1
|
Moussard H, Henneke G, Moreira D, Jouffe V, López-García P, Jeanthon C. Thermophilic lifestyle for an uncultured archaeon from hydrothermal vents: evidence from environmental genomics. Appl Environ Microbiol 2006; 72:2268-71. [PMID: 16517686 PMCID: PMC1393191 DOI: 10.1128/aem.72.3.2268-2271.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a comparative analysis of two genome fragments isolated from a diverse and widely distributed group of uncultured euryarchaea from deep-sea hydrothermal vents. The optimal activity and thermostability of a DNA polymerase predicted in one fragment were close to that of the thermophilic archaeon Thermoplasma acidophilum, providing evidence for a thermophilic way of life of this group of uncultured archaea.
Collapse
Affiliation(s)
- Hélène Moussard
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Centre National de la Recherche Scientifique, Ifremer & Université de Bretagne Occidentale, Orsay, France
| | | | | | | | | | | |
Collapse
|
2
|
Lantz PG, Abu al-Soud W, Knutsson R, Hahn-Hägerdal B, Rådström P. Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples. BIOTECHNOLOGY ANNUAL REVIEW 2000; 5:87-130. [PMID: 10874998 DOI: 10.1016/s1387-2656(00)05033-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since its introduction in the mid-80s, polymerase chain reaction (PCR) technology has been recognised as a rapid, sensitive and specific molecular diagnostic tool for the analysis of micro-organisms in clinical, environmental and food samples. Although this technique can be extremely effective with pure solutions of nucleic acids, it's sensitivity may be reduced dramatically when applied directly to biological samples. This review describes PCR technology as a microbial detection method, PCR inhibitors in biological samples and various sample preparation techniques that can be used to facilitate PCR detection, by either separating the micro-organisms from PCR inhibitors and/or by concentrating the micro-organisms to detectable concentrations. Parts of this review are updated and based on a doctoral thesis by Lantz [1] and on a review discussing methods to overcome PCR inhibition in foods [2].
Collapse
Affiliation(s)
- P G Lantz
- Center for Chemistry and Chemical Engineering, Lund Institute of Technology, Lund University, Sweden
| | | | | | | | | |
Collapse
|
3
|
Abstract
Archaeal organisms are currently recognized as very exciting and useful experimental materials. A major challenge to molecular biologists studying the biology of Archaea is their DNA replication mechanism. Undoubtedly, a full understanding of DNA replication in Archaea requires the identification of all the proteins involved. In each of four completely sequenced genomes, only one DNA polymerase (Pol BI proposed in this review from family B enzyme) was reported. This observation suggested that either a single DNA polymerase performs the task of replicating the genome and repairing the mutations or these genomes contain other DNA polymerases that cannot be identified by amino acid sequence. Recently, a heterodimeric DNA polymerase (Pol II, or Pol D as proposed in this review) was discovered in the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for DP1 and DP2, the subunits of this DNA polymerase, are highly conserved in the Euryarchaeota. Euryarchaeotic DP1, the small subunit of Pol II (Pol D), has sequence similarity with the small subunit of eukaryotic DNA polymerase delta. DP2 protein, the large subunit of Pol II (Pol D), seems to be a catalytic subunit. Despite possessing an excellent primer extension ability in vitro, Pol II (Pol D) may yet require accessory proteins to perform all of its functions in euryarchaeotic cells. This review summarizes our present knowledge about archaeal DNA polymerases and their relationship with those accessory proteins, which were predicted from the genome sequences.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
4
|
van der Oost J, Ciaramella M, Moracci M, Pisani FM, Rossi M, de Vos WM. Molecular biology of hyperthermophilic Archaea. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 61:87-115. [PMID: 9670798 DOI: 10.1007/bfb0102290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sequences of a number of archaeal genomes have recently been completed, and many more are expected shortly. Consequently, the research of Archaea in general and hyperthermophiles in particular has entered a new phase, with many exciting discoveries to be expected. The wealth of sequence information has already led, and will continue to lead to the identification of many enzymes with unique properties, some of which have potential for industrial applications. Subsequent functional genomics will help reveal fundamental matters such as details concerning the genetic, biochemical and physiological adaptation of extremophiles, and hence give insight into their genomic evolution, polypeptide structure-function relations, and metabolic regulation. In order to optimally exploit many unique features that are now emerging, the development of genetic systems for hyperthermophilic Archaea is an absolute requirement. Such systems would allow the application of this class of Archaea as so-called "cell factories": (i) expression of certain archaeal enzymes for which no suitable conventional (mesophilic bacterial or eukaryal) systems are available, (ii) selection for thermostable variants of potentially interesting enzymes from mesophilic origin, and (iii) the development of in vivo production systems by metabolic engineering. An overview is given of recent insight in the molecular biology of hyperthermophilic Archaea, as well as of a number of promising developments that should result in the generation of suitable genetic systems in the near future.
Collapse
Affiliation(s)
- J van der Oost
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
De Falco M, Grippo P, Rossi M, Orlando P. Multiple forms of DNA polymerase from the thermo-acidophilic eubacterium Bacillus acidocaldarius: purification, biochemical characterization and possible biological role. Biochem J 1998; 329 ( Pt 2):303-12. [PMID: 9425113 PMCID: PMC1219045 DOI: 10.1042/bj3290303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two DNA polymerase isoenzymes, called DpA and DpB on the basis of their elution order from DEAE cellulose, were purified to homogeneity from the thermo-acidophilic eubacterium Bacillus acidocaldarius. The enzymes are weakly acidophilic proteins constituted by a single subunit of 117 and 103 kDa respectively. DpA and DpB differ in thermostability, in thermophilicity, in sensitivity to assay conditions and in resistance to sulphydryl-group blocking agents such as N-ethylmaleimide and p-hydroxymercuriobenzoate. They differ also in synthetic template-primer utilization, in the apparent Km for dNTPs and in processivity. In particular, DpA utilizes more effic iently synthetic templates-primers such as poly(dA).poly(dT), poly(dT). (rA)12-18 and poly(rA).(dT)12-18 and presents a greater tendency to accept dNTP analogues modified in the sugar or in the base ring, such as cytosine beta-d-arabinofuranoside 5'-triphosphate, 2',3'-dideoxyribonucleosides 5'-triphosphate, butylphenyl-dGTP and digoxigenin-conjugated dUTP. In addition, DpA presents an exonuclease activity that preferentially hydrolyses DNA in the 5'-3' direction, whereas DpB lacks this activity. The possible biological role of the enzymes is discussed.
Collapse
Affiliation(s)
- M De Falco
- Istituto di Biochimica delle Proteine ed Enzimologia del Consiglio Nazionale delle Ricerche, Via Toiano 6, 80072 Arco Felice, Naples, Italy
| | | | | | | |
Collapse
|
6
|
Edgell DR, Klenk HP, Doolittle WF. Gene duplications in evolution of archaeal family B DNA polymerases. J Bacteriol 1997; 179:2632-40. [PMID: 9098062 PMCID: PMC179013 DOI: 10.1128/jb.179.8.2632-2640.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
All archaeal DNA-dependent DNA polymerases sequenced to date are homologous to family B DNA polymerases from eukaryotes and eubacteria. Presently, representatives of the euryarchaeote division of archaea appear to have a single family B DNA polymerase, whereas two crenarchaeotes, Pyrodictium occultum and Sulfolobus solfataricus, each possess two family B DNA polymerases. We have found the gene for yet a third family B DNA polymerase, designated B3, in the crenarchaeote S. solfataricus P2. The encoded protein is highly divergent at the amino acid level from the previously characterized family B polymerases in S. solfataricus P2 and contains a number of nonconserved amino acid substitutions in catalytic domains. We have cloned and sequenced the ortholog of this gene from the closely related Sulfolobus shibatae. It is also highly divergent from other archaeal family B DNA polymerases and, surprisingly, from the S. solfataricus B3 ortholog. Phylogenetic analysis using all available archaeal family B DNA polymerases suggests that the S. solfataricus P2 B3 and S. shibatae B3 paralogs are related to one of the two DNA polymerases of P. occultum. These sequences are members of a group which includes all euryarchaeote family B homologs, while the remaining crenarchaeote sequences form another distinct group. Archaeal family B DNA polymerases together constitute a monophyletic subfamily whose evolution has been characterized by a number of gene duplication events.
Collapse
Affiliation(s)
- D R Edgell
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
7
|
Affiliation(s)
- F B Perler
- New England Biolabs, Inc., Beverly, Massachusetts, USA
| | | | | |
Collapse
|
8
|
|
9
|
Lawyer FC, Stoffel S, Saiki RK, Chang SY, Landre PA, Abramson RD, Gelfand DH. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. PCR METHODS AND APPLICATIONS 1993; 2:275-87. [PMID: 8324500 DOI: 10.1101/gr.2.4.275] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Thermus aquaticus DNA polymerase I (Taq Pol I) gene was cloned into a plasmid expression vector that utilizes the strong bacteriophage lambda PL promoter. A truncated form of Taq Pol I was also constructed. The two constructs made it possible to compare the full-length 832-amino-acid Taq Pol I and a deletion derivative encoding a 544-amino-acid translation product, the Stoffel fragment. Upon heat induction, the 832-amino-acid construct produced 1-2% of total protein as Taq Pol I. The induced 544-amino-acid construct produced 3% of total protein as Stoffel fragment. Enzyme purification included cell lysis, heat treatment followed by Polymin P precipitation of nucleic acids, phenyl sepharose column chromatography, and heparin-Sepharose column chromatography. For full-length 94-kD Taq Pol I, yield was 3.26 x 10(7) units of activity from 165 grams wet weight cell paste. For the 61-kD Taq Pol I Stoffel fragment, the yield was 1.03 x 10(6) units of activity from 15.6 grams wet weight cell paste. The two enzymes have maximal activity at 75 degrees C to 80 degrees C, 2-4 mM MgCl2 and 10-55 mM KCl. The nature of the substrate determines the precise conditions for maximal enzyme activity. For both proteins, MgCl2 is the preferred cofactor compared to MnCl2, CoCl2, and NiCl2. The full-length Taq Pol I has an activity half-life of 9 min at 97.5 degrees C. The Stoffel fragment has a half-life of 21 min at 97.5 degrees C. Taq Pol I contains a polymerization-dependent 5' to 3' exonuclease activity whereas the Stoffel fragment, deleted for the 5' to 3' exonuclease domain, does not possess that activity. A comparison is made among thermostable DNA polymerases that have been characterized; specific activities of 292,000 units/mg for Taq Pol I and 369,000 units/mg for the Stoffel fragment are the highest reported.
Collapse
Affiliation(s)
- F C Lawyer
- Program in Core Research, Roche Molecular Systems, Alameda, California 94501
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Chapter 11 Chromosome structure, DNA topoisomerases, and DNA polymerases in archaebacteria (archaea). ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53949-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Sellmann E, Schröder KL, Knoblich IM, Westermann P. Purification and characterization of DNA polymerases from Bacillus species. J Bacteriol 1992; 174:4350-5. [PMID: 1320608 PMCID: PMC206219 DOI: 10.1128/jb.174.13.4350-4355.1992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA polymerases from Bacillus stearothermophilus, Bacillus caldotenax, and Bacillus caldovelox were purified by chromatography on DEAE-cellulose, phosphocellulose, and heparin-Sepharose and obtained in high yield. The enzyme preparations are free of exo- and endonuclease activities. Additional purification steps, e.g., hydrophobic interaction chromatography and chromatography on a Mono Q column or sucrose density gradient centrifugation, are needed to obtain the enzymes in the form of homogeneous 95-kDa proteins. Each of the three organisms possesses a major DNA polymerase activity comparable to DNA polymerase I. The enzymes require Mg2+ (10 to 30 mM) for optimal activity, although 0.4 mM Mn2+ could substitute for magnesium. The optimal reaction temperatures were lowest in B. stearothermophilus (60 to 65 degrees C) and about equal in B. caldovelox and B. caldotenax (65 to 70 degrees C). The thermal stabilities of the enzymes increased in the same order. The DNA polymerase from Thermus thermophilus was isolated for comparison by using a similar procedure. The enzyme was obtained as a homogeneous 85-kDa protein that was also free of exo- and endonucleolytic activities.
Collapse
Affiliation(s)
- E Sellmann
- Department of Biochemistry, Central Institute of Molecular Biology, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
14
|
Moracci M, La Volpe A, Pulitzer JF, Rossi M, Ciaramella M. Expression of the thermostable beta-galactosidase gene from the archaebacterium Sulfolobus solfataricus in Saccharomyces cerevisiae and characterization of a new inducible promoter for heterologous expression. J Bacteriol 1992; 174:873-82. [PMID: 1732221 PMCID: PMC206165 DOI: 10.1128/jb.174.3.873-882.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The lacS gene from the extremely thermoacidophilic archaebacterium Sulfolobus solfataricus encodes an enzyme with beta-galactosidase activity that, like other enzymes from this organism, is exceptionally thermophilic (optimal activity above 90 degrees C), thermostable, and resistant to common protein denaturants and proteases. Expression of the gene in mesophilic hosts is needed to uncover the molecular nature of these features. We have obtained expression of beta-galactosidase in Saccharomyces cerevisiae under the control of the galactose-inducible upstream activating sequence of the yeast genes GAL1 and GAL10. The expressed enzyme is identical in molecular mass, thermostability, and thermophilicity to the native enzyme, showing that these features are intrinsic to the primary structure of the enzyme. We also present a new promoter for the expression of thermostable proteins in S. cerevisiae. This promoter contains a sequence isolated from the nematode Caenorhabditis elegans that works as a strong, heat-inducible upstream activating sequence in S. cerevisiae. Transcription of the lacS gene under the control of this sequence is rapidly and efficiently induced by heat shock. The availability of a plate assay for monitoring beta-galactosidase activity in S. cerevisiae may allow screening for mutants affecting the efficiency and activity of the enzyme.
Collapse
Affiliation(s)
- M Moracci
- Institute of Protein Biochemistry and Enzymology, Naples, Italy
| | | | | | | | | |
Collapse
|