1
|
Jawanda SK, Ramaswamy HS. Yellow Mustard Protein a Immunoreactivity Reduction Through Seed Germination, Lactic Acid Fermentation, and Cooking. Foods 2024; 13:3498. [PMID: 39517281 PMCID: PMC11545414 DOI: 10.3390/foods13213498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Food allergens are becoming increasingly threatening and are disrupting the health and social structure of a significantly large population worldwide. Proteins from mustard are among the well-recognized food allergens which affect many sensitive individuals. Many processing methods are continually being explored to reduce allergen immunoreactivity and for developing hypoallergenic foods. Cooking, germination, and fermentation have been evaluated to attenuate the immunoreactivity of food allergens. The objective of this study is to evaluate the effect of seed germination, lactic acid fermentation, and/or cooking on yellow mustard seed protein immunoreactivity (IR) (protein A) using ELISA techniques. Samples from five-day germination at 35-40 °C and three-day fermentation between 25 °C and 35 °C were evaluated. The germination and fermentation processes yielded varying reductions in the IRs of mustard proteins, with a combined yield of about 90% reduction. When complemented with further stovetop cooking, protein IR reduction was extended up to 98%, while cooking alone resulted only in about a 70% reduction. FTIR results confirmed that changes in mustard protein conformation maybe due to the unfolding and/or denaturation of mustard proteins. These processing methods are beneficial as they not only help reduce the native mustard protein IR, but also increased inherent antioxidant activities in germinated and fermented mustard seeds.
Collapse
Affiliation(s)
| | - Hosahalli S. Ramaswamy
- Department of Food Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste Anne de Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
2
|
Charoenkwan P, Chumnanpuen P, Schaduangrat N, Shoombuatong W. Accelerating the identification of the allergenic potential of plant proteins using a stacked ensemble-learning framework. J Biomol Struct Dyn 2024:1-13. [PMID: 38385478 DOI: 10.1080/07391102.2024.2318482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Plant-allergenic proteins (PAPs) have the potential to induce allergic reactions in certain individuals. While these proteins are generally innocuous for the majority of people, they can elicit an immune response in those with particular sensitivities. Thus, screening and prioritizing the allergenic potential of plant proteins is indispensable for the development of diagnostic tools, therapeutic interventions or medications to treat allergic reactions. However, investigating the allergenic potential of plant proteins based on experimental methods is costly and labour-intensive. Therefore, we develop StackPAP, a three-layer stacking ensemble framework for accurate large-scale identification of PAPs. In StackPAP, at the first layer, we conducted a comprehensive analysis of an extensive set of feature descriptors. Subsequently, we selected and fused five potential sequence-based feature descriptors, including amphiphilic pseudo-amino acid composition, dipeptide deviation from expected mean, amino acid composition, pseudo amino acid composition and dipeptide composition. Additionally, we applied an efficient genetic algorithm (GA-SAR) to determine informative feature sets. In the second layer, 12 powerful machine learning (ML) methods, in combination with all the informative feature sets, were employed to construct a pool of base classifiers. Finally, 13 potential base classifiers were selected using the GA-SAR method and combined to develop the final meta-classifier. Our experimental results revealed the promising prediction performance of StackPAP, with an accuracy, Matthew's correlation coefficient and AUC of 0.984, 0.969 and 0.993, respectively, as judged by the independent test dataset. In conclusion, both cross-validation and independent test results indicated the superior performance of StackPAP compared with several ML-based classifiers. To accelerate the identification of the allergenicity of plant proteins, we developed a user-friendly web server for StackPAP (https://pmlabqsar.pythonanywhere.com/StackPAP). We anticipate that StackPAP will be an efficient and useful tool for rapidly screening PAPs from a vast number of plant proteins.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Assou J, Zhang D, Roth KDR, Steinke S, Hust M, Reinard T, Winkelmann T, Boch J. Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:649-663. [PMID: 34784073 DOI: 10.1111/tpj.15584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 05/21/2023]
Abstract
Food allergies are a major health issue worldwide. Modern breeding techniques such as genome editing via CRISPR/Cas9 have the potential to mitigate this by targeting allergens in plants. This study addressed the major allergen Bra j I, a seed storage protein of the 2S albumin class, in the allotetraploid brown mustard (Brassica juncea). Cotyledon explants of an Indian gene bank accession (CR2664) and the German variety Terratop were transformed using Agrobacterium tumefaciens harboring binary vectors with multiple single guide RNAs to induce either large deletions or frameshift mutations in both Bra j I homoeologs. A total of 49 T0 lines were obtained with up to 3.8% transformation efficiency. Four lines had large deletions of 566 up to 790 bp in the Bra j IB allele. Among 18 Terratop T0 lines, nine carried indels in the targeted regions. From 16 analyzed CR2664 T0 lines, 14 held indels and three had all four Bra j I alleles mutated. The majority of the CRISPR/Cas9-induced mutations were heritable to T1 progenies. In some edited lines, seed formation and viability were reduced and seeds showed a precocious development of the embryo leading to a rupture of the testa already in the siliques. Immunoblotting using newly developed Bra j I-specific antibodies revealed the amount of Bra j I protein to be reduced or absent in seed extracts of selected lines. Removing an allergenic determinant from mustard is an important first step towards the development of safer food crops.
Collapse
Affiliation(s)
- Juvenal Assou
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Dingbo Zhang
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Kristian D R Roth
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute of Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Reinard
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
4
|
Rahman M, Baten A, Mauleon R, King GJ, Liu L, Barkla BJ. Identification, characterization and epitope mapping of proteins encoded by putative allergenic napin genes from Brassica rapa. Clin Exp Allergy 2020; 50:848-868. [PMID: 32306538 DOI: 10.1111/cea.13612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brassica rapeseed crops contain high concentrations of oil in the seed. The remaining meal, following oil extraction, has a high protein content, but is of low value due to the presence of high amounts of napin seed storage proteins. These 2S albumin-like proteins are difficult to digest and have been identified as major allergens in humans. OBJECTIVE To comprehensively characterize the napin gene (NG) family in Brassica rapa and to gain an understanding of the structural basis of allergenicity of the expressed proteins. METHODS To identify candidate napin genes in B rapa, 2S albumin-like napin genes of Arabidopsis thaliana were used as query sequences to search for similarity against the B rapa var. pekinensis Chiifu-401 v2 and the var. trilocularis R-o-18 v1.5 genomes. Multiple sequence alignment (MSA) and epitope modelling was carried out to determine structural and evolutionary relationships of NGs and their potential allergenicity. RESULTS Four candidate napin genes in R-o-18 and ten in Chiifu-401 were identified with high sequence similarity to A thaliana napin genes. Multiple sequence alignment revealed strong conservation among the candidate genes. An epitope survey indicated high conservation of allergenic epitope motifs with known 2S albumin-like allergens. CONCLUSION Napin is thought to be responsible for a high prevalence of food allergies. Characterization of the napin gene family in B rapa will give important insight into the protein structure, and epitope modelling will help to advance studies into allergenicity including the development of precise diagnostic screenings and therapies for this potential food allergy as well as the possible manipulation of napin levels in the seed by gene editing technology.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.,Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Ramil Mauleon
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
5
|
Hummel M, Wigger T, Höper T, Westkamp I, Brockmeyer J. Simple, Rapid, and Selective Isolation of 2S Albumins from Allergenic Seeds and Nuts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6035-6040. [PMID: 26039672 DOI: 10.1021/acs.jafc.5b01634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The 2S albumins belong to the group of seed storage proteins present in different seeds and nuts. Due to their pronounced allergenic potential, which is often associated with severe allergic reactions, this protein family is of special interest in the field of allergen research. Here we present a simple, rapid, and selective method for the purification of 2S albumins directly from allergenic seeds and nuts. We systematically optimized the parameters "buffer system", "extraction temperature", "buffer molarity", and "pH " and were able to achieve 2S albumin purities of about 99% without further purification and demonstrate transferability of this method to nine different allergenic food matrices. Compared to conventional isolation routines, significant reduction of hands-on time and required laboratory equipment is achieved, but nonetheless higher protein yields are obtained. The presented method allows for the rapid purification of different 2S albumins including the corresponding isoforms from natural material.
Collapse
Affiliation(s)
- Marlene Hummel
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Tina Wigger
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Tessa Höper
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Imke Westkamp
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Jens Brockmeyer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|