1
|
Makaros Y, Raiff A, Timms RT, Wagh AR, Gueta MI, Bekturova A, Guez-Haddad J, Brodsky S, Opatowsky Y, Glickman MH, Elledge SJ, Koren I. Ubiquitin-independent proteasomal degradation driven by C-degron pathways. Mol Cell 2023; 83:1921-1935.e7. [PMID: 37201526 PMCID: PMC10237035 DOI: 10.1016/j.molcel.2023.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.
Collapse
Affiliation(s)
- Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0AW, UK
| | - Ajay R Wagh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Mor Israel Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Julia Guez-Haddad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
2
|
Zhao EM, Lalwani MA, Lovelett RJ, García-Echauri SA, Hoffman SM, Gonzalez CL, Toettcher JE, Kevrekidis IG, Avalos JL. Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering. ACS Synth Biol 2020; 9:3254-3266. [PMID: 33232598 PMCID: PMC10399620 DOI: 10.1021/acssynbio.0c00305] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of optogenetics in metabolic engineering for light-controlled microbial chemical production raises the prospect of utilizing control and optimization techniques routinely deployed in traditional chemical manufacturing. However, such mechanisms require well-characterized, customizable tools that respond fast enough to be used as real-time inputs during fermentations. Here, we present OptoINVRT7, a new rapid optogenetic inverter circuit to control gene expression in Saccharomyces cerevisiae. The circuit induces gene expression in only 0.6 h after switching cells from light to darkness, which is at least 6 times faster than previous OptoINVRT optogenetic circuits used for chemical production. In addition, we introduce an engineered inducible GAL1 promoter (PGAL1-S), which is stronger than any constitutive or inducible promoter commonly used in yeast. Combining OptoINVRT7 with PGAL1-S achieves strong and light-tunable levels of gene expression with as much as 132.9 ± 22.6-fold induction in darkness. The high performance of this new optogenetic circuit in controlling metabolic enzymes boosts production of lactic acid and isobutanol by more than 50% and 15%, respectively. The strength and controllability of OptoINVRT7 and PGAL1-S open the door to applying process control tools to engineered metabolisms to improve robustness and yields in microbial fermentations for chemical production.
Collapse
Affiliation(s)
- Evan M. Zhao
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
| | - Makoto A. Lalwani
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
| | - Robert J. Lovelett
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
- Department of Chemical and Biomolecular Engineering, 221 Maryland
Hall, Johns Hopkins University, 2400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Sergio A. García-Echauri
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
| | - Shannon M. Hoffman
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
| | - Christopher L. Gonzalez
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
| | - Jared E. Toettcher
- Department of Molecular Biology, 140 Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Ioannis G. Kevrekidis
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
- Department of Chemical and Biomolecular Engineering, 221 Maryland
Hall, Johns Hopkins University, 2400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - José L. Avalos
- Department of Chemical and Biological Engineering, Hoyt Laboratory
101, Princeton University, William Street, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, 140 Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
- The Andlinger Center for Energy and the Environment, Princeton University, 86 Olden Street, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Protein degradation, the main hub in the regulation of cellular polyamines. Biochem J 2017; 473:4551-4558. [PMID: 27941031 DOI: 10.1042/bcj20160519c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.
Collapse
|
4
|
Joshi RG, Ratna Prabha C. Degrons of yeast and mammalian ornithine decarboxylase enzymes make potent combination for regulated targeted protein degradation. Appl Microbiol Biotechnol 2016; 101:2905-2917. [DOI: 10.1007/s00253-016-8023-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
5
|
Engineering degrons of yeast ornithine decarboxylase as vehicles for efficient targeted protein degradation. Biochim Biophys Acta Gen Subj 2015; 1850:2452-63. [DOI: 10.1016/j.bbagen.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
|
6
|
Morozov AV, Timofeev AV, Morozov VA, Karpov VL. Availability and canonical positioning of key amino acids of ornithine-decarboxylase degron is insufficient for alpha-fetoprotein degradation. Mol Biol 2011. [DOI: 10.1134/s0026893311030101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Tank EMH, True HL. Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet 2009; 5:e1000382. [PMID: 19214209 PMCID: PMC2633047 DOI: 10.1371/journal.pgen.1000382] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/14/2009] [Indexed: 11/18/2022] Open
Abstract
Protein homeostasis is critical for cellular survival and its dysregulation has been implicated in Alzheimer's disease (AD) and other neurodegenerative disorders. Despite the growing appreciation of the pathogenic mechanisms involved in familial forms of AD, much less is known about the sporadic cases. Aggregates found in both familial and sporadic AD often include proteins other than those typically associated with the disease. One such protein is a mutant form of ubiquitin, UBB+1, a frameshift product generated by molecular misreading of a wild-type ubiquitin gene. UBB+1 has been associated with multiple disorders. UBB+1 cannot function as a ubiquitin molecule, and it is itself a substrate for degradation by the ubiquitin/proteasome system (UPS). Accumulation of UBB+1 impairs the proteasome system and enhances toxic protein aggregation, ultimately resulting in cell death. Here, we describe a novel model system to investigate how UBB+1 impairs UPS function and whether it plays a causal role in protein aggregation. We expressed a protein analogous to UBB+1 in yeast (Ub(ext)) and demonstrated that it caused UPS impairment. Blocking ubiquitination of Ub(ext) or weakening its interactions with other ubiquitin-processing proteins reduced the UPS impairment. Expression of Ub(ext) altered the conjugation of wild-type ubiquitin to a UPS substrate. The expression of Ub(ext) markedly enhanced cellular susceptibility to toxic protein aggregates but, surprisingly, did not induce or alter nontoxic protein aggregates in yeast. Taken together, these results suggest that Ub(ext) interacts with more than one protein to elicit impairment of the UPS and affect protein aggregate toxicity. Furthermore, we suggest a model whereby chronic UPS impairment could inflict deleterious consequences on proper protein aggregate sequestration.
Collapse
Affiliation(s)
- Elizabeth M. H. Tank
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
8
|
Structural elements of the ubiquitin-independent proteasome degron of ornithine decarboxylase. Biochem J 2008; 410:401-7. [PMID: 17979831 DOI: 10.1042/bj20071239] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse ODC (ornithine decarboxylase) is quickly degraded by the 26S proteasome in mammalian and fungal cells. Its degradation is independent of ubiquitin but requires a degradation signal composed of residues 425-461 at the ODC C-terminus, cODC (the last 37 amino acids of the ODC C-terminus). Mutational analysis of cODC revealed the presence of two essential elements in the degradation signal. The first consists of cysteine and alanine at residues 441 and 442 respectively. The second element is the C-terminus distal to residue 442; it has little or no sequence specificity, but is intolerant of insertions or deletions that alter its span. Reducing conditions, which preclude all well-characterized chemical reactions of the Cys(441) thiol, are essential for in vitro degradation. These experiments imply that the degradative function of Cys(441) does not involve its participation in chemical reaction; it, instead, functions within a structural element for recognition by the 26S proteasome.
Collapse
|
9
|
Hoyt MA, McDonough S, Pimpl SA, Scheel H, Hofmann K, Coffino P. A genetic screen forSaccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 2008; 25:199-217. [DOI: 10.1002/yea.1579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Porat Z, Landau G, Bercovich Z, Krutauz D, Glickman M, Kahana C. Yeast antizyme mediates degradation of yeast ornithine decarboxylase by yeast but not by mammalian proteasome: new insights on yeast antizyme. J Biol Chem 2007; 283:4528-34. [PMID: 18089576 DOI: 10.1074/jbc.m708088200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian antizyme (mAz) is a central element of a feedback circuit regulating cellular polyamines by accelerating ornithine decarboxylase (ODC) degradation and inhibiting polyamine uptake. Although yeast antizyme (yAz) stimulates the degradation of yeast ODC (yODC), we show here that it has only a minor effect on polyamine uptake by yeast cells. A segment of yODC that parallels the Az binding segment of mammalian ODC (mODC) is required for its binding to yAz. Although demonstrating minimal homology to mAz, our results suggest that yAz stimulates yODC degradation via a similar mechanism of action. We demonstrate that interaction with yAz provokes degradation of yODC by yeast but not by mammalian proteasomes. This differential recognition may serve as a tool for investigating proteasome functions.
Collapse
Affiliation(s)
- Ziv Porat
- Department of Molecular Genetics, The Weizmann Institute of Science, 1 Hertzel St., Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Takeuchi J, Chen H, Coffino P. Proteasome substrate degradation requires association plus extended peptide. EMBO J 2006; 26:123-31. [PMID: 17170706 PMCID: PMC1782366 DOI: 10.1038/sj.emboj.7601476] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 11/06/2006] [Indexed: 11/09/2022] Open
Abstract
To determine the minimum requirements for substrate recognition and processing by proteasomes, the functional elements of a ubiquitin-independent degradation tag were dissected. The 37-residue C-terminus of ornithine decarboxylase (cODC) is a native degron, which also functions when appended to diverse proteins. Mutating the cysteine 441 residue within cODC impaired its proteasome association in the context of ornithine decarboxylase and prevented the turnover of GFP-cODC in yeast cells. Degradation of GFP-cODC with C441 mutations was restored by providing an alternate proteasome association element via fusion to the Rpn10 proteasome subunit. However, Rpn10-GFP was stable, unless extended by cODC or other peptides of similar size. In vitro reconstitution experiments confirmed the requirement for both proteasome tethering and a loosely structured region. Therefore, cODC and degradation tags in general must serve two functions: proteasome association and a site, consisting of an extended peptide region, used for initiating insertion into the protease.
Collapse
Affiliation(s)
- Junko Takeuchi
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Hui Chen
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Philip Coffino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, 513 Parnassus Ave, Microbiology room S430, San Francisco, CA 94143, USA. Tel.: +1 415 516 6515; Fax: +1 415 476 8201; E-mail:
| |
Collapse
|
12
|
Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J 2006; 25:1720-9. [PMID: 16601692 PMCID: PMC1440830 DOI: 10.1038/sj.emboj.7601058] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 03/01/2006] [Indexed: 11/09/2022] Open
Abstract
Proteasome ATPases unravel folded proteins. Introducing a sequence containing only glycine and alanine residues (GAr) into substrates can impair their digestion. We previously proposed that a GAr interferes with the unfolding capacity of the proteasome, leading to partial degradation of products. Here we tested that idea in several ways. Stabilizing or destabilizing a folded domain within substrate proteins changed GAr-mediated intermediate production in the way predicted by the model. A downstream folded domain determined the sites of terminal proteolysis. The spacing between a GAr and a folded domain was critical for intermediate production. Intermediates containing a GAr did not remain associated with proteasomes, excluding models whereby retained GAr-containing proteins halt further processing. The following model is supported: a GAr positioned within the ATPase ring reduces the efficiency of coupling between nucleotide hydrolysis and work performed on the substrate. If this impairment takes place when unfolding must be initiated, insertion pauses and proteolysis is limited to the portion of the substrate that has already entered the catalytic chamber of the proteasome.
Collapse
Affiliation(s)
- Martin A Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Judith Zich
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Junko Takeuchi
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Mingsheng Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Cedric Govaerts
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Philip Coffino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, UCSF, 513 Parnassus Avenue, San Francisco, CA 94143-0414, USA. Tel.: +1 415 476 1783; E-mail:
| |
Collapse
|
13
|
Zhang M, Coffino P. Repeat Sequence of Epstein-Barr Virus-encoded Nuclear Antigen 1 Protein Interrupts Proteasome Substrate Processing. J Biol Chem 2004; 279:8635-41. [PMID: 14688254 DOI: 10.1074/jbc.m310449200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Epstein-Barr virus thwarts immune surveillance through a Gly-Ala repeat (GAr) within the viral Epstein-Barr virus-encoded nuclear antigen 1 protein. The GAr inhibits proteasome processing, an early step in antigen peptide presentation, but the mechanism of proteasome inhibition has been unclear. By embedding a GAr within ornithine decarboxylase, a natural proteasome substrate that does not require ubiquitin conjugation, we now demonstrate inhibition in a purified system, excluding involvement of ubiquitin conjugation or of proteins extraneous to substrate and proteasome. We show further that the GAr acts as a stop-transfer signal in proteasome substrate processing, resulting in vivo in partial proteolysis that halts just short of the GAr. Similarly, introducing a GAr into green fluorescent protein destabilized by the ornithine decarboxylase degradation domain also stops the progress of proteolysis, leading to the accumulation of partial degradation products. We postulate that the ATP motor of the proteasome slips when it encounters the GAr, impeding further insertion and, in this way, halting degradation.
Collapse
Affiliation(s)
- Mingsheng Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
14
|
Hoyt MA, Zhang M, Coffino P. Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 2003; 278:12135-43. [PMID: 12562772 DOI: 10.1074/jbc.m211802200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyamine biosynthetic enzyme ornithine decarboxylase (ODC) is degraded by the 26 S proteasome via a ubiquitin-independent pathway in mammalian cells. Its degradation is greatly accelerated by association with the polyamine-induced regulatory protein antizyme 1 (AZ1). Mouse ODC (mODC) that is expressed in the yeast Saccharomyces cerevisiae is also rapidly degraded by the proteasome of that organism. We have now carried out in vivo and in vitro studies to determine whether S. cerevisiae proteasomes recognize mODC degradation signals. Mutations of mODC that stabilized the protein in animal cells also did so in the fungus. Moreover, the mODC degradation signal was able to destabilize a GFP or Ura3 reporter in GFP-mODC and Ura3-mODC fusion proteins. Co-expression of AZ1 accelerated mODC degradation 2-3-fold in yeast cells. The degradation of both mODC and the endogenous yeast ODC (yODC) was unaffected in S. cerevisiae mutants with various defects in ubiquitin metabolism, and ubiquitinylated forms of mODC were not detected in yeast cells. In addition, recombinant mODC was degraded in an ATP-dependent manner by affinity-purified yeast 26 S proteasomes in the absence of ubiquitin. Degradation by purified yeast proteasomes was sensitive to mutations that stabilized mODC in vivo, but was not accelerated by recombinant AZ1. These studies demonstrate that cell constituents required for mODC degradation are conserved between animals and fungi, and that both mammalian and fungal ODC are subject to proteasome-mediated proteolysis by ubiquitin-independent mechanisms.
Collapse
Affiliation(s)
- Martin A Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143-0414, USA
| | | | | |
Collapse
|
15
|
Zhang M, Pickart CM, Coffino P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 2003; 22:1488-96. [PMID: 12660156 PMCID: PMC152902 DOI: 10.1093/emboj/cdg158] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ornithine decarboxylase (ODC) is regulated by its metabolic products through a feedback loop that employs a second protein, antizyme 1 (AZ1). AZ1 accelerates the degradation of ODC by the proteasome. We used purified components to study the structural elements required for proteasomal recognition of this ubiquitin-independent substrate. Our results demonstrate that AZ1 acts on ODC to enhance the association of ODC with the proteasome, not the rate of its processing. Substrate-linked or free polyubiquitin chains compete for AZ1-stimulated degradation of ODC. ODC-AZ1 is therefore recognized by the same element(s) in the proteasome that mediate recognition of polyubiquitin chains. The 37 C-terminal amino acids of ODC harbor an AZ1-modulated recognition determinant. Within the ODC C terminus, three subsites are functionally distinguishable. The five terminal amino acids (ARINV, residues 457-461) collaborate with residue C441 to constitute one recognition element, and AZ1 collaborates with additional constituents of the ODC C terminus to generate a second recognition element.
Collapse
Affiliation(s)
- Mingsheng Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
16
|
Fremaux I, Mazères S, Brisson-Lougarre A, Arnaud M, Ladurantie C, Fournier D. Improvement of Drosophila acetylcholinesterase stability by elimination of a free cysteine. BMC BIOCHEMISTRY 2002; 3:21. [PMID: 12149129 PMCID: PMC117796 DOI: 10.1186/1471-2091-3-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2002] [Accepted: 07/30/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use for residue detection with biosensors. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, it is not sufficiently stable for extensive utilization. It is a homodimer in which both subunits contain 8 cysteine residues. Six are involved in conserved intramolecular disulfide bridges and one is involved in an interchain disulfide bridge. The 8th cysteine is not conserved and is present at position 290 as a free thiol pointing toward the center of the protein. RESULTS The free cysteine has been mutated to valine and the resulting protein has been assayed for stability using various denaturing agents: temperature, urea, acetonitrile, freezing, proteases and spontaneous-denaturation at room temperature. It was found that the C290V mutation rendered the protein 1.1 to 2.7 fold more stable depending on the denaturing agent. CONCLUSION It seems that stabilization resulting from the cysteine to valine mutation originates from a decrease of thiol-disulfide interchanges and from an increase in the hydrophobicity of the buried side chain.
Collapse
Affiliation(s)
- Isabelle Fremaux
- Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique. UMR 5068, Université Paul Sabatier, 31062, Toulouse, France
| | - Serge Mazères
- Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique. UMR 5068, Université Paul Sabatier, 31062, Toulouse, France
| | - Andrée Brisson-Lougarre
- Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique. UMR 5068, Université Paul Sabatier, 31062, Toulouse, France
| | - Muriel Arnaud
- Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique. UMR 5068, Université Paul Sabatier, 31062, Toulouse, France
| | - Caroline Ladurantie
- Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique. UMR 5068, Université Paul Sabatier, 31062, Toulouse, France
| | - Didier Fournier
- Laboratoire de Synthèse et Physicochimie des Molécules d'Intérêt Biologique. UMR 5068, Université Paul Sabatier, 31062, Toulouse, France
| |
Collapse
|
17
|
Murakami Y, Matsufuji S, Hayashi SI, Tanahashi N, Tanaka K. ATP-Dependent inactivation and sequestration of ornithine decarboxylase by the 26S proteasome are prerequisites for degradation. Mol Cell Biol 1999; 19:7216-27. [PMID: 10490656 PMCID: PMC84714 DOI: 10.1128/mcb.19.10.7216] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 26S proteasome is a eukaryotic ATP-dependent protease, but the molecular basis of its energy requirement is largely unknown. Ornithine decarboxylase (ODC) is the only known enzyme to be degraded by the 26S proteasome without ubiquitinylation. We report here that the 26S proteasome is responsible for the irreversible inactivation coupled to sequestration of ODC, a process requiring ATP and antizyme (AZ) but not proteolytic activity. Neither the 20S proteasome (catalytic core) nor PA700 (the regulatory complex) by itself contributed to this ODC inactivation. Analysis with a C-terminal mutant ODC revealed that the 26S proteasome recognizes the C-terminal degradation signal of ODC exposed by attachment of AZ, and subsequent ATP-dependent sequestration of ODC in the 26S proteasome causes irreversible inactivation, possibly unfolding, of ODC and dissociation of AZ. These processes may be linked to the translocation of ODC into the 20S proteasomal inner cavity, centralized within the 26S proteasome, for degradation.
Collapse
Affiliation(s)
- Y Murakami
- Department of Biochemistry 2, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | |
Collapse
|
18
|
Coleman CS, Pegg AE. Proteasomal degradation of spermidine/spermine N1-acetyltransferase requires the carboxyl-terminal glutamic acid residues. J Biol Chem 1997; 272:12164-9. [PMID: 9115288 DOI: 10.1074/jbc.272.18.12164] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rapid turnover of spermidine/spermine N1-acetyltransferase (SSAT), a key enzyme in the regulation of polyamine levels, was found to be mediated via ubiquitination and the proteasomal system. SSAT degradation was blocked by the binding of polyamines or of the polyamine analog, N1,N12-bis(ethyl)spermine (BE-3-4-3), to the protein, providing a mechanism for the increase of SSAT activity in response to these agents. Site-directed mutagenesis indicated that a number of residues including arginine 19, cysteine 122, histidine 126, glutamic acid 152, arginine 155, and methionine 167 were needed for protection of SSAT by BE-3-4-3. These residues have previously been shown to reduce the affinity for the binding of polyamines to the SSAT protein, and these results indicate that the change in protein configuration brought about by this binding renders the protein resistant to proteasomal degradation. Mutations to alanines of residues arginine 7, cysteine 14, and lysine 141 also prevented the protection by BE-3-4-3, and these residues may be required for the formation of the protected conformation. The rapid degradation of SSAT required the carboxyl-terminal region of the protein, and the two terminal glutamic acid residues at positions 170 and 171 were found to be of critical importance. Truncation of the protein to remove these residues or the mutation of either of these acidic residues to glutamine completely abolished the rapid degradation of SSAT. The addition of two extra lysine residues at the carboxyl terminus or the conversion of the glutamic acids at positions 170 and 171 to lysines also prevented SSAT degradation by the proteasome. These results show the key role of the acidic residues at the carboxyl terminus of the protein in reacting with the proteasome. In contrast, mutation of lysine 166 to alanine, which extends the length of the acidic region in the carboxyl-terminal fragment of SSAT, actually increased the rate of degradation of SSAT without affecting its stabilization by BE-3-4-3. The binding of BE-3-4-3 or polyamines is therefore likely to change the configuration of the SSAT protein in a way that prevents the exposure of the carboxyl-terminal region of the ubiquitinated protein to the proteasome.
Collapse
Affiliation(s)
- C S Coleman
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
19
|
Mitchell JL, Choe CY, Judd GG. Feedback repression of ornithine decarboxylase synthesis mediated by antizyme. Biochem J 1996; 320 ( Pt 3):755-60. [PMID: 9003359 PMCID: PMC1217994 DOI: 10.1042/bj3200755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The induction of antizyme by spermidine and the resulting enhancement of ornithine decarboxylase (ODC) degradation have been well studied; however, little is known about the mechanism whereby elevated spermidine levels decrease synthesis of the polyamine biosynthetic enzyme. To evaluate the relative contribution of inhibited synthesis, as distinct from enhanced degradation of ODC, spermidine levels were manipulated in a variant cell line that overproduces a stable form of ODC. Spermidine did not selectively inhibit ODC synthesis in these variant cells, supporting the concept that spermidine diminishes ODC synthesis in normal cells owing to enhanced degradation of the protein in the presence of elevated antizyme levels. This model was further investigated in vitro by use of rabbit reticulocyte lysate, which catalyses simultaneous ODC mRNA translation and antizyme-stimulated degradation of ODC protein. Antizyme strongly repressed the incorporation of labelled amino acids into normal rat ODC. Unexpectedly it also diminished the apparent translation of ODC mRNA species coding for enzyme forms that are not destabilized by the post-translational addition of antizyme. The effect of antizyme on ODC translation was not observed in wheatgerm extract, in which there is no antizyme-induced degradation. Further, deletion of a short segment of antizyme necessary for the destabilization of ODC (amino acid residues 113-118) resulted in a form that bound ODC but did not diminish its apparent translation. These results suggest that the co-translational addition of antizyme to ODC results in a complex that is different from, and innately less stable than, that formed when antizyme is added post-translationally.
Collapse
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115, USA
| | | | | |
Collapse
|
20
|
Mitchell JL, Choe CY, Judd GG. Ornithine decarboxylase stability in HMOA and DH23b cells is not due to post-translational truncation of a C-terminal recognition site. Biochem J 1996; 318 ( Pt 3):879-82. [PMID: 8836132 PMCID: PMC1217699 DOI: 10.1042/bj3180879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The normally labile ornithine decarboxylase (ODC) becomes unusually stable when Cys-441 is replaced with Trp in the variant cell lines HMOA and DH23b. This stable ODC is also observed to have higher mobility on SDS/PAGE. Because previous studies have shown that ODC stability can be achieved when as few as five amino acid residues are removed from its C-terminus, it was suggested that the amino acid substitution in the variant ODC might alter its conformation sufficiently to promote a similar proteolytic loss of a C-terminal degradation signal, resulting in a stable yet active ODC. To examine this mechanism, amino acids in the C-terminal regions of both wild-type and stable (Trp-441) ODC proteins were released, by means of carboxypeptidase-Y digestion, and identified by HPLC. The C-terminal ends were found to be the same, and are as predicted from the cDNA sequence. This study proves that stability of the Trp-441 form of ODC is not simply due to proteolytic removal of a C-terminal proteasome-targeting sequence, thereby implying that the stabilization of this mutant ODC form must result directly from a conformational change associated with the loss of Cys-441.
Collapse
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115, USA
| | | | | |
Collapse
|
21
|
Mitchell JL, Choe CY, Judd GG, Daghfal DJ, Kurzeja RJ, Leyser A. Overproduction of stable ornithine decarboxylase and antizyme in the difluoromethylornithine-resistant cell line DH23b. Biochem J 1996; 317 ( Pt 3):811-6. [PMID: 8760367 PMCID: PMC1217557 DOI: 10.1042/bj3170811] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DH23b cells, a variant of the HTC line selected for their resistance to difluoromethylornithine, exhibit defective feedback regulation of ornithine decarboxylase (ODC) stability and polyamine transport, and accumulate ODC protein to > 1000 times normal concentrations. The components of the polyamine feedback regulation system have been examined in an attempt to understand these unusual responses. Southern-blot analysis revealed an amplification (approx. 10-fold) in ODC DNA sequence without any concomitant increase in antizyme. Moreover, the amplified ODC sequence contains a single base substitution that results in the conversion of Cys-441 into Trp. This modification has previously been shown to cause ODC stability in HMOA cells. Although antizyme activity has not been noted in DH23b cells, Western-blot analysis revealed the accumulation of antizyme protein to > 50 times that induced in parental HTC cells. This increase is consistent with a 6-9-fold increase in the half-life of antizyme in these cells, a consequence of the inability of the mutant ODC-antizyme complex to be degraded by 26 S proteasome. Associated with the stabilization of antizyme in both DH23b and HMOA cells is the appearance of two additional forms of antizyme protein with apparent molecular masses of 22 and 18.5 kDa. It is suggested that these result from proteolytic removal of discrete fragments from the N-terminal end of antizyme, perhaps an indication of an initial step in rapid antizyme turnover.
Collapse
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hayashi SI, Murakami Y, Matsufuji S. Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci 1996. [DOI: 10.1016/s0968-0004(06)80024-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Autelli R, Persson L, Baccino FM. Cloning and expression of two ornithine decarboxylase forms from HMOA cells. Biochem J 1995; 312 ( Pt 1):13-6. [PMID: 7492302 PMCID: PMC1136220 DOI: 10.1042/bj3120013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In HMOA cells [Mamont, Duchesne, Grove and Tardif (1978) Exp. Cell Res. 115, 387-393] the half-life of ornithine decarboxylase (ODC) is 8-14 h instead of 15 min as in the Hepatoma Tissue Culture parental cells, due to a single amino acid substitution [Miyazaki, Matsufuji, Murakami and Hayashi (1993) Eur. J. Biochem. 214, 837-844]. We demonstrate for the first time that HMOA cells possess two forms of ODC mRNA that are translated into two proteins differing greatly in turnover rates. We have cloned and transfected the cDNAs for the two ODC forms into COS-1 cells for a direct measurement of their turnover rate. The variant ODC form was much more stable than the wild-type protein, with a half-life of 14 h as compared with 2.5 h.
Collapse
Affiliation(s)
- R Autelli
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Italy
| | | | | |
Collapse
|
24
|
Nixon PJ, Komenda J, Barber J, Deak Z, Vass I, Diner BA. Deletion of the PEST-like region of photosystem two modifies the QB-binding pocket but does not prevent rapid turnover of D1. J Biol Chem 1995; 270:14919-27. [PMID: 7797471 DOI: 10.1074/jbc.270.25.14919] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rapid turn-over of the D1 polypeptide of the photosystem two complex has been suggested to be due to the presence of a "PEST"-like sequence located between putative transmembrane helices IV and V of D1 (Greenberg, B. M., Gaba, V., Mattoo, A. K. and Edelman, M. (1987) EMBO J. 6, 2865-2869). We have tested this hypothesis by constructing a deletion mutant (delta 226-233) of the cyanobacterium Synechocystis sp. PCC 6803 in which residues 226-233 of the D1 polypeptide, containing the PEST-like sequence, have been removed. The resulting mutant, delta PEST, is able to grow photoautotrophically and give light-saturated rates of oxygen at wild type levels. However electron transfer on the acceptor side of the complex is perturbed. Analysis of cells by thermoluminescence and by monitoring the decay in quantum yield of variable fluorescence following saturating flash excitation indicates that Q-B, but not Q-A, is destabilized in this mutant. Electron transfer on the donor side of photosystem two remains largely unchanged in the mutant. Turnover of the D1 polypeptide as examined by pulse-chase experiments using [35S]methionine was enhanced in the delta PEST mutant compared to strain TC31 which is the wild type control. We conclude that the PEST sequence is not absolutely required for turnover of the D1 polypeptide in vivo although deletion of residues 226-233 does have an effect on the redox equilibrium between QA and QB.
Collapse
Affiliation(s)
- P J Nixon
- Wolfson Laboratories, Biochemistry Department, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- S Hayashi
- Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
26
|
Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 1994; 299 ( Pt 1):19-22. [PMID: 8166639 PMCID: PMC1138014 DOI: 10.1042/bj2990019] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antizyme, a spermidine-induced protein that binds and stimulates ornithine decarboxylase degradation, is now shown also to mediate the rapid feedback inhibition of polyamine uptake into mammalian cells. Using a cell line (HZ7) transfected with truncated antizyme cDNA, and mutant ornithine decarboxylase cell lines, we demonstrate that this newly discovered action of antizyme is distinct from its role in modulating polyamine biosynthesis.
Collapse
Affiliation(s)
- J L Mitchell
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115
| | | | | | | |
Collapse
|
27
|
|