1
|
Hjörleifsson JG, Ásgeirsson B. Chloride promotes refolding of active Vibrio alkaline phosphatase through an inactive dimeric intermediate with an altered interface. FEBS Open Bio 2018; 9:169-184. [PMID: 30652084 PMCID: PMC6325577 DOI: 10.1002/2211-5463.12565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Most enzymes are homodimers or higher order multimers. Cold‐active alkaline phosphatase from Vibrio splendidus (VAP) transitions into a dimer with very low activity under mild denaturation conditions. The desire to understand why this dimer fails to efficiently catalyse phosphomonoester hydrolysis led us to investigate interfacial communication between subunits. Here, we studied in detail the unfolding mechanism at two pH values and in the presence or absence of sodium chloride. At pH 8.0, the denaturation model had to include an inactive dimer intermediate and follow the pathway: N2 → I2 → 2U. At pH 10.5, the model was of a two‐state nature. Enzyme activity was not recovered under several examined refolding conditions. However, in the presence of 0.5 m NaCl, the enzyme was nearly fully reactivated after urea treatment. Thermal inactivation experiments were biphasic where the inactivation could be detected using CD spectroscopy at 190–200 nm. By incorporating a bimane fluorescence probe at the dimer interface, we could monitor inactivation/denaturation at two distinct sites at the dimer interface. A change in bimane fluorescence at both sites was observed during inactivation, but prior to the global unfolding event. Furthermore, the rate of change in bimane fluorescence correlated with inactivation rates at 40 °C. These results indicate and support the hypothesis that the subunits of VAP are only functional in the dimeric state due to the cooperative nature of the reaction mechanism when proper crosstalk between subunits is facilitated.
Collapse
Affiliation(s)
| | - Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute University of Iceland Reykjavik Iceland
| |
Collapse
|
2
|
Hjörleifsson JG, Ásgeirsson B. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:755-65. [DOI: 10.1016/j.bbapap.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022]
|
3
|
Cioni P, Gabellieri E. Protein dynamics and pressure: what can high pressure tell us about protein structural flexibility? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:934-41. [PMID: 20934540 DOI: 10.1016/j.bbapap.2010.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022]
Abstract
After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Area della Ricerca di Pisa, Via Moruzzi 1, 56100-Pisa, Italy.
| | | |
Collapse
|
4
|
Gonnelli M, Strambini GB. No effect of covalently linked poly(ethylene glycol) chains on protein internal dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:569-76. [PMID: 19150514 DOI: 10.1016/j.bbapap.2008.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/10/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
Poly(ethylene glycol) or PEG is a hydrophilic polymer that covalently linked to therapeutical proteins may significantly increase their pharmacological properties. Despite the extensive production of PEG-conjugated proteins the effects of the polymer on the protein structure and dynamics is poorly understood, making the production of active biomaterials a largely unpredictable process. The present investigation examines the effects of 5 k and 20 k PEG on the internal flexibility of Ribonuclease T1, the mutant C112S of azurin from Pseudomonas aeruginosa, alcohol dehydrogenase and alkaline phosphatase, native and Zn-depleted. These systems encompass structural domains that range from rather superficial, flexible sites to deeply buried, rigid cores. The approach is based on three sensitive parameters related to the phosphorescence emission of internal Trp residues, namely, the intrinsic room-temperature phosphorescence lifetime (tau(0)) that reports on the local flexibility of the protein matrix around the chromophore and the bimolecular rate constant (k(q)) for the quenching of phosphorescence by O(2) and by acrylamide in solution, which are related to the diffusion of these solutes through the protein fold. The results obtained by these three independent, intrinsic probes of protein structure-dynamics concur that mono-PEGylation does not detectably perturb the conformation and dynamics of the protein native fold, over a wide temperature range. The implication is that protein motions are essentially not coupled to the polymer and that adverse effects of chemical modification on biological function are presumably owed to steric hindrance by PEG units blocking the access to sites critical for molecular recognition.
Collapse
Affiliation(s)
- Margherita Gonnelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | | |
Collapse
|
5
|
Gabellieri E, Strambini GB, Shcharbin D, Klajnert B, Bryszewska M. Dendrimer–protein interactions studied by tryptophan room temperature phosphorescence. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1750-6. [PMID: 17055349 DOI: 10.1016/j.bbapap.2006.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/06/2006] [Accepted: 09/17/2006] [Indexed: 10/24/2022]
Abstract
Dendrimers are a relatively new class of materials with unique molecular architectures, which provide promising opportunities for biological applications as DNA carriers and drug delivery systems. Progress in these fields, however, requires knowledge of their potential interactions with biological components at cellular and molecular level. This study utilizes Trp phosphorescence spectroscopy to examine possible perturbations of the protein native fold in solution by neutral, positively and negatively charged fifth generation polyamidoamine (PAMAM) dendrimers. Phosphorescence lifetime measurements, conducted on model proteins varying in the degree of burial of the triplet probe and in quaternary structure, show that dendrimers interact with proteins in solutions forming stable complexes in which the protein structure may be significantly altered, particularly in superficial, flexible regions of the polypeptide. Both electrostatic and non-electrostatic interactions can give rise to stable complexes, whose affinity and limited number of binding sites distinguish them from mere aspecific molecular associations. Of direct relevance for the application of these polymers in the medical field, structural alterations have also been detected in human plasma proteins such as serum albumin and immunoglobulins. The above results suggest that Trp phosphorescence may provide a useful monitor for working out experimental conditions and protocols that help preserve the structural integrity of proteins in the presence of these polymers.
Collapse
Affiliation(s)
- Edi Gabellieri
- Istituto di Biofisica-CNR, Area della Ricerca, via G. Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | | | |
Collapse
|
6
|
Bucević-Popović V, Pavela-Vrancic M, Dieckmann R. Metal-ion induced conformational changes in alkaline phosphatase from E. coli assessed by limited proteolysis. Biochimie 2004; 86:403-9. [PMID: 15358057 DOI: 10.1016/j.biochi.2004.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 05/07/2004] [Indexed: 11/25/2022]
Abstract
Alkaline phosphatase (AP) displays significant structural changes during metal-ion binding, supporting cooperative interactions between the subunits of the dimeric enzyme. Here, we present data on the dynamic properties of AP from E. coli, and characterize the structural changes that accompany variations in metal-ion content, combining limited proteolysis and MALDI-TOF mass spectrometry. Limited proteolysis revealed an internal cleavage site at Arg-293, reflecting a position of conformational flexibility supporting subunit communication essential for catalysis. A specific shielding of a region distant from the metal-binding site has been demonstrated, implying transmission of conformational changes, induced by metal-ion binding to the adjacent subunit, across the subunit interface.
Collapse
Affiliation(s)
- V Bucević-Popović
- Department of Chemistry, Faculty of Natural Sciences, Mathematics and Education, University of Split, N. Tesle 12, 21000 Split, Croatia
| | | | | |
Collapse
|
7
|
Zhang HR, Guo SY, Li L, Cai MY. Study on Escherichia coli alkaline phosphatase conformation by phosphorimetry in the presence of denaturant. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2003; 59:3185-3191. [PMID: 14583294 DOI: 10.1016/s1386-1425(03)00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The influence of different denaturants on the phosphorescence spectrum and lifetime decay of Escherichia coli alkaline phosphatase (AP) was investigated. Phosphorescence intensity and lifetime of tryptophan residue (Trp-109) decrease upon addition of guanidine hydrochloride, ethylene diamine tetraacetic acid, and urea or decreasing acidity. The experiments show that AP undergoes different pathways with different denaturants and that the activation energy data, DeltaS degrees (not equal) and deltaH degrees (not equal) further confirm that there is a stable intermediate state between the folded and unfolded AP states in solution.
Collapse
Affiliation(s)
- Hai-Rong Zhang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
8
|
Cioni P, Strambini GB. Tryptophan phosphorescence and pressure effects on protein structure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:116-30. [PMID: 11983391 DOI: 10.1016/s0167-4838(01)00339-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After a brief introduction of the potentialities of Trp phosphorescence spectroscopy for probing the conformation and flexibility of protein structure, this presentation summarizes the effects of hydrostatic pressure (up to 3 kbar) on the native fold of monomeric and oligomeric proteins as inferred from the variation of the intrinsic phosphorescence lifetime and the oxygen and acrylamide bimolecular quenching rate constants of buried Trp residues. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of hydration of the polypeptide. The implications of these findings for the thermodynamic stability of proteins and for the determination of subunit dissociation equilibria under high pressure conditions are also discussed.
Collapse
Affiliation(s)
- Patrizia Cioni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Ghezzano, Italy.
| | | |
Collapse
|
9
|
Hung HC, Chang GG. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation. Biophys J 2001; 81:3456-71. [PMID: 11721007 PMCID: PMC1301801 DOI: 10.1016/s0006-3495(01)75977-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N <--> I(1) <--> I(2) <--> I(3) <--> I(4) <--> I(5) <--> D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally stable toward a chemical denaturant.
Collapse
Affiliation(s)
- H C Hung
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
10
|
Hung HC, Chang GG. Differentiation of the slow-binding mechanism for magnesium ion activation and zinc ion inhibition of human placental alkaline phosphatase. Protein Sci 2001; 10:34-45. [PMID: 11266592 PMCID: PMC2249836 DOI: 10.1110/ps.35201] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Revised: 10/08/2000] [Accepted: 10/10/2000] [Indexed: 10/16/2022]
Abstract
The binding mechanism of Mg(2+) at the M3 site of human placental alkaline phosphatase was found to be a slow-binding process with a low binding affinity (K(Mg(app.)) = 3.32 mM). Quenching of the intrinsic fluorescence of the Mg(2+)-free and Mg(2+)-containing enzymes by acrylamide showed almost identical dynamic quenching constant (K(sv) = 4.44 +/- 0.09 M(-1)), indicating that there is no gross conformational difference between the M3-free and the M3-Mg(2+) enzymes. However, Zn(2+) was found to have a high affinity with the M3 site (K(Zn(app.)) = 0.11 mM) and was observed as a time-dependent inhibitor of the enzyme. The dependence of the observed transition rate from higher activity to lower activity (k(obs)) at different zinc concentrations resulted in a hyperbolic curve suggesting that zinc ion induces a slow conformational change of the enzyme, which locks the enzyme in a conformation (M3'-Zn) having an extremely high affinity for the Zn(2+) (K*(Zn(app.)) = 0.33 microM). The conformation of the M3'-Zn enzyme, however, is unfavorable for the catalysis by the enzyme. Both Mg(2+) activation and Zn(2+) inhibition of the enzyme are reversible processes. Structural information indicates that the M3 site, which is octahedrally coordinated to Mg(2+), has been converted to a distorted tetrahedral coordination when zinc ion substitutes for magnesium ion at the M3 site. This conformation of the enzyme has a small dynamic quenching constant for acrylamide (K(sv) = 3.86 +/- 0.04 M(-1)), suggesting a conformational change. Both Mg(2+) and phosphate prevent the enzyme from reaching this inactive structure. GTP plays an important role in reactivating the Zn-inhibited enzyme activity. We propose that, under physiological conditions, magnesium ion may play an important modulatory role in the cell for protecting the enzyme by retaining a favorable geometry of the active site needed for catalysis.
Collapse
Affiliation(s)
- H C Hung
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | |
Collapse
|
11
|
Abstract
Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor L-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The L-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to L-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit.
Collapse
Affiliation(s)
- M F Hoylaerts
- Center for Molecular and Vascular Biology, Katholicke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
12
|
Sun L, Kantrowitz ER, Galley WC. Room temperature phosphorescence study of phosphate binding in Escherichia coli alkaline phosphatase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:32-9. [PMID: 9128721 DOI: 10.1111/j.1432-1033.1997.00032.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The phosphorescence spectrum and decay of Trp109 in Escherichia coli alkaline phosphatase was measured for the enzyme in 10 mM Tris/HCl, pH 7.4, at 21 degrees C. Changes in the spectrum and decay from the steady-state in response to non-covalent phosphate binding suggested a phosphate-induced alteration in the local environment surrounding Trp109 which lies buried below the active site. The seemingly inflexible structure in the region of Trp109, as judged by its very long phosphorescence lifetime, appeared unaltered when the enzyme was symmetrically bound with phosphate. However, the protein with phosphate bound to only one site displayed a marked increase in flexibility that extended over both subunits. For ratios of phosphate/enzyme (mol/mol) between 1.0 and 2.0, the observation of exponential phosphorescence decays with lifetimes that are a function of dilution provided evidence for the rapid exchange between phosphate half-saturated and fully-saturated enzymes consistent with observed enzyme turnover rates. The lifetimes under these conditions result in the calculation of a Kd for the dissociation of phosphate from the doubly occupied enzyme of 1.1 +/- 0.1 microM. The non-exponential decays at P/Ed (phosphate/dimeric enzyme) ratios less than 1.0 revealed that the exchange of phosphate between phosphate-free and half-saturated enzymes was not occurring on the timescale of the phosphorescence decay times, which implied that the half-saturated molecule cannot be contributing significantly to catalysis under steady-state conditions. The observation that the phosphorescence decay at a P/Ed ratio of 1.0 is exponential with a lifetime characteristic of the half-saturated species indicates that the binding of the first phosphate is significantly greater than the second, or that the binding exhibits negative cooperativity.
Collapse
Affiliation(s)
- L Sun
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
13
|
Schlyer BD, Steel DG, Gafni A. Direct kinetic evidence for triplet state energy transfer from Escherichia coli alkaline phosphatase tryptophan 109 to bound terbium. J Biol Chem 1995; 270:22890-4. [PMID: 7559424 DOI: 10.1074/jbc.270.39.22890] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The addition of excess Tb3+ to metal-depleted Escherichia coli alkaline phosphatase results in enhanced luminescence from enzyme-bound terbium, which increases with sample deoxygenation and exhibits a tryptophan-like excitation spectrum. Following pulsed excitation at 280 nm, the time-resolved terbium emission shows a negative prefactor associated with a submillisecond rise time, which is independent of the concentration of dissolved oxygen. The absence of a build-up phase and similarity in lifetime in the decay kinetics of directly excited (488 nm) terbium allows for the assignment of the submillisecond component in the 280 nm excited sample to bound terbium. The results of the steady state and time-resolved experiments suggest that the time evolution of alkaline phosphatase-bound terbium emission is determined by energy transfer (kET approximately 360 and 120 s-1) from the triplet state of tryptophan to terbium followed by terbium decay. This model is based on the observations that 1) the tryptophan phosphorescence lifetime (previously assigned to Trp109) corresponds to the longer component of the terbium emission and 2) the long-lived emission is enhanced, as is the Trp109 phosphorescence, by deoxygenation. An energy transfer mechanism involving the Trp109 triplet state is shown to be inconsistent with a dipole-dipole process and is best understood as a through-space electron exchange over a donor-acceptor distance of 9-10 A.
Collapse
Affiliation(s)
- B D Schlyer
- Institute of Gerontology, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
14
|
Baracca A, Gabellieri E, Barogi S, Solaini G. Conformational changes of the mitochondrial F1-ATPase epsilon-subunit induced by nucleotide binding as observed by phosphorescence spectroscopy. J Biol Chem 1995; 270:21845-51. [PMID: 7665607 DOI: 10.1074/jbc.270.37.21845] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Changes in conformation of the epsilon-subunit of the bovine heart mitochondrial F1-ATPase complex as a result of nucleotide binding have been demonstrated from the phosphorescence emission of tryptophan. The triplet state lifetime shows that whereas nucleoside triphosphate binding to the enzyme in the presence of Mg2+ increases the flexibility of the protein structure surrounding the chromophore, nucleoside diphosphate acts in an opposite manner, enhancing the rigidity of this region of the macromolecule. Such changes in dynamic structure of the epsilon-subunit are evident at high ligand concentration added to both the nucleotide-depleted F1 (Nd-F1) and the F1 preparation containing the three tightly bound nucleotides (F1(2,1)). Since the effects observed are similar in both the F1 forms, the binding to the low affinity sites must be responsible for the conformational changes induced in the epsilon-subunit. This is partially supported by the observation that the Trp lifetime is not significantly affected by adding an equimolar concentration of adenine nucleotide to Nd-F1. The effects on protein structure of nucleotide binding to either catalytic or noncatalytic sites have been distinguished by studying the phosphorescence emission of the F1 complex prepared with the three noncatalytic sites filled and the three catalytic sites vacant (F1(3,0)). Phosphorescence lifetime measurements on this F1 form demonstrate that the binding of Mg-NTP to catalytic sites induces a slight enhancement of the rigidity of the epsilon-subunit. This implies that the binding to the vacant noncatalytic site of F1(2,1) must exert the opposite and larger effect of enhancing the flexibility of the protein structure observed in both Nd-F1 and F1(2,1). The observation that enhanced flexibility of the protein occurs upon addition of adenine nucleotides to F1(2,1) in the absence of Mg2+ provides direct support for this suggestion. The connection between changes in structure and the possible functional role of the epsilon-subunit is discussed.
Collapse
Affiliation(s)
- A Baracca
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Italy
| | | | | | | |
Collapse
|
15
|
Peracchi A, Mozzarelli A, Rossi GL. Monovalent cations affect dynamic and functional properties of the tryptophan synthase alpha 2 beta 2 complex. Biochemistry 1995; 34:9459-65. [PMID: 7626616 DOI: 10.1021/bi00029a022] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monovalent cations affect both conformational and catalytic properties of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. Their influence on the dynamic properties of the enzyme was probed by monitoring the phosphorescence decay of the unique Trp-177 beta, a residue located near the beta-active site, at the interface between alpha- and beta-subunits. In the presence of either Li+, Na+, Cs+, or NH4+, the phosphorescence decay is biphasic and the average lifetime increases indicating a decrease in the flexibility of the N-terminal domain of the beta-subunit. Since amplitudes but not lifetimes are affected, cations appear to shift the equilibrium between preexisting enzyme conformations. The effect on the reaction between indole and L-serine was studied by steady state kinetic methods at room temperature. We found that cations: (i) bind to the L-serine--enzyme derivatives with an apparent dissociation constant, measured as the concentration of cation corresponding to one-half of the maximal activity, that is in the millimolar range and decreases with ion size; (ii) increase kcat with the order of efficacy Cs+ > K+ > Li+ > Na+; (iii) decrease KM for indole, Na+ being the most effective and causing a 30-fold decrease; and (iv) cause an increase of the kcat/KM ratio by 20-40-fold. The influence on the equilibrium distribution between the external aldimine and the alpha-aminoacrylate, intermediates in the reaction of L-serine with the beta-subunits of the enzyme, was found to be cation-specific.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Peracchi
- Istituto di Scienze Biochimiche, Università di Parma, Italy
| | | | | |
Collapse
|
16
|
de La Fournière L, Nosjean O, Buchet R, Roux B. Thermal and pH stabilities of alkaline phosphatase from bovine intestinal mucosa: a FTIR study. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1248:186-92. [PMID: 7748901 DOI: 10.1016/0167-4838(95)00020-u] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The inactivation of alkaline phosphatase (AP) from bovine intestinal mucosa caused by lowering the p2H from 10.4 to 5.4 or by increasing the temperature from 25 degrees C to 70 degrees C were not followed by significant FTIR changes, indicating that the native conformation of AP was preserved under these conditions. Further decrease of p2H from 5.4 to 3.4 leaded to small infrared spectral changes of AP in the amide I' and amide II regions that were similar to the infrared spectral changes of AP induced by raising the temperature from 70 degrees C to 80 degrees C. The increase of temperature from 70 degrees C to 80 degrees C promoted the formation of intermolecular beta-sheets at the expense of some alpha-helix structures as evidenced by the appearance of the 1684 cm-1 and 1620 cm-1 component bands and the disappearance of the 1651-1657 cm-1 component band. This conformational change was followed by a sharp increase of the 2H/H exchange rate. CD spectra confirmed the FTIR results and were very sensitive to the variation of alpha-helix content while FTIR spectra were more receptive to the changes of beta-sheet structures.
Collapse
Affiliation(s)
- L de La Fournière
- Université Claude Bernard-LYON I, CNRS URA 1535, Laboratoire de Physico-Chimie Biologique, Villeurbanne, France
| | | | | | | |
Collapse
|
17
|
Cioni P, Gabellieri E, Gonnelli M, Strambini GB. Heterogeneity of protein conformation in solution from the lifetime of tryptophan phosphorescence. Biophys Chem 1994; 52:25-34. [PMID: 17020825 DOI: 10.1016/0301-4622(94)00039-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1993] [Accepted: 02/27/1994] [Indexed: 11/27/2022]
Abstract
The decay of Trp phosphorescence of proteins in fluid solutions was shown to provide a sensitive tool for probing the conformational homogeneity of these macromolecules in the millisecond to second time scale. Upon examination of 15 single Trp emitting proteins multiexponential decays were observed in 12 cases, a demonstration that the presence of slowly interconverting conformers in solution is more the norm rather than an exception. The amplitude of preexponential terms, from which the conformer equilibrium is derived, was found to be a sensitive function of solvent composition (buffer, pH, ionic strength and glycerol cosolvent), temperature, and complex formation with substrates and cofactors. In many cases, raising the temperature, a point is reached at which the decay becomes practically monoexponential, meaning that conformer interconversion rates have become commensurate with the triplet lifetime. Estimation of activation free energy barriers to interconversion shows that the large values of DeltaG* are rather similar among polypeptides and that the protein substates involved are sufficiently long-lived to display individual binding/catalytic properties.
Collapse
Affiliation(s)
- P Cioni
- Istituto di Biofisica, CNR, Via S. Lorenzo 26, 56127 Pisa, Italy
| | | | | | | |
Collapse
|
18
|
Gabellieri E, Strambini GB. Conformational changes in proteins induced by dynamic associations. A tryptophan phosphorescence study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:77-85. [PMID: 8168551 DOI: 10.1111/j.1432-1033.1994.tb18716.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Random collisions between macromolecules lead to dynamic associations (lengthy encounters) that in principle could affect their conformation and, in the case of enzymes, their binding and catalytic properties. Exploiting the unique sensitivity of the phosphorescence lifetime, tau, of Trp to the internal flexibility of globular proteins we probed the perturbations induced in the structure of the coenzyme-binding domain of alcohol dehydrogenase (LADH) and glyceraldehyde-3-phosphate dehydrogenase (GraPDH) by the presence in solution of other dehydrogenases and of functionally unrelated proteins. With Trp314 of LADH, the results emphasize that while tau is not affected by the concentration of LADH itself, the addition of micromolar quantities of other proteins causes a distinct reduction in it. From the linear increase of 1/tau with protein concentration one obtains values for the apparent second-order Stern-Volmer rate constant that range between 2-200 x 10(3) M-1 s-1, decreasing 2-3-fold when ternary complexes of LADH with NADH or NAD+ and inhibitors are involved. Similar effects were observed with Trp310 of GraPDH except that with sorbitol dehydrogenase as perturbant the increase of 1/tau is hyperbolic and governed by an apparent dissociation constant of about 1 microM. Finally, glycerol-3-phosphate dehydrogenase, the strongest perturber of both LADH and GraPDH, has either no effect on lactic dehydrogenase from pig heart or induces a moderate lengthening of the triplet lifetime of the rabbit muscle enzyme. Because Stern-Volmer behavior is typical also of diffusion-mediated quenching reactions, a parallel investigation with cysteine, cystine and N-acetyl-tryptophanamide demonstrated that among potential, protein-associated, quenching moieties namely, -SH, -S-S- and indole groups, only the latter has rate constants approaching the magnitude of protein perturbants. Since considerable evidence rules out the predominance of such quenching reactions, these findings confirm a subtle form of communication between protein molecules in solution. The lack of specificity and the similar effects between dehydrogenases with right and wrong stereospecificity for direct coenzyme transfer suggests that the perturbations monitored are unrelated to this function.
Collapse
|
19
|
Mersol JV, Steel DG, Gafni A. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Biophys Chem 1993; 48:281-91. [PMID: 8298060 DOI: 10.1016/0301-4622(93)85015-a] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reversible denaturation of Escherichia coli alkaline phosphatase (AP) was followed by monitoring changes in enzymatic activity as well as by measurements of the time-resolved room temperature phosphorescence from Trp 109. It is well known that the denaturants, ethylene diamine tetraacetic acid (EDTA), acid and guanidine hydrochloride (GdnHCl) inactive AP by different mechanisms as reflected by differences in the time dependence of inactivation. However, further information about structural changes that result during inactivation is obtained by measurement of the phosphorescence intensity and radiative decay rate. Time-resolved tryptophan phosphorescence is exquisitely sensitive to changes in the local environment of the emitting residue, unlike the steady state phosphorescence intensity which is a composite of both the lifetime and concentration of the emitting protein species. The results show that while inactivation in EDTA proceeds by loss of the zinc ion as expected, denaturation in acid or GdnHCl produces a heterogeneous population of AP molecules, detected by a distribution analysis of the phosphorescence lifetime, which may reflect multiple pathways to the final unfolded state. Time-resolved phosphorescence also demonstrates the existence of an enzymatically active but structurally less rigid intermediate state during unfolding. As the rigidity decreases, the susceptibility to further denaturation decreases at lower pH but increases with GdnHCl concentration. The experiments provide new insight into the mechanism of denaturation of AP and demonstrate the sensitivity of time-resolved room temperature phosphorescence to the structural details of intermediate states produced during unfolding of proteins.
Collapse
Affiliation(s)
- J V Mersol
- Department of Physics, Institute of Gerontology, University of Michigan, Ann Arbor 48109-2007
| | | | | |
Collapse
|
20
|
Solaini G, Baracca A, Parenti Castelli G, Strambini GB. Tryptophan phosphorescence as a structural probe of mitochondrial F1-ATPase epsilon-subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:729-34. [PMID: 8319682 DOI: 10.1111/j.1432-1033.1993.tb17974.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the detection of tryptophan phosphorescence emission from the sole residue in the epsilon-subunit of the bovine heart mitochondrial F1-ATPase complex. The phosphorescence spectrum, intensity and decay kinetics have been measured over the temperature range 160-273 K. The fine structure in the phosphorescence spectrum at low temperature, with the 0-0 vibrational band centered at 411 nm, reveals the hydrophobic nature of the chromophore's environment. Both the large width of the 0-0 vibrational band and the heterogeneous decay kinetics in fluid solution emphasize the existence of multiple conformations of the epsilon-subunit, structures which are rather stable as they do not interconvert in the millisecond time scale. Further, from the relatively long triplet lifetime at 273 K, it is possible to infer the existence of a tight, rigid core in the structure of the epsilon-subunit. Under subunit-dissociating conditions (6 M urea), the spectrum at 160 K undergoes a slight blue shift but since the phosphorescence lifetime, at all temperatures, is similar or longer than in the absence of dissociant, we conclude that dissociation does not lead to solvent exposure of the tryptophanyl side-chain. This conclusion is supported by the results obtained at 273 K by dissociating F1 in the presence of 0.3 M guanidine hydrochloride. Phosphorescence lifetimes indicate that 6 M urea leads to a more compact structure of the epsilon-subunit, whereas the opposite occurs when Mg-ATP is added to nucleotide-depleted F1. These spectroscopic changes establish unequivocally that the binding of the adenine nucleotide to the enzyme is accompanied by conformational changes involving the epsilon-subunit.
Collapse
Affiliation(s)
- G Solaini
- Scuola Superiore di Studi Universitari e di Perfezionamento, S. Anna, Pisa, Italy
| | | | | | | |
Collapse
|
21
|
Cioni P, Onuffer JJ, Strambini GB. Characterization of tryptophan phosphorescence of aspartate aminotransferase from Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:759-64. [PMID: 1425679 DOI: 10.1111/j.1432-1033.1992.tb17345.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Trp phosphorescence spectrum, intensity and decay kinetics of apo-aspartate aminotransferase, pyridoxamine-5P-aspartate-aminotransferase and pyridoxal-5P-aspartate aminotransferase were measured over a temperature range 160-273 K. The fine structure of the phosphorescence spectra in low-temperature glasses, with 0-0 vibrational bands centered at 408, 415 and 417 nm, for both apoenzyme and pyridoxamine-5P-enzyme reveals a marked heterogeneity of the chromophore environments. Only for the pyridoxal-5P form of the enzyme is the triplet emission strongly quenched and, in this case, the spectrum displays a unique 0-0 vibrational band centered at 415 nm. Concomitant to quenching, there is Trp-sensitized delayed fluorescence of the Schiff base, an indication that quenching of the excited triplet state is due, at least in part, to a process of triplet singlet energy transfer to the ketoenamine tautomer. All three forms of the enzyme are phosphorescent for temperatures up to 273 K. However, across the glass transition temperature the pyridoxal-5P enzyme shows a decrease in lifetime-normalized phosphorescence intensity, a thermal quenching that reduces even further the number of phosphorescing residues at ambient temperature. In fluid solution, the triplet decay is nonexponential and multiple lifetimes stress the heterogeneity in dynamical structure of the chromophores' sites. For the pyridoxal-5P enzyme, where only one or at most two residues are phosphorescent at 273 K, the nonexponential nature of the decay implies the presence of different conformers of the protein not interconverting in the millisecond time scale.
Collapse
Affiliation(s)
- P Cioni
- Consiglio Nazionale delle Richerche, Istituto di Biofisica, Pisa, Italy
| | | | | |
Collapse
|
22
|
Cioni P, Strambini GB, Degan P. Tb3+ luminescence in metal-substituted alkaline phosphatase. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1992. [DOI: 10.1016/1011-1344(92)85068-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Strambini GB, Lehrer SS. Tryptophan phosphorescence of G-actin and F-actin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:645-51. [PMID: 1999187 DOI: 10.1111/j.1432-1033.1991.tb15749.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tryptophan phosphorescence spectrum, intensity and decay kinetics of G-actin and F-actin were measured over a temperature range of 140-293 K. The fine structure in the phosphorescence spectra at low temperature, with O,O vibrational bands centered at 405 nm and 415.5 nm for both species, reveals a marked heterogeneity of the chromophore environment. The thermal quenching profile distinguishes these sites in terms of their flexibility, and shows that probably only one of the four tryptophan residues is still phosphorescent at ambient temperature due to its location in a relatively rigid buried core. Although some differences are demonstrated between G-actin and F-actin at low temperature, the identity of the triplet lifetime at ambient temperature strongly supports the notion that the conformation of the macromolecule is largely unaffected by polymerization. Preliminary phosphorescence anisotropy measurements demonstrate both the occurrence of singlet-singlet energy transfer among tryptophan residues and a strong immobilization of actin in the polymerized state.
Collapse
|