result suggested a novel role for peroxisome-related genes in yeast in regulating host lifespan and activities by modulating gut oxidative stress. Specifically, we found that deficiency in catalase A (CTA1) in yeast reduced both the sleep duration and lifespan of fruit flies significantly. Furthermore, our research also expanded our understanding of the relationship between sleep and longevity. Using a large sample size and excluding individual genetic background differences, we found that lifespan is associated with sleep duration, but not sleep fragmentation or motor performance. Overall, our study provides novel insights into the role of gut microbial genetic variation in regulating host phenotypes and offers potential new avenues for improving health and longevity.
Collapse
Affiliation(s)
- Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Liying Wang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Hao Shi
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Han Wang
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Ziyi Fang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yufan Hu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jiayu Jin
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yujie Du
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mengqiong Deng
- The First Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
- The Center for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
3
|
The relevance of the non-canonical PTS1 of peroxisomal catalase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1133-41. [PMID: 22546606 DOI: 10.1016/j.bbamcr.2012.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
Catalase is sorted to peroxisomes via a C-terminal peroxisomal targeting signal 1 (PTS1), which binds to the receptor protein Pex5. Analysis of the C-terminal sequences of peroxisomal catalases from various species indicated that catalase never contains the typical C-terminal PTS1 tripeptide-SKL, but invariably is sorted to peroxisomes via a non-canonical sorting sequence. We analyzed the relevance of the non-canonical PTS1 of catalase of the yeast Hansenula polymorpha (-SKI). Using isothermal titration microcalorimetry, we show that the affinity of H. polymorpha Pex5 for a peptide containing -SKI at the C-terminus is 8-fold lower relative to a peptide that has a C-terminal -SKL. Fluorescence microscopy indicated that green fluorescent protein containing the -SKI tripeptide (GFP-SKI) has a prolonged residence time in the cytosol compared to GFP containing -SKL. Replacing the -SKI sequence of catalase into -SKL resulted in reduced levels of enzymatically active catalase in whole cell lysates together with the occurrence of catalase protein aggregates in the peroxisomal matrix. Moreover, the cultures showed a reduced growth yield in methanol-limited chemostats. Finally, we show that a mutant catalase variant that is unable to properly fold mislocalizes in protein aggregates in the cytosol. However, by replacing the PTS1 into -SKL the mutant variant accumulates in protein aggregates inside peroxisomes. Based on our findings we propose that the relatively weak PTS1 of catalase is important to allow proper folding of the enzyme prior to import into peroxisomes, thereby preventing the accumulation of catalase protein aggregates in the organelle matrix.
Collapse
|
4
|
Rosado T, Conim A, Alves-Pereira I, Ferreira R. Vanadium pentoxide effects on stress responses in wine Saccharomyces cerevisiae strain UE-ME3. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:1116-1122. [PMID: 19597706 DOI: 10.1007/s10646-009-0363-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
Vanadium pentoxide mainly used as catalyst in sulphuric acid, maleic anhydride and ceramics industry, is a pollutant watering redistributed around the environment. Research on biological influence of vanadium pentoxide has gained major importance because it exerts toxic effects on a wide variety of biological systems. In this work we intent to evaluate the effects of vanadium pentoxide ranging from 0 to 2 mM in culture media on a wine wild-type Saccharomyces cerevisiae from Alentejo region of Portugal. Our results show that 2.0 mM vanadium pentoxide in culture medium induced a significant increase of malonaldehyde level and Glutathione peroxidase activity, a slightly increase of Catalase A activity as well as a decrease of wet weight and mitochondrial NADH cit c reductase of S. cerevisiae UE-ME(3). Also our results show that cycloheximide prevent cell death when cells grows 30 min in presence of 1.5 mM of vanadium pentoxide.
Collapse
Affiliation(s)
- Tânia Rosado
- Departamento de Química, Universidade de Evora, R.Romão Ramalho, 59, 7002-671, Evora, Portugal
| | | | | | | |
Collapse
|
5
|
Endoplasmic reticulum-associated secretory proteins Sec20p, Sec39p, and Dsl1p are involved in peroxisome biogenesis. EUKARYOTIC CELL 2009; 8:830-43. [PMID: 19346454 DOI: 10.1128/ec.00024-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two pathways have been identified for peroxisome formation: (i) growth and division and (ii) de novo synthesis. Recent experiments determined that peroxisomes originate at the endoplasmic reticulum (ER). Although many proteins have been implicated in the peroxisome biogenic program, no proteins in the eukaryotic secretory pathway have been identified as having roles in peroxisome formation. Using the yeast Saccharomyces cerevisiae regulatable Tet promoter Hughes clone collection, we found that repression of the ER-associated secretory proteins Sec20p and Sec39p resulted in mislocalization of the peroxisomal matrix protein chimera Pot1p-green fluorescent protein (GFP) to the cytosol. Likewise, the peroxisomal membrane protein chimera Pex3p-GFP localized to tubular-vesicular structures in cells suppressed for Sec20p, Sec39p, and Dsl1p, which form a complex at the ER. Loss of Sec39p attenuated formation of Pex3p-derived peroxisomal structures following galactose induction of Pex3p-GFP expression from the GAL1 promoter. Expression of Sec20p, Sec39p, and Dsl1p was moderately increased in yeast grown under conditions that proliferate peroxisomes, and Sec20p, Sec39p, and Dsl1p were found to cofractionate with peroxisomes and colocalize with Pex3p-monomeric red fluorescent protein under these conditions. Our results show that SEC20, SEC39, and DSL1 are essential secretory genes involved in the early stages of peroxisome assembly, and this work is the first to identify and characterize an ER-associated secretory machinery involved in peroxisome biogenesis.
Collapse
|
6
|
Karpichev IV, Durand-Heredia JM, Luo Y, Small GM. Binding characteristics and regulatory mechanisms of the transcription factors controlling oleate-responsive genes in Saccharomyces cerevisiae. J Biol Chem 2008; 283:10264-75. [PMID: 18285336 PMCID: PMC2447635 DOI: 10.1074/jbc.m708215200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/05/2008] [Indexed: 11/06/2022] Open
Abstract
Transcriptional activation of many genes involved in peroxisome-related functions is regulated by the Oaf1p, Pip2p, and Adr1p transcription factors in Saccharomyces cerevisiae. We have analyzed the in vivo binding characteristics of Oaf1p-Pip2p and found that this complex is recruited to its target oleate-response element (ORE) under all growth conditions tested. In addition, this complex also binds to ORE-containing genes that do not appear to be regulated by these proteins, as well as to some genes lacking conventional OREs. The recruitment of the Oaf1p-Pip2p complex was greatly increased upon glucose derepression, possibly due to Oaf1p phosphorylation with only moderate increases upon oleate induction. Thus, this complex may receive a nutritional cue while it is already bound to DNA, suggesting that, in addition to the increase in Oaf1p-Pip2p binding, other mechanism(s) such as enhanced Adr1p association may drive the expression of highly inducible fatty acid-responsive genes. Adr1p binds to target genes in an oleate-dependent fashion and is involved in Oaf1p-Pip2p binding. In turn, the Oaf1p-Pip2p complex appears to be important for Adr1p binding to a subset of oleate-responsive genes. Adr1p is a positive regulator of ORE-containing genes, but it also acts as a negative factor in expression of some of these genes. Finally, we have also shown that Adr1p is directly involved in mediating oleate induction of Oaf1p-Pip2p target genes.
Collapse
Affiliation(s)
- Igor V Karpichev
- Department of Biology, City College of the City University of New York, New York, New York 10031, USA
| | | | | | | |
Collapse
|
7
|
Lee SY, Song JY, Kwon ES, Roe JH. Gpx1 is a stationary phase-specific thioredoxin peroxidase in fission yeast. Biochem Biophys Res Commun 2007; 367:67-71. [PMID: 18162174 DOI: 10.1016/j.bbrc.2007.12.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/12/2007] [Indexed: 11/30/2022]
Abstract
The genome sequence of Schizosaccharomyces pombe reveals only one gene for a putative glutathione peroxidase (gpx1(+)). The Gpx1 protein has a peroxidase activity but preferred thioredoxin to glutathione as an electron donor when examined in vitro and in vivo, and therefore is a thioredoxin peroxidase. Besides H(2)O(2), it can reduce alkyl and phospholipid hydroperoxides. Expression of the gpx1 gene was elevated at the stationary phase, and we found that it supported long-term survival of S. pombe. The mutant also exhibited some defect in the activity of aconitase, an oxidation-labile Fe-S enzyme in mitochondria. Activity of sulfite reductase, a labile Fe-S enzyme in the cytosol, was also dramatically lowered in the mutant in the stationary phase. The Gpx1 protein, without any obvious targeting sequence, was localized in mitochondria as well as in the cytosol. Therefore, Gpx1 must serve to ensure optimal mitochondrial function and cytosolic environment, especially in the stationary phase.
Collapse
Affiliation(s)
- Si-Young Lee
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Kwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Gurvitz A, Rottensteiner H. The biochemistry of oleate induction: Transcriptional upregulation and peroxisome proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1392-402. [PMID: 16949166 DOI: 10.1016/j.bbamcr.2006.07.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/24/2006] [Indexed: 01/08/2023]
Abstract
Unicellular organisms such as yeast constantly monitor their environment and respond to nutritional cues. Rapid adaptation to ambient changes may include modification and degradation of proteins; alterations in mRNA stability; and differential rates of translation. However, for a more prolonged response, changes are initiated in the expression of genes involved in the utilization of energy sources whose availability constantly fluctuates. For example, in the presence of oleic acid as a sole carbon source, yeast cells induce the expression of a discrete set of enzymes for fatty acid beta-oxidation as well as proteins involved in the expansion of the peroxisomal compartment containing this process. In this review chapter, we discuss the factors regulating oleate induction in Saccharomyces cerevisiae, and we also deal with peroxisome proliferation in other organisms, briefly mentioning fatty acid-independent signals that can trigger this process.
Collapse
Affiliation(s)
- Aner Gurvitz
- Medical University of Vienna, Center of Physiology and Pathophysiology, Department of Physiology, Section of Physiology of Fatty Acid Lipid Metabolism, 1090 Vienna, Austria
| | | |
Collapse
|
9
|
Song JY, Cha J, Lee J, Roe JH. Glutathione reductase and a mitochondrial thioredoxin play overlapping roles in maintaining iron-sulfur enzymes in fission yeast. EUKARYOTIC CELL 2006; 5:1857-65. [PMID: 16950927 PMCID: PMC1694798 DOI: 10.1128/ec.00244-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the fission yeast Schizosaccharomyces pombe, the pgr1+ gene encoding glutathione (GSH) reductase (GR) is essentially required for cell survival. Depletion of GR caused proliferation arrest at the G1 phase of the cell cycle under aerobic conditions. Multicopy suppressors that restore growth were screened, and one effective suppressor was found to be the trx2+ gene, encoding a mitochondrial thioredoxin. This suggests that GR is critically required for some mitochondrial function(s). We found that GR resides in both cytosolic and organellar fractions of the cell. Depletion of GR lowered the respiration rate and the activity of oxidation-labile Fe-S enzymes such as mitochondrial aconitase and cytosolic sulfite reductase. Trx2 did not reverse the high ratio of oxidized glutathione to GSH or the low respiration rate observed in GR-depleted cells. However, it brought the activity of oxidation-labile Fe-S enzymes to a normal level, suggesting that the maintenance of Fe-S enzymes is a critical factor in the survival of S. pombe. The activity of succinate dehydrogenase, an oxidation-insensitive Fe-S enzyme, however, was not affected by GR depletion, suggesting that GR is not required for the biogenesis of the Fe-S cluster. The total iron content was greatly increased by GR depletion and was brought to a nearly normal level by Trx2. These results indicate that the essentiality of GR in the aerobic growth of S. pombe is derived from its role in maintaining oxidation-labile Fe-S enzymes and iron homeostasis.
Collapse
Affiliation(s)
- Ji-Yoon Song
- School of Biological Sciences, Seoul National University, 56-1 Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
10
|
Chung WH, Kim KD, Cho YJ, Roe JH. Differential expression and role of two dithiol glutaredoxins Grx1 and Grx2 in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2004; 321:922-9. [PMID: 15358115 DOI: 10.1016/j.bbrc.2004.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Indexed: 11/28/2022]
Abstract
Glutaredoxins are glutathione-specific thiol oxidoreductases. The regulation and the role of grx1(+) and grx2(+) genes encoding dithiol glutaredoxins were analyzed in Schizosaccharomyces pombe. When tested in the same genetic background including mating type, the grx1 null mutant became sensitive to hydrogen peroxide, whereas grx2 mutant became highly sensitive to paraquat, a superoxide generator. The grx1grx2 double mutant showed additive phenotype of each single mutant. The grx1(+) gene expression was induced by various stresses such as oxidants, salts, and heat, and increased in the stationary phase, whereas grx2(+) stayed constitutive. The induction was mediated via Spc1 MAP kinase path involving both Atf1 and Pap1 transcription factors. Sub-cellular fractionation as well as fluorescence microscopy revealed that Grx1 resides mainly in the cytosol, whereas Grx2 is in mitochondria. These results suggest distinct roles for Grx1 and Grx2 in S. pombe in mediating glutathione-dependent redox homeostasis.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- Laboratory of Molecular Microbiology, Institute of Microbiology, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Marchesini S, Poirier Y. Futile cycling of intermediates of fatty acid biosynthesis toward peroxisomal beta-oxidation in Saccharomyces cerevisiae. J Biol Chem 2003; 278:32596-601. [PMID: 12819196 DOI: 10.1074/jbc.m305574200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.
Collapse
Affiliation(s)
- Silvia Marchesini
- Laboratoire de Biotechnologie Végétale, Institut d'Ecologie, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
12
|
Ruprich-Robert G, Zickler D, Berteaux-Lecellier V, Vélot C, Picard M. Lack of mitochondrial citrate synthase discloses a new meiotic checkpoint in a strict aerobe. EMBO J 2002; 21:6440-51. [PMID: 12456651 PMCID: PMC136936 DOI: 10.1093/emboj/cdf632] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial citrate synthase (mCS) is the initial enzyme of the tricarboxylic acid (TCA) cycle. Despite the key position of this protein in respiratory metabolism, very few studies have addressed the question of the effects of the absence of mCS in development. Here we report on the characterization of 15 point mutations and a complete deletion of the cit1 gene, which encodes mCS in the filamentous fungus Podospora anserina. This gene was identified genetically through a systematic search for suppressors of the metabolic defect of the peroxisomal pex2 mutants. The cit1 mutant strains exhibit no visible vegetative defects. However, they display an unexpected developmental phenotype: in homozygous crosses, cit1 mutations impair meiosis progression beyond the diffuse stage, a key stage of meiotic prophase. Enzyme assays, immunofluorescence and western blotting experiments show that the presence of the mCS protein is more important for completion of meiosis than its well-known enzyme activity. Combined with observations made in budding yeast, our data suggest that there is a general metabolic checkpoint at the diffuse stage in eukaryotes.
Collapse
Affiliation(s)
- Gwenaël Ruprich-Robert
- Institut de Génétique et Microbiologie, UMR-CNRS 8621, Bat. 400, Université Paris-Sud, 91405 Orsay cedex, France
Present address: Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bat. 144, 91191-Gif sur Yvette, France Corresponding author e-mail:
| | | | | | | | - Marguerite Picard
- Institut de Génétique et Microbiologie, UMR-CNRS 8621, Bat. 400, Université Paris-Sud, 91405 Orsay cedex, France
Present address: Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bat. 144, 91191-Gif sur Yvette, France Corresponding author e-mail:
| |
Collapse
|
13
|
Rottensteiner H, Palmieri L, Hartig A, Hamilton B, Ruis H, Erdmann R, Gurvitz A. The peroxisomal transporter gene ANT1 is regulated by a deviant oleate response element (ORE): characterization of the signal for fatty acid induction. Biochem J 2002; 365:109-17. [PMID: 12071844 PMCID: PMC1222661 DOI: 10.1042/bj20011495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Saccharomyces cerevisiae ANT1/YPR128c encodes the peroxisomal adenine nucleotide transporter that provides ATP for intra-peroxisomal activation of medium-chain fatty acids. A lacZ reporter construct comprising the ANT1 promoter was shown to be comparatively more highly expressed in a wild-type strain grown on oleic acid, a long-chain fatty acid, than in pip2Delta(oaf1)Delta mutant cells that are defective in fatty acid induction. The ANT1 promoter was demonstrated to contain a deviant oleate response element (ORE) that could bind the Pip2p-Oaf1p transcription factor and confer activation on a basal CYC1-lacZ reporter gene. Expression of Ant1p as well as other enzymes whose genes are known to be regulated by a canonical ORE was found to be increased in cells grown on lauric acid, a medium-chain fatty acid. We concluded that the signal for induction does not differentiate between long- and medium-chain fatty acids. This signal was independent of beta-oxidation or the biogenesis of the peroxisomal compartment where this process occurs, since a pox1Delta strain blocked in the first and rate-limiting step of beta-oxidation as well as various pex mutant cells devoid of intact peroxisomes produced sufficient amounts of Pip2p-Oaf1p for binding OREs in vitro and for expressing an ORE-driven reporter gene. The signal's durability was shown to be related to the concentration of fatty acids in the medium, since a pex6Delta strain expressed an ORE-driven reporter gene at high levels for a longer period than did isogenic wild-type cells. Generation of the signal was also independent of protein synthesis, as demonstrated by cycloheximide treatment.
Collapse
|
14
|
Poirier Y, Erard N, Petétot JM. Synthesis of polyhydroxyalkanoate in the peroxisome of Saccharomyces cerevisiae by using intermediates of fatty acid beta-oxidation. Appl Environ Microbiol 2001; 67:5254-60. [PMID: 11679353 PMCID: PMC93298 DOI: 10.1128/aem.67.11.5254-5260.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the beta-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.
Collapse
Affiliation(s)
- Y Poirier
- Laboratoire de Biotechnologie Végétale, Institut d'Ecologie, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
15
|
Abstract
Long-chain fatty acids are a vital metabolic energy source and are building blocks of membrane lipids. The yeast Saccharomyces cerevisiae is a valuable model system for elucidation of gene-function relationships in such eukaryotic processes as fatty acid metabolism. Yeast degrades fatty acids only in the peroxisome, and recently, genes encoding core and auxiliary enzymes of peroxisomal beta-oxidation have been identified. Mechanisms involved in fatty acid induction of gene expression have been described, and novel fatty acid-responsive genes have been discovered via yeast genome analysis. In addition, a number of genes essential for synthesis of the variety of fatty acids in yeast have been cloned. Advances in understanding such processes in S. cerevisiae will provide helpful insights to functional genomics approaches in more complex organisms.
Collapse
Affiliation(s)
- P J Trotter
- The Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
16
|
Szkopinska A, Swiezewska E, Skoneczny M. A novel family of longer chain length dolichols present in oleate-induced yeast Saccharomyces cerevisiae. Biochimie 2001; 83:427-32. [PMID: 11368851 DOI: 10.1016/s0300-9084(01)01261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The typical size of the yeast dolichol family ranges from 14 to 19 isoprene units D((14-19)) with dolichol(16) being the dominating species. Induction of peroxisome proliferation by growing the cells in medium containing oleate as carbon source induces the synthesis of an additional family of longer dolichols D((19-24)) with D(21) being the most prominent. This phenomenon is abolished in the peroxisome biogenesis deficient strain in which the PEX1 gene (encoding Pex1p peroxin) has been disrupted. The total amount of dolichols in pex1Delta cells is lower than in the wild-type cells, as is the amount of phosphatidylcholine. Moreover, the levels of 3-hydroxy-3-methylglutaryl CoA reductase and farnesyl diphosphate synthase, two key enzymes in dolichol biosynthesis, are decreased in the absence of a functional PEX1 gene. The presence of longer dolichols in oleate-induced Saccharomyces cerevisiae cells, the absence of this additional family in peroxisome deficient cells, and a decrease of the total amount of dolichols in these cells indicate the involvement of peroxisomes in the biosynthesis of dolichols in this organism.
Collapse
Affiliation(s)
- A Szkopinska
- Institute of Biochemistry and Biophysics PAS, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| | | | | |
Collapse
|
17
|
Epstein CB, Waddle JA, Hale W, Davé V, Thornton J, Macatee TL, Garner HR, Butow RA. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 2001; 12:297-308. [PMID: 11179416 PMCID: PMC30944 DOI: 10.1091/mbc.12.2.297] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial dysfunction can lead to diverse cellular and organismal responses. We used DNA microarrays to characterize the transcriptional responses to different mitochondrial perturbations in Saccharomyces cerevisiae. We examined respiratory-deficient petite cells and respiratory-competent wild-type cells treated with the inhibitors of oxidative phosphorylation antimycin, carbonyl cyanide m-chlorophenylhydrazone, or oligomycin. We show that respiratory deficiency, but not inhibition of mitochondrial ATP synthesis per se, induces a suite of genes associated with both peroxisomal activities and metabolite-restoration (anaplerotic) pathways that would mitigate the loss of a complete tricarboxylic acid cycle. The array data suggested, and direct microscopic observation of cells expressing a derivative of green fluorescent protein with a peroxisomal matrix-targeting signal confirmed, that respiratory deficiency dramatically induces peroxisome biogenesis. Transcript profiling of cells harboring null alleles of RTG1, RTG2, or RTG3, genes known to control signaling from mitochondria to the nucleus, suggests that there are multiple pathways of cross-talk between these organelles in yeast.
Collapse
Affiliation(s)
- C B Epstein
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Upadhya R, Nagajyothi H, Bhat SG. d-Amino acid oxidase and catalase of detergent permeabilized Rhodotorula gracilis cells and its potential use for the synthesis of α-keto acids. Process Biochem 1999. [DOI: 10.1016/s0032-9592(99)00025-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
|
20
|
Minard KI, McAlister-Henn L. Dependence of peroxisomal beta-oxidation on cytosolic sources of NADPH. J Biol Chem 1999; 274:3402-6. [PMID: 9920883 DOI: 10.1074/jbc.274.6.3402] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth of Saccharomyces cerevisiae with a fatty acid as carbon source was shown previously to require function of either glucose-6-phosphate dehydrogenase (ZWF1) or cytosolic NADP+-specific isocitrate dehydrogenase (IDP2), suggesting dependence of beta-oxidation on a cytosolic source of NADPH. In this study, we find that DeltaIDP2DeltaZWF1 strains containing disruptions in genes encoding both enzymes exhibit a rapid loss of viability when transferred to medium containing oleate as the carbon source. This loss of viability is not observed following transfer of a DeltaIDP3 strain lacking peroxisomal isocitrate dehydrogenase to medium with docosahexaenoate, a nonpermissive carbon source that requires function of IDP3 for beta-oxidation. This suggests that the fatty acid- phenotype of DeltaIDP2DeltaZWF1 strains is not a simple defect in utilization. Instead, we propose that the common function shared by IDP2 and ZWF1 is maintenance of significant levels of NADPH for enzymatic removal of the hydrogen peroxide generated in the first step of peroxisomal beta-oxidation in yeast and that inadequate levels of the reduced form of the cofactor can produce lethality. This proposal is supported by the finding that the sensitivity to exogenous hydrogen peroxide previously reported for DeltaZWF1 mutant strains is less pronounced when analyses are conducted with a nonfermentable carbon source, a condition associated with elevated expression of IDP2. Under those conditions, similar slow growth phenotypes are observed for DeltaZWF1 and DeltaIDP2 strains, and co-disruption of both genes dramatically exacerbates the H2O2s phenotype. Collectively, these results suggest that IDP2, when expressed, and ZWF1 have critical overlapping functions in provision of reducing equivalents for defense against endogenous or exogenous sources of H2O2.
Collapse
Affiliation(s)
- K I Minard
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284-7760, USA
| | | |
Collapse
|
21
|
Sigler K, Chaloupka J, Brozmanová J, Stadler N, Höfer M. Oxidative stress in microorganisms--I. Microbial vs. higher cells--damage and defenses in relation to cell aging and death. Folia Microbiol (Praha) 1999; 44:587-624. [PMID: 11097021 DOI: 10.1007/bf02825650] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differ in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of Reactive Oxygen Species (ROS) on cell constituents, secondary lipid- or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast or Podospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationary-phase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway--apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillary sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such as bak or bax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.
Collapse
Affiliation(s)
- K Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | |
Collapse
|
22
|
Rothermel BA, Thornton JL, Butow RA. Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J Biol Chem 1997; 272:19801-7. [PMID: 9242640 DOI: 10.1074/jbc.272.32.19801] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rtg3p and Rtg1p are basic helix-loop-helix/leucine zipper protein transcription factors in yeast that interact and bind to sites in an upstream activation sequence element in the 5'-flanking region of CIT2, a gene encoding a peroxisomal isoform of citrate synthase. These factors are required both for basal expression of CIT2 and its elevated expression in cells with dysfunctional mitochondria, such as in respiratory-deficient petite cells lacking mitochondrial DNA (rho degrees ). This elevated expression of CIT2 is called the retrograde response. Here we show that fusion constructs between the Gal4p DNA binding domain and Rtg3p transactivate the expression of a LacZ reporter gene under the control of a GAL1 promoter element. We have identified two activation domains in Rtg3p: a strong carboxyl-terminal domain from amino acids 375-486, and a weaker amino-terminal domain from amino acids 1-175; neither of these activation domains contain the bHLH/Zip motif. We have also identified a serine/threonine-rich domain of Rtg3p within amino acids 176-282 that is inhibitory to transactivation. In addition, the transcriptional activity of the Gal4-Rtg3p fusion proteins does not require either Rtg1p or Rtg2p; the latter is a protein containing an hsp70-like ATP binding domain that is also necessary for CIT2 expression. In contrast, transcriptional activation by Gal4-Rtg1p fusion proteins requires the Rtg1p basic helix-loop-helix/leucine zipper protein domain, as well as Rtg3p and Rtg2p. These data suggest that transcriptional activation by the Rtg1p-Rtg3p complex is largely the function of Rtg3p. Experiments are also presented suggesting that Rtg3p is limiting for gene expression in respiratory-competent (rho+) cells.
Collapse
Affiliation(s)
- B A Rothermel
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
23
|
Jia Y, Rothermel B, Thornton J, Butow RA. A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol 1997; 17:1110-7. [PMID: 9032238 PMCID: PMC231836 DOI: 10.1128/mcb.17.3.1110] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The expression of some nuclear genes in Saccharomyces cerevisiae, such as the CIT2 gene, which encodes a glyoxylate cycle isoform of citrate synthase, is responsive to the functional state of mitochondria. Previous studies identified a basic helix-loop-helix-leucine zipper (bHLH/Zip) transcription factor encoded by the RTG1 gene that is required for both basal expression of the CIT2 gene and its increased expression in respiratory-deficient cells. Here, we describe the cloning and characterization of RTG3, a gene encoding a 54-kDa bHLH/Zip protein that is also required for CIT2 expression. Rtg3p binds together with Rtg1p to two identical sites oriented as inverted repeats 28 bp apart in a regulatory upstream activation sequence element (UASr) in the CIT2 promoter. The core binding site for the Rtg1p-Rtg3p heterodimer is 5'-GGTCAC-3', which differs from the canonical E-box site, CANNTG, to which most other bHLH proteins bind. We demonstrate that both of the Rtg1p-Rtg3p binding sites in the UAS(r) element are required in vivo and act synergistically for CIT2 expression. The basic region of Rtg3p conforms well to the basic region of most bHLH proteins, whereas the basic region of Rtg1p does not. These findings suggest that the Rtg1p-Rtg3p complex interacts in a novel way with its DNA target sites.
Collapse
Affiliation(s)
- Y Jia
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
24
|
Hooks MA, Bode K, Couée I. Higher-plant medium- and short-chain acyl-CoA oxidases: identification, purification and characterization of two novel enzymes of eukaryotic peroxisomal beta-oxidation. Biochem J 1996; 320 ( Pt 2):607-14. [PMID: 8973574 PMCID: PMC1217973 DOI: 10.1042/bj3200607] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Medium- and short-chain acyl-CoA oxidases were identified in and subsequently purified from dark-grown maize plantlets. The oxidase showing preference for medium-chain fatty acyl-CoAs (C10-C14) was purified to homogeneity. The oxidase showing preference for short-chain fatty acyl-CoAs (C4-C8) was purified over 150-fold. Various catalytic properties confirmed these enzymes to be true acyl-CoA oxidases. They produced trans-2-enoyl-CoA and H2O2 from the saturated acyl-CoA, as verified by various independent assay techniques. They also exhibited FAD-dependent activity; i.e. removal of loosely bound FAD by gel filtration markedly reduced activity, which could be restored upon re-addition of FAD. They showed apparent Km values between 2 and 10 microM for the acyl-CoA substrate giving maximal activity, no activity with the corresponding free fatty acid, high pH optima (8.3-8.6) and a peroxisomal subcellular location. The medium-chain acyl-CoA oxidase was determined to be a monomeric protein with a molecular mass of 62 kDa. The short-chain acyl-CoA oxidase was shown to have a native molecular mass of 60 kDa, but exhibited a labile multimeric structure, as indicated by the elution of multiple peaks of activity during several chromatographic steps, and ultimately by the purification of a subunit of molecular mass 15 kDa. The medium- and short-chain acyl-CoA oxidases were demonstrated to be distinct from the maize equivalent of the cucumber glyoxysomal long-chain acyl-CoA oxidase previously purified and characterized [Kirsch, Loffler and Kindl (1986) J. Biol. Chem. 261, 8570-8575]. The maize long-chain acyl-CoA oxidase was partially purified to permit determination of its substrate specificity; it showed activity with a broad range of acyl-CoAs of chain length greater than C8, and maximal activity with C16. The implications of the existence of multiple acyl-CoA oxidases in the regulation of plant peroxisomal beta-oxidation are discussed.
Collapse
Affiliation(s)
- M A Hooks
- Station de Physiologie Végétale, Institut National de la Recherche Agronomique, Centre de Recherches de Bordeaux, France
| | | | | |
Collapse
|
25
|
Zoładek T, Nguyen BN, Rytka J. Saccharomyces cerevisiae mutants defective in heme biosynthesis as a tool for studying the mechanism of phototoxicity of porphyrins. Photochem Photobiol 1996; 64:957-62. [PMID: 8972638 DOI: 10.1111/j.1751-1097.1996.tb01861.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutants of Saccharomyces cerevisiae accumulating uroporphyrin (UP) or protoporphyrin (PP) were used as a model for the in vivo phototoxic effect of porphyrins observed in the human skin photosensitivity associated with porphyrias (porphyria cutanea tarda and erythropoietic protoporphyria). We have found that UP is localized in vacuoles and PP is present in all compartments except vacuoles in yeast cells. Endogenous PP is much more effective as a photosensitizer of yeast cells than UP. Protoporphyrin action is strictly dependent on the presence of oxygen. In contrast, UP displays a phototoxic effect even if oxygen is not present in the suspension, implicating a free radical mechanism that operates in anaerobiosis upon photosensitization by UP. Catalase or superoxide dismutase deficiency affects photosensitization by UP. A possible mechanism of UP photosensitizing activity is discussed.
Collapse
Affiliation(s)
- T Zoładek
- Department of Genetics, Polish Academy of Sciences, Warszawa, Poland.
| | | | | |
Collapse
|
26
|
Skoneczny M, Rytka J. Maintenance of the peroxisomal compartment in glucose-repressed and anaerobically grown Saccharomyces cerevisiae cells. Biochimie 1996; 78:95-102. [PMID: 8818216 DOI: 10.1016/0300-9084(96)82639-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
According to the current model of peroxisome biogenesis, the inheritance of this compartment requires the growth and division of pre-existing organelles followed by their distribution between mother and daughter cells. However, no known peroxisomal functions are present nor required for Saccharomyces cerevisiae cells grown under glucose repression and in anaerobiosis and the peroxisomal compartment becomes virtually indistinguishable under such conditions. This raised the question of the fate of this compartment in such cells. Is it maintained throughout prolonged growth under glucose repression or does it disappear from the cell and then reassemble on demand? To study the maintenance of putatively functional peroxisomes in S cerevisiae cells grown under conditions of glucose repression and anaerobiosis, we applied the vector-mediated overexpression of peroxisome matrix enzyme's catalase A and acyl-CoA oxidase. Evidence is presented that in S cerevisiae the peroxisomal import machinery responsible for targeting of matrix enzymes into this compartment is preserved under glucose repression and in the absence of oxygen.
Collapse
Affiliation(s)
- M Skoneczny
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | | |
Collapse
|
27
|
Endrizzi A, Pagot Y, Le Clainche A, Nicaud JM, Belin JM. Production of lactones and peroxisomal beta-oxidation in yeasts. Crit Rev Biotechnol 1996; 16:301-29. [PMID: 8989867 DOI: 10.3109/07388559609147424] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among aroma compounds interesting for the food industry, lactones may be produced by biotechnological means using yeasts. These microorganisms are able to synthesize lactones de novo or by biotransformation of fatty acids with higher yields. Obtained lactone concentrations are compatible with industrial production, although detailed metabolic pathways have not been completely elucidated. The biotransformation of ricinoleic acid into gamma-decalactone is taken here as an example to better understand the uptake of hydroxy fatty acids by yeasts and the different pathways of fatty acid degradation. The localization of ricinoleic acid beta-oxidation in peroxisomes is demonstrated. Then the regulation of the biotransformation is described, particularly the induction of peroxisome proliferation and peroxisomal beta-oxidation and its regulation at the genome level. The nature of the biotransformation product is then discussed (4-hydroxydecanoic acid or gamma-decalactone), because the localization and the mechanisms of the lactonization are still not properly known. Lactone production may also be limited by the degradation of this aroma compound by the yeasts which produced it. Thus, different possible ways of modification and degradation of gamma-decalactone are described.
Collapse
Affiliation(s)
- A Endrizzi
- Laboratoire de Biotechnologie, ENSBANA. Univ. Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
28
|
Rothermel BA, Shyjan AW, Etheredge JL, Butow RA. Transactivation by Rtg1p, a basic helix-loop-helix protein that functions in communication between mitochondria and the nucleus in yeast. J Biol Chem 1995; 270:29476-82. [PMID: 7493987 DOI: 10.1074/jbc.270.49.29476] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rtg1p is a basic helix-loop-helix transcription factor in the yeast Saccharomyces cerevisiae that is required for basal and regulated expression of CIT2, the gene encoding a peroxisomal isoform of citrate synthase. In respiratory incompetent rho degree petite cells, CIT2 transcription is elevated as much as 30-fold compared with respiratory competent rho + cells. Here we provide evidence that Rtg1p interacts directly with a CIT2 upstream activation site (UASr) and that the rho degree/rho + regulation is not due to a change in the levels of Rtg1p. A fusion protein consisting of the DNA binding domain of Gal4p fused to the NH2 terminus of the full-length wild-type Rtg1p was able to transactivate an integrated LacZ reporter under control of the Gal4p-responsive GAL1 UASG in a rho degree/rho(+)-dependent manner. Other Gal4p fusions to deletions or mutations of Rtg1p indicate that the helix-loop-helix domain is essential for transactivation. Regulated expression of CIT2 also requires the RTG2 gene product. The Gal4-Rtg1p fusion was unable to transactivate the LacZ reporter gene in a strain deleted for RTG2, suggesting that the RTG2 product does not act independently of Rtg1p in the rho degree/rho + transcriptional response.
Collapse
Affiliation(s)
- B A Rothermel
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
29
|
Simon MM, Pavlik P, Hartig A, Binder M, Ruis H, Cook WJ, Denis CL, Schanz B. A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:289-96. [PMID: 7500953 DOI: 10.1007/bf00290529] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Saccharomyces cerevisiae transcriptional activator ADR1, which controls ADH2 gene expression, was shown to be involved in the regulation of peroxisome proliferation. To study the mode of action of ADR1, we compared strains carrying the adr1-1 mutation, high or low copy numbers of the ADR1 gene, the constitutive allele ADR1-5c, and 3'-deletions of ADR1. High ADR1 gene dosage increased the transcription of genes encoding peroxisomal proteins as compared to one copy of the ADR1 gene. Furthermore, overexpression of ADR1 under ethanol growth conditions induced the proliferation of peroxisomal structures. The organelles were observed to be localized in clusters, a typical feature of peroxisomes induced by oleic acid. In contrast, the ADR1-5c allele, which induces ADH2 expression to a level comparable to that of high ADR1 gene dosage was found to have only a small effect. An analysis of functional domains of the ADR1 protein revealed that the N-terminal 220 amino acids of ADR1 were sufficient for wild-type levels of transcription of the FOX2, FOX3, and PAS1 genes, but the entire ADR1 protein was required for complete induction of the CTA1 gene and for growth oleic acid medium. Our data suggest that a functional domain of the ADR1 protein localized between residues 643 and 1323 is required for the induction of peroxisomal structures and for the utilization of oleic acid.
Collapse
Affiliation(s)
- M M Simon
- Zentrum für Angewandte Genetik, BOKU Wien/Austria
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Filppula SA, Sormunen RT, Hartig A, Kunau WH, Hiltunen JK. Changing stereochemistry for a metabolic pathway in vivo. Experiments with the peroxisomal beta-oxidation in yeast. J Biol Chem 1995; 270:27453-7. [PMID: 7499202 DOI: 10.1074/jbc.270.46.27453] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The biosphere is inherently built of chiral molecules, and once their metabolism is established, the stereochemical course of the reactions involved is seen to remain highly conserved. However, by replacing the yeast peroxisomal multifunctional enzyme (MFE), which catalyzes the second and third reactions of beta-oxidation of fatty acids via D-3-hydroxyacyl-CoA intermediates, with rat peroxisomal MFE, which catalyzes the same reactions via L-3-hydroxy intermediates, it was possible to change the chiralities of the intermediates in a major metabolic pathway in vivo. Both stereochemical alternatives allowed the yeast cells to grow on oleic acid, implying that when the beta-oxidation pathways evolved, the overall function was the determining factor for the acquisition of MFEs and not the stereospecificities of the reactions themselves.
Collapse
|
31
|
Kos W, Kal AJ, van Wilpe S, Tabak HF. Expression of genes encoding peroxisomal proteins in Saccharomyces cerevisiae is regulated by different circuits of transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:79-86. [PMID: 7578261 DOI: 10.1016/0167-4781(95)00127-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In Saccharomyces cerevisiae induction of the FOX3 gene, encoding peroxisomal 3-oxoacyl-CoA thiolase, by growth on oleate as sole carbon source, is exerted via the cis-acting DNA element designated oleate response element (ORE) (Einerhand et al. (1991) Eur. J. Biochem. 200, 113-122). The transcription factor(s) binding to this upstream activation site (UAS) are still unknown, however. Induction of another peroxisomal enzyme, citrate synthase (CIT2) is dependent on the products of two genes called RTG1 and RTG2 (Liao and Butow (1993) Cell 72, 61-71). In the present study we have investigated whether RTG1 controls other genes coding for peroxisomal proteins, and whether such control takes place via the ORE. A number of genes coding for a variety of peroxisomal proteins such as: thiolase and catalase (peroxisomal matrix proteins), PAS3p (a peroxisomal membrane protein) and PAS10p (a protein involved in the import of peroxisomal proteins) were studied in their response to RTG1. Although the RTG1 and 2 products proved to be required for the increase in number and volume of peroxisomes upon induction by oleate, the single promoter output of the chosen set of genes remained practically unchanged in a rtg1 mutant strain. In addition gel retardation experiments indicated that RTG1 does not bind to the ORE. The behavior of genes coding for the various proteins also varied during repression, derepression and induction, indicating that probably a number of proteins are involved in tuning the output of each gene to cellular demand.
Collapse
Affiliation(s)
- W Kos
- E.C. Slater Institute, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Chelstowska A, Butow RA. RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J Biol Chem 1995; 270:18141-6. [PMID: 7629125 DOI: 10.1074/jbc.270.30.18141] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In Saccharomyces cerevisiae cells with dysfunctional mitochondria, such as in petites, the CIT2 gene encoding the peroxisomal glyoxylate cycle enzyme, citrate synthase 2 (CS2), is transcriptionally activated by as much as 30-fold, a phenomenon we call retrograde regulation. Two genes, RTG1 and RTG2, are required for both basal and elevated expression of CIT2 (Liao, X., and Butow, R. A. (1993) Cell 72, 61-71). Different blocks in the tricarboxylic acid cycle also elicit an increase in CIT2 expression, but not to the extent observed in petites. We have examined whether other genes of the glyoxylate cycle exhibit retrograde regulation and the role of RTG1 and RTG2 in their expression. Of the glyoxylate cycle genes tested, CIT2 is the only one that shows retrograde regulation, suggesting that CS2 may be an important control point for metabolic cross-feeding from the glyoxylate cycle to mitochondria. Surprisingly, RTG1 and RTG2 are required for efficient growth of cells on medium containing oleic acid, a condition which induces peroxisome biogenesis; these genes are also required together for oleic acid induction of three peroxisomal protein genes tested, POX1 and CTA1 involved beta-oxidation of long chain fatty acids and PMP27, which encodes the most abundant protein of peroxisomal membranes. These data indicate that, in addition to their role in retrograde regulation of CIT2, the RTG genes are important for expression of genes encoding peroxisomal proteins and are thus key components in a novel, three-way path of communication between mitochondria, the nucleus, and peroxisomes.
Collapse
Affiliation(s)
- A Chelstowska
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
33
|
Kurlandzka A, Rytka J, Gromadka R, Murawski M. A new essential gene located on Saccharomyces cerevisiae chromosome IX. Yeast 1995; 11:885-90. [PMID: 7483852 DOI: 10.1002/yea.320110910] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A new 1150 amino acids long open reading frame (ORF), coding for an essential protein of unknown function was found in Saccharomyces cerevisiae by sequencing 3754 bp of geonomic DNA. The clone was isolated in a search for a fatty acid-binding protein (FABP) and was localized on chromosome IX. The ORF bears no homology to FABP, but it shows weak similarity to Plasmodium vivax reticulocyte binding protein 1 and to aggregation-specific adenylate cyclase from Dictyostelium discoideum. The new gene is constitutively transcribed regardless of the carbon source used.
Collapse
Affiliation(s)
- A Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa
| | | | | | | |
Collapse
|
34
|
Stanway CA, Gibbs JM, Berardi E. Expression of the FOX1 gene of Saccharomyces cerevisiae is regulated by carbon source, but not by the known glucose repression genes. Curr Genet 1995; 27:404-8. [PMID: 7586025 DOI: 10.1007/bf00311208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have investigated the regulation of expression of the FOX1 gene of Saccharomyces cerevisiae which encodes acyl-CoA oxidase, the first enzyme in the peroxisomal beta oxidation of fatty acids. We have found that the FOX1 steady state mRNA level is repressed by glucose, partially induced by ethanol (but not by raffinose) and fully induced by oleic acid as a carbon source. Glucose repression was observed even if cultures were grown to stationary phase; however, if the glucose supply was limited initially then partial induction of FOX1 mRNA occurred upon growth to high cell density. A variety of mutants are known to affect the glucose repression of many genes, including the FOX3 gene which encodes the thiolase activity in peroxisomal beta oxidation. However, upon examination none of these mutants showed de-repression of FOX1 expression. Similarly we investigated the role of two inducers of genes encoding peroxisomal enzymes (namely SNF1 and ADR1). No evidence was found to suggest that either of these plays a significant role in the induction of FOX1 mRNA levels. These observations indicate that the regulation of FOX1 is under the control of as yet unidentified genes involved in catabolite repression and suggest that the regulatory circuit influencing acyl CoA oxidase activity, and hence beta oxidation and peroxisome function, is significantly different than that which might have been assumed from other studies.
Collapse
Affiliation(s)
- C A Stanway
- Department of Plant Sciences, Oxford Unviersity
| | | | | |
Collapse
|
35
|
Wang T, Luo Y, Small G. The POX1 gene encoding peroxisomal acyl-CoA oxidase in Saccharomyces cerevisiae is under the control of multiple regulatory elements. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51109-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Smaczyńska I, Skoneczny M, Kurlandzka A. Studies on the effect of an heterologous fatty acid-binding protein on acyl-CoA oxidase induction in Saccharomyces cerevisiae. Biochem J 1994; 301 ( Pt 2):615-20. [PMID: 8043008 PMCID: PMC1137125 DOI: 10.1042/bj3010615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The participation of fatty acid-binding protein (FABP) in the induction of peroxisomal beta-oxidation of fatty acids was investigated in vivo in an heterologous system. Bovine heart FABP was expressed in Saccharomyces cerevisiae under the control of two different promoters: a constitutive one and an oleic acid-inducible one. Constructs were introduced into yeast cells on multicopy and integrating plasmids. The heterologous FABP was present in yeast cells in two isoforms having pI values of about 5 and was able to bind oleic acid. The heterologous FABP had no significant effect on acyl-CoA oxidase activity at various concentrations of the inducing agent.
Collapse
Affiliation(s)
- I Smaczyńska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa
| | | | | |
Collapse
|
37
|
|
38
|
Schmalix W, Bandlow W. The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74266-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Endrizzi A, Awadé AC, Belin JM. Presumptive involvement of methyl ricinoleate β-oxidation in the production of γ-decalactone by the yeastPichia guilliermondii. FEMS Microbiol Lett 1993. [DOI: 10.1111/j.1574-6968.1993.tb06566.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Zhang JW, Han Y, Lazarow PB. Novel peroxisome clustering mutants and peroxisome biogenesis mutants of Saccharomyces cerevisiae. J Cell Biol 1993; 123:1133-47. [PMID: 7902359 PMCID: PMC2119869 DOI: 10.1083/jcb.123.5.1133] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The goal of this research is to identify and characterize the protein machinery that functions in the intracellular translocation and assembly of peroxisomal proteins in Saccharomyces cerevisiae. Several genes encoding proteins that are essential for this process have been identified previously by Kunau and collaborators, but the mutant collection was incomplete. We have devised a positive selection procedure that identifies new mutants lacking peroxisomes or peroxisomal function. Immunofluorescence procedures for yeast were simplified so that these mutants could be rapidly and efficiently screened for those in which peroxisome biogenesis is impaired. With these tools, we have identified four complementation groups of peroxisome biogenesis mutants, and one group that appears to express reduced amounts of peroxisomal proteins. Two of our mutants lack recognizable peroxisomes, although they might contain peroxisomal membrane ghosts like those found in Zellweger syndrome. Two are selectively defective in packaging peroxisomal proteins and moreover show striking intracellular clustering of the peroxisomes. The distribution of mutants among complementation groups implies that the collection of peroxisome biogenesis mutants is still incomplete. With the procedures described, it should prove straightforward to isolate mutants from additional complementation groups.
Collapse
Affiliation(s)
- J W Zhang
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York 10029
| | | | | |
Collapse
|
41
|
Dell'Angelica EC, Stella CA, Ermácora MR, Santomé JA, Ramos EH. Inhibitory action of palmitic acid on the growth of Saccharomyces cerevisiae. Folia Microbiol (Praha) 1993; 38:486-90. [PMID: 8150397 DOI: 10.1007/bf02814400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
High concentrations of long-chain fatty acids have been found to be harmful to mammalian cells and prokaryotic organisms. This effect was investigated in Saccharomyces cerevisiae. Addition of 3 mmol/L palmitate to a yeast extract-peptone medium caused a significant inhibition of cell growth during the first 2 d of incubation, followed by renewed growth and palmitate utilization. Inhibition was also observed with palmitate concentrations down to 0.1 mmol/L. As inferred from catalase activity determinations, this effect was found to correlate with the absence of peroxisome proliferation. Finally, no inhibition was observed in exponential-phase cultures or in the presence of 0.1 g/L glucose, this suggesting that the physiological state of the cell may determine whether its growth will be inhibited by fatty acids.
Collapse
Affiliation(s)
- E C Dell'Angelica
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
42
|
Lapinskas P, Ruis H, Culotta V. Regulation of Saccharomyces cerevisiae catalase gene expression by copper. Curr Genet 1993; 24:388-93. [PMID: 8299153 DOI: 10.1007/bf00351846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Treatment of Saccharomyces cerevisiae cells with copper induces the activity of Cu/Zn superoxide dismutase (SOD) and catalase. To understand the level at which Cu regulates catalase, the expression of the S. cerevisiae CTA1 (encoding the peroxisomal catalase A) and CTT1 (encoding the cytosolic catalase T) genes was monitored as a function of Cu treatment. Copper was found to specifically induce transcription of CTT1, but not CTA1, mRNA. Moreover, genetic and biochemical studies demonstrate that this induction is independent of the ACE1 Cu trans-activator controlling the expression of yeast Cu/Zn SOD and metallothionein genes. Copper regulation of CTT1 thus appears to represent a novel metal regulatory pathway in S. cerevisiae cells.
Collapse
Affiliation(s)
- P Lapinskas
- Department of Environmental Health Sciences, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205
| | | | | |
Collapse
|
43
|
Filipits M, Simon MM, Rapatz W, Hamilton B, Ruis H. A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene X 1993; 132:49-55. [PMID: 8406042 DOI: 10.1016/0378-1119(93)90513-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Peroxisome proliferation in Saccharomyces cerevisiae is induced by fatty acids via as yet unknown mechanisms. We have initiated a study of these mechanisms by identifying control sequences sufficient for fatty acid control of the CTA1 gene (encoding the peroxisomal catalase A). Promoter regions previously shown to be necessary for control were tested for their potential to mediate induction by oleic acid to a CYC1::lacZ fusion gene. A region previously demonstrated to control CTA1 via the ADR1 transcription activator (bp -156 to -184) does not mediate induction by oleic acid. In contrast, an adjacent sequence (-184 to -198) is sufficient for oleic acid induction, and a neighbouring element (-197 to -215) has marginal inducing activity. These two elements are characterized by a consensus sequence, 5'-CGGNNNTNA ('peroxisome box'), which is found in a number of S. cerevisiae peroxisomal protein-encoding genes. Mutation of either the CGG or the TNA block in the box has a dramatic down-regulating effect on the gene expression in oleic acid medium.
Collapse
Affiliation(s)
- M Filipits
- Institut für Biochemie und Molekulare Zellbiologie, Universität Wien, Austria
| | | | | | | | | |
Collapse
|
44
|
Fowler T, Rey MW, Vähä-Vahe P, Power SD, Berka RM. The catR gene encoding a catalase from Aspergillus niger: primary structure and elevated expression through increased gene copy number and use of a strong promoter. Mol Microbiol 1993; 9:989-98. [PMID: 7934925 DOI: 10.1111/j.1365-2958.1993.tb01228.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synthetic oligonucleotide probes based on amino acid sequence data were used to identify and clone cDNA sequences encoding a catalase (catalase-R) of Aspergillus niger. One cDNA clone was subsequently used to isolate the corresponding genomic DNA sequences (designated catR). Nucleotide sequence analysis of both genomic and cDNA clones suggested that the catR coding region consists of five exons interrupted by four small introns. The deduced amino acid sequence of catalase-R spans 730 residues which show significant homology to both prokaryotic and eukaryotic catalases, particularly in regions involved in catalytic activity and binding of the haem prosthetic group. Increased expression of the catR gene was obtained by transformation of an A. niger host strain with an integrative vector carrying the cloned genomic DNA segment. Several of these transformants produced three- to fivefold higher levels of catalase than the untransformed parent strain. Hybridization analyses indicated that these strains contained multiple copies of catR integrated into the genome. A second expression vector was constructed in which the catR coding region was functionally joined to the promoter and terminator elements of the A. niger glucoamylase (glaA) gene. A. niger transformants containing this vector produced from three- to 10-fold higher levels of catalase-R than the untransformed parent strain.
Collapse
Affiliation(s)
- T Fowler
- Genencor International, Inc., South San Francisco, California 94080
| | | | | | | | | |
Collapse
|
45
|
Atomi H, Ueda M, Suzuki J, Kamada Y, Tanaka A. Presence of carnitine acetyltransferase in peroxisomes and in mitochondria of oleic acid-grown Saccharomyces cerevisiae. FEMS Microbiol Lett 1993; 112:31-4. [PMID: 8405946 DOI: 10.1111/j.1574-6968.1993.tb06419.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Activity of carnitine acetyltransferase was detected in glucose- and oleic acid-grown Saccharomyces cerevisiae. Oleic acid-grown cells showed a ten-fold higher activity than glucose-grown cells. Subcellular fractionation of oleic acid-grown cells showed that carnitine acetyltransferase was present in peroxisomes, mitochondria, and cytosol. The results suggested the plausible presence of an 'acetylcarnitine shuttle' in this yeast, as in the case of an n-alkane-assimilating yeast, Candida tropicalis.
Collapse
Affiliation(s)
- H Atomi
- Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
46
|
de Hoop MJ, Holtman WL, Ab G. Human catalase is imported and assembled in peroxisomes of Saccharomyces cerevisiae. Yeast 1993; 9:59-69. [PMID: 8442388 DOI: 10.1002/yea.320090108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To study the conservation of peroxisomal targeting signals, we have determined the intracellular localization of human peroxisomal catalase when expressed in yeast. Using immunofluorescence, differential centrifugation and immunoelectron microscopy, we show that the protein is targeted to the peroxisomes of the heterologous cell and assembled in its active tetrameric form. These data show the conservation of the catalase targeting signal and import specificity between human and yeast peroxisomes.
Collapse
Affiliation(s)
- M J de Hoop
- Laboratory of Biochemistry, Groningen University, The Netherlands
| | | | | |
Collapse
|
47
|
Van der Leij I, Van den Berg M, Boot R, Franse M, Distel B, Tabak HF. Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J Cell Biol 1992; 119:153-62. [PMID: 1356111 PMCID: PMC2289622 DOI: 10.1083/jcb.119.1.153] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have developed a positive selection system for the isolation of Saccharomyces cerevisiae mutants with disturbed peroxisomal functions. The selection is based on the lethality of hydrogen peroxide (H2O2) that is produced in wild type cells during the peroxisomal beta- oxidation of fatty acids. In total, 17 mutants having a general impairment of peroxisome biogenesis were isolated, as revealed by their inability to grow on oleic acid as the sole carbon source and their aberrant cell fractionation pattern of peroxisomal enzymes. The mutants were shown to have monogenetic defects and to fall into 12 complementation groups. Representative members of each complementation group were morphologically examined by immunocytochemistry using EM. In one mutant the induction and morphology of peroxisomes is normal but import of thiolase is abrogated, while in another the morphology differs from the wild type: stacked peroxisomal membranes are present that are able to import thiolase but not catalase. These mutants suggest the existence of multiple components involved in peroxisomal protein import. Some mutants show the phenotype characteristic of glucose-repressed cells, an indication for the interruption of a signal transduction pathway resulting in organelle proliferation. In the remaining mutants morphologically detectable peroxisomes are absent: this phenotype is also known from fibroblasts of patients suffering from Zellweger syndrome, a disorder resulting from impairment of peroxisomes.
Collapse
Affiliation(s)
- I Van der Leij
- Section for Molecular Biology, E. C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The observation that peroxisomes of Saccharomyces cerevisiae can be induced by oleic acid has opened the possibility to investigate the biogenesis of these organelles in a biochemically and genetically well characterized organism. Only few enzymes have been identified as peroxisomal proteins in Saccharomyces cerevisiae so far; the three enzymes involved in beta-oxidation of fatty acids, enzymes of the glyoxylate cycle, catalase A and the PAS3 gene product have been unequivocally assigned to the peroxisomal compartment. However, more proteins are expected to be constituents of the peroxisomes in Saccharomyces cerevisiae. Mutagenesis of Saccharomyces cerevisiae cells gave rise to mutants unable to use oleic acid as sole carbon source. These mutants could be divided in two groups: those with defects in structural genes of beta-oxidation enzymes (fox-mutants) and those with defects in peroxisomal assembly (pas-mutants). All fox-mutants possess morphologically normal peroxisomes and can be assigned to one of three complementation groups (FOX1, 2, 3). All three FOX genes have been cloned and characterized. The pas-mutants isolated are distributed among 13 complementation groups and represent 3 different classes: peroxisomes are either morphologically not detectable (type I) or present but non-proliferating (type II). Mislocalization concerns all peroxisomal proteins in cells of these two classes. The third class of mutants contains peroxisomes normal in size and number, however, distinct peroxisomal matrix proteins are mislocalized (type III). Five additional complementation groups were found in the laboratory of H.F. Tabak. Not all PAS genes have been cloned and characterized so far, and only for few of them the function could be deduced from sequence comparisons. Proliferation of microbodies is repressed by glucose, derepressed by non-fermentable carbon sources and fully induced by oleic acid. The regulation of four genes encoding peroxisomal proteins (PAS1, CTA1, FOX2, FOX3) occurs on the transcriptional level and reflects the morphological observations: repression by glucose and induction by oleic acid. Moreover, trans-acting factors like ADR1, SNF1 and SNF4, all involved in derepression of various cellular processes, have been demonstrated to affect transcriptional regulation of genes encoding peroxisomal proteins. The peroxisomal import machinery seems to be conserved between different organisms as indicated by import of heterologous proteins into microbodies of different host cells. In addition, many peroxisomal proteins contain C-terminal targeting signals. However, more than one import route into peroxisomes does exist.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W H Kunau
- Abteilung Zellbiochemie, Medizinische Fakultät, Ruhr-Universität, Bochum, Germany
| | | |
Collapse
|
49
|
Igual JC, González-Bosch C, Franco L, Pérez-Ortín JE. The POT1 gene for yeast peroxisomal thiolase is subject to three different mechanisms of regulation. Mol Microbiol 1992; 6:1867-75. [PMID: 1354832 DOI: 10.1111/j.1365-2958.1992.tb01359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Saccharomyces cerevisiae POT1 gene is, as are other yeast peroxisomal protein genes, inducible by fatty acids and repressible by glucose. We have now found that it is also induced during the stationary phase of the culture. To investigate these three regulatory circuits, we have studied the mRNA levels of regulatory mutants as well as the changes in chromatin structure upon gene activation. We conclude that the regulation of transcriptional activity in glucose repression, oleate induction, and stationary phase induction follow different molecular mechanisms. We suggest that this multiplicity of regulatory mechanisms may represent a general rule for the yeast peroxisomal protein genes.
Collapse
Affiliation(s)
- J C Igual
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias, Universitat de València, Spain
| | | | | | | |
Collapse
|
50
|
Dell'Angelica EC, Stella CA, Ermácora MR, Ramos EH, Santome JA. Study on fatty acid binding by proteins in yeast. Dissimilar results in Saccharomyces cerevisiae and Yarrowia lipolytica. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 102:261-5. [PMID: 1617937 DOI: 10.1016/0305-0491(92)90120-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The presence of soluble proteins with fatty acid binding activity was investigated in cell-free extracts from Saccharomyces cerevisiae and Yarrowia lipolytica cultures. 2. No significant fatty acid binding by proteins was detected in S. cerevisiae, even when grown on a fatty acid-rich medium, thus indicating that such proteins are not essential to fatty acid metabolism. 3. An inducible fatty acid binding protein (K0.5 = 3-4 microM) was found in Y. lipolytica which had grown on a minimal medium with palmitate as the sole source of carbon and energy. 4. The relative molecular mass of this protein was 100,000 as inferred from Sephacryl S-200 gel filtration.
Collapse
Affiliation(s)
- E C Dell'Angelica
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|