1
|
Brennan D, Lieber D, Walter M, Price M, Buan NR. Mer overexpression in Methanosarcina acetivorans affects growth and methanogenesis during substrate adaptation. Appl Environ Microbiol 2025:e0067525. [PMID: 40277366 DOI: 10.1128/aem.00675-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Evidence suggests that multienzyme complexes are involved in biological methane production (methanogenesis), although the composition of the Wolfe Cycle methanogenesis complexes may vary between diverse methanoarchaeal taxa. Methylenetetrahydromethanopterin reductase (Mer) is the first committed step in C1 oxidation to CO2 during methylotrophic methanogenesis. However, Mer is downregulated when cells use acetate as a substrate. We hypothesized that Mer overexpression during methylotrophic methanogenesis would be beneficial, while overexpression during acetoclastic methanogenesis would be detrimental for energy conservation. To test this hypothesis, we overexpressed Mer and characterized strain physiology on methanol, acetate, and when switching substrates. We found that Mer overexpression results in faster growth on methanol, with less C fixation into biomass, and no effect on methanogenesis. Growth on acetate was not affected by Mer overexpression, but switching between substrates was affected. The native Mer overexpressing strain was slower to adjust from methanol to acetate and vice-versa. These data suggest that tight regulation of Mer expression is necessary to regulate C flux through methylotrophic versus acetoclastic methanogenesis pathways in Methanosarcina.IMPORTANCEMethanoarchaea thrive near the "thermodynamic limit of life" and have likely evolved efficient mechanisms to control flux of substrates to conserve energy. Methylenetetrahydromethanopterin reductase (Mer) is a highly conserved, key enzyme in the Wood-Ljungdahl and Wolfe Cycle methanogenesis pathways. Our study sheds light on how Mer enzyme stoichiometry affects methanogenesis and suggests avenues for engineering the organism to promote renewable fuel or bioproduct synthesis.
Collapse
Affiliation(s)
- Darla Brennan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Dillon Lieber
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mary Walter
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Morgan Price
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nicole R Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Padalko A, Nair G, Sousa FL. Fusion/fission protein family identification in Archaea. mSystems 2024; 9:e0094823. [PMID: 38700364 PMCID: PMC11237513 DOI: 10.1128/msystems.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.
Collapse
Affiliation(s)
- Anastasiia Padalko
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Govind Nair
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Nomura S, Paczia N, Kahnt J, Shima S. Isolation of an H 2-dependent electron-bifurcating CO 2-reducing megacomplex with MvhB polyferredoxin from Methanothermobacter marburgensis. FEBS J 2024; 291:2449-2460. [PMID: 38468562 DOI: 10.1111/febs.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
In the hydrogenotrophic methanogenic pathway, formylmethanofuran dehydrogenase (Fmd) catalyzes the formation of formylmethanofuran through reducing CO2. Heterodisulfide reductase (Hdr) provides two low potential electrons for the Fmd reaction using a flavin-based electron-bifurcating mechanism. [NiFe]-hydrogenase (Mvh) or formate dehydrogenase (Fdh) complexes with Hdr and provides electrons to Hdr from H2 and formate, or the reduced form of F420, respectively. Recently, an Fdh-Hdr complex was purified as a 3-MDa megacomplex that contained Fmd, and its three-dimensional structure was elucidated by cryo-electron microscopy. In contrast, the Mvh-Hdr complex has been characterized only as a complex without Fmd. Here, we report the isolation and characterization of a 1-MDa Mvh-Hdr-Fmd megacomplex from Methanothermobacter marburgensis. After anion-exchange and hydrophobic chromatography was performed, the proteins with Hdr activity eluted in the 1- and 0.5-MDa fractions during size exclusion chromatography. Considering the apparent molecular mass and the protein profile in the fractions, the 1-MDa megacomplex was determined to be a dimeric Mvh-Hdr-Fmd complex. The megacomplex fraction contained a polyferredoxin subunit MvhB, which contains 12 [4Fe-4S]-clusters. MvhB polyferredoxin has never been identified in the previously purified Mvh-Hdr and Fmd preparations, suggesting that MvhB polyferredoxin is stabilized by the binding between Mvh-Hdr and Fmd in the Mvh-Hdr-Fmd complex. The purified Mvh-Hdr-Fmd megacomplex catalyzed electron-bifurcating reduction of [13C]-CO2 to form [13C]-formylmethanofuran in the absence of extrinsic ferredoxin. These results demonstrated that the subunits in the Mvh-Hdr-Fmd megacomplex are electronically connected for the reduction of CO2, which likely involves MvhB polyferredoxin as an electron relay.
Collapse
Affiliation(s)
- Shunsuke Nomura
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Young W, Maclean P, Dunstan K, Ryan L, Peters J, Armstrong K, Anderson R, Dewhurst H, van Gendt M, Dilger RN, Dekker J, Haggarty N, Roy N. Lacticaseibacillus rhamnosus HN001 alters the microbiota composition in the cecum but not the feces in a piglet model. Front Nutr 2022; 9:1002369. [PMID: 36386940 PMCID: PMC9650270 DOI: 10.3389/fnut.2022.1002369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
The probiotic Lacticaseibacillus rhamnosus strain HN001 has been shown to have several beneficial health effects for both pediatric and maternal groups, including reduced risk of eczema in infants and gestational diabetes and postnatal depression in mothers. While L. rhamnosus HN001 appears to modify immune and gut barrier biomarkers, its mode of action remains to be fully elucidated. To gain insights into the role of HN001 on the infant microbiome, the impacts of L. rhamnosus HN001 supplementation was studied in 10-day old male piglets that were fed either infant formula, or infant formula with L. rhamnosus HN001 at a low (1.3 × 105 CFU/ml) or high dose (7.9 × 106 CFU/ml) daily for 24 days. The cecal and fecal microbial communities were assessed by shotgun metagenome sequencing and host gene expression in the cecum and colon tissue was assessed by RNA-seq. Piglet fecal samples showed only modest differences between controls and those receiving dietary L. rhamnosus HN001. However, striking differences between the three groups were observed for cecal samples. While total lactobacilli were significantly increased only in the high dose L. rhamnosus HN001 group, both high and low dose groups showed an up to twofold reduction across the Firmicutes phylum and up to fourfold increase in Prevotella compared to controls. Methanobrevibacter was also decreased in HN001 fed piglets. Microbial genes involved in carbohydrate and vitamin metabolism were among those that differed in relative abundance between those with and without L. rhamnosus HN001. Changes in the cecal microbiome were accompanied by increased expression of tight junction pathway genes and decreased autophagy pathway genes in the cecal tissue of piglets fed the higher dose of L. rhamnosus HN001. Our findings showed supplementation with L. rhamnosus HN001 caused substantial changes in the cecal microbiome with likely consequences for key microbial metabolic pathways. Host gene expression changes in the cecum support previous research showing L. rhamnosus HN001 beneficially impacts intestinal barrier function. We show that fecal samples may not adequately reflect microbiome composition higher in the gastrointestinal tract, with the implication that effects of probiotic consumption may be missed by examining only the fecal microbiome.
Collapse
Affiliation(s)
- Wayne Young
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- *Correspondence: Wayne Young,
| | - Paul Maclean
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Kelly Dunstan
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Leigh Ryan
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Jason Peters
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Kelly Armstrong
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Rachel Anderson
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Hilary Dewhurst
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | | | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - James Dekker
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Neill Haggarty
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Nicole Roy
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Gropp J, Jin Q, Halevy I. Controls on the isotopic composition of microbial methane. SCIENCE ADVANCES 2022; 8:eabm5713. [PMID: 35385305 PMCID: PMC8985922 DOI: 10.1126/sciadv.abm5713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Microbial methane production (methanogenesis) is responsible for more than half of the annual emissions of this major greenhouse gas to the atmosphere. Although the stable isotopic composition of methane is often used to characterize its sources and sinks, strictly empirical descriptions of the isotopic signature of methanogenesis currently limit these attempts. We developed a metabolic-isotopic model of methanogenesis by carbon dioxide reduction, which predicts carbon and hydrogen isotopic fractionations, and clumped isotopologue distributions, as functions of the cell's environment. We mechanistically explain multiple isotopic patterns in laboratory and natural settings and show that these patterns constrain the in situ energetics of methanogenesis. Combining our model with data from environments in which methanogenic activity is energy-limited, we provide predictions for the biomass-specific methanogenesis rates and the associated isotopic effects.
Collapse
Affiliation(s)
- Jonathan Gropp
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Balch WE, Ferry JG. The Wolfe cycle of carbon dioxide reduction to methane revisited and the Ralph Stoner Wolfe legacy at 100 years. Adv Microb Physiol 2021; 79:1-23. [PMID: 34836609 DOI: 10.1016/bs.ampbs.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methanogens are a component of anaerobic microbial consortia decomposing biomass to CO2 and CH4 that is an essential link in the global carbon cycle. One of two major pathways of methanogenesis involves reduction of the methyl group of acetate to CH4 with electrons from oxidation of the carbonyl group while the other involves reduction of CO2 to CH4 with electrons from H2 or formate. Pioneering investigations of the CO2 reduction pathway by Ralph S. Wolfe in the 70s and 80s contributed findings impacting the broader fields of biochemistry and microbiology that directed discovery of the domain Archaea and expanded research on anaerobic microbes for decades that continues to the present. This review presents an historical overview of the CO2 reduction pathway (Wolfe cycle) with recent developments, and an account of Wolfe's larger and enduring impact on the broad field of biology 100 years after his birth.
Collapse
Affiliation(s)
- William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
7
|
Fang Z, Zhou J, Zhou X, Koffas MAG. Abiotic-biotic hybrid for CO 2 biomethanation: From electrochemical to photochemical process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148288. [PMID: 34118677 DOI: 10.1016/j.scitotenv.2021.148288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Converting CO2 into sustainable fuels (e.g., CH4) has great significance to solve carbon emission and energy crisis. Generally, CO2 methanation needs abundant of energy input to overcome the eight-electron-transfer barrier. Abiotic-biotic hybrid system represents one of the cutting-edge technologies that use renewable electric/solar energy to realize eight-electron-transfer CO2 biomethanation. However, the incompatible abiotic-biotic hybrid can result in low efficiency of electron transfer and CO2 biomethanation. Herein, we present the comprehensive review to highlight how to design abiotic-biotic hybrid for electric/solar-driven CO2 biomethanation. We primarily introduce the CO2 biomethanation mechanism, and further summarize state-of-the-art electrochemical and photochemical CO2 biomethanation in hybrid systems. We also propose excellent synthetic biology strategies, which are useful to design tunable methanogenic microorganisms or enzymes when cooperating with electrode/semiconductor in hybrid systems. This review provides theoretical guidance of abiotic-biotic hybrid and also shows the bright future of sustainable fuel production in the form of CO2 biomethanation.
Collapse
Affiliation(s)
- Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
8
|
Watanabe T, Pfeil-Gardiner O, Kahnt J, Koch J, Shima S, Murphy BJ. Three-megadalton complex of methanogenic electron-bifurcating and CO 2-fixing enzymes. Science 2021; 373:1151-1156. [PMID: 34516836 DOI: 10.1126/science.abg5550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Olivia Pfeil-Gardiner
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jörg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Jürgen Koch
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Seigo Shima
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Formate-Dependent Heterodisulfide Reduction in a Methanomicrobiales Archaeon. Appl Environ Microbiol 2021; 87:AEM.02698-20. [PMID: 33361366 DOI: 10.1128/aem.02698-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogenotrophic methanogens produce CH4 using H2 as an electron donor to reduce CO2 In the absence of H2, many are able to use formate or alcohols as alternate electron donors. Methanogens from the order Methanomicrobiales are capable of growth with H2, but many lack genes encoding hydrogenases that are typically found in other hydrogenotrophic methanogens. In an effort to better understand electron flow in methanogens from the Methanomicrobiales, we undertook a genetic and biochemical study of heterodisulfide reductase (Hdr) in Methanoculleus thermophilus Hdr catalyzes an essential reaction by coupling the first and last steps of methanogenesis through flavin-based electron bifurcation. Hdr from M. thermophilus copurified with formate dehydrogenase (Fdh) and only displayed activity when formate was supplied as an electron donor. We found no evidence of an Hdr-associated hydrogenase, and H2 could not function as an electron donor, even with Hdr purified from cells grown on H2 We found that cells catalyze a formate hydrogenlyase activity that is likely essential for generating the formate needed for the Hdr reaction. Together, these results highlight the importance of formate as an electron donor for methanogenesis and suggest the ability to use formate is closely integrated into the methanogenic pathway in organisms from the order Methanomicrobiales IMPORTANCE Methanogens from the order Methanomicrobiales are thought to prefer H2 as an electron donor for growth. They are ubiquitous in anaerobic environments, such as in wastewater treatment facilities, anaerobic digesters, and the rumen, where they catalyze the terminal steps in the breakdown of organic matter. However, despite their importance, the metabolism of these organisms remains understudied. Using a genetic and biochemical approach, we show that formate metabolism is closely integrated into methanogenesis in Methanoculleus thermophilus This is due to a requirement for formate as the electron donor to heterodisulfide reductase (Hdr), an enzyme responsible for catalyzing essential reactions in methanogenesis by linking the initial CO2 fixing step to the exergonic terminal reaction of the pathway. These results suggest that hydrogen is not necessarily the preferred electron donor for all hydrogenotrophic methanogens and provide insight into the metabolism of methanogens from the order Methanomicrobiales.
Collapse
|
10
|
Kayastha K, Vitt S, Buckel W, Ermler U. Flavins in the electron bifurcation process. Arch Biochem Biophys 2021; 701:108796. [PMID: 33609536 DOI: 10.1016/j.abb.2021.108796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/18/2022]
Abstract
The discovery of a new energy-coupling mechanism termed flavin-based electron bifurcation (FBEB) in 2008 revealed a novel field of application for flavins in biology. The key component is the bifurcating flavin endowed with strongly inverted one-electron reduction potentials (FAD/FAD•- ≪ FAD•-/FADH-) that cooperatively transfers in its reduced state one low and one high-energy electron into different directions and thereby drives an endergonic with an exergonic reduction reaction. As energy splitting at the bifurcating flavin apparently implicates one-electron chemistry, the FBEB machinery has to incorporate prior to and behind the central bifurcating flavin 2e-to-1e and 1e-to-2e switches, frequently also flavins, for oxidizing variable medium-potential two-electron donating substrates and for reducing high-potential two-electron accepting substrates. The one-electron carriers ferredoxin or flavodoxin serve as low-potential (high-energy) electron acceptors, which power endergonic processes almost exclusively in obligate anaerobic microorganisms to increase the efficiency of their energy metabolism. In this review, we outline the global organization of FBEB enzymes, the functions of the flavins therein and the surrounding of the isoalloxazine rings by which their reduction potentials are specifically adjusted in a finely tuned energy landscape.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Stella Vitt
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany; Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032, Marburg, Germany
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032, Marburg, Germany; Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Watanabe T, Shima S. MvhB-type Polyferredoxin as an Electron-transfer Chain in Putative Redox-enzyme Complexes. CHEM LETT 2021. [DOI: 10.1246/cl.200774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Watanabe
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0819, Japan
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| |
Collapse
|
12
|
Appel L, Willistein M, Dahl C, Ermler U, Boll M. Functional diversity of prokaryotic HdrA(BC) modules: Role in flavin-based electron bifurcation processes and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148379. [PMID: 33460586 DOI: 10.1016/j.bbabio.2021.148379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
In methanogenic archaea, the archetypical complex of heterodisulfide reductase (HdrABC) and hydrogenase (MvhAGD) couples the endergonic reduction of CO2 by H2 to the exergonic reduction of the CoB-S-S-CoM heterodisulfide by H2 via flavin-based electron bifurcation. Presently known enzymes containing HdrA(BC)-like components play key roles in methanogenesis, acetogenesis, respiratory sulfate reduction, lithotrophic reduced sulfur compound oxidation, aromatic compound degradation, fermentations, and probably many further processes. This functional diversity is achieved by a modular architecture of HdrA(BC) enzymes, where a big variety of electron input/output modules may be connected either directly or via adaptor modules to the HdrA(BC) components. Many, but not all HdrA(BC) complexes are proposed to catalyse a flavin-based electron bifurcation/confurcation. Despite the availability of HdrA(BC) crystal structures, fundamental questions of electron transfer and energy coupling processes remain. Here, we address the common properties and functional diversity of HdrA(BC) core modules integrated into electron-transfer machineries of outstanding complexity.
Collapse
Affiliation(s)
- Lena Appel
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany
| | - Max Willistein
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Frankfurt, Germany
| | - Matthias Boll
- Fakultät für Biologie - Mikrobiologie, Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Shima S, Huang G, Wagner T, Ermler U. Structural Basis of Hydrogenotrophic Methanogenesis. Annu Rev Microbiol 2020; 74:713-733. [DOI: 10.1146/annurev-micro-011720-122807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most methanogenic archaea use the rudimentary hydrogenotrophic pathway—from CO2and H2to methane—as the terminal step of microbial biomass degradation in anoxic habitats. The barely exergonic process that just conserves sufficient energy for a modest lifestyle involves chemically challenging reactions catalyzed by complex enzyme machineries with unique metal-containing cofactors. The basic strategy of the methanogenic energy metabolism is to covalently bind C1species to the C1carriers methanofuran, tetrahydromethanopterin, and coenzyme M at different oxidation states. The four reduction reactions from CO2to methane involve one molybdopterin-based two-electron reduction, two coenzyme F420–based hydride transfers, and one coenzyme F430–based radical process. For energy conservation, one ion-gradient-forming methyl transfer reaction is sufficient, albeit supported by a sophisticated energy-coupling process termed flavin-based electron bifurcation for driving the endergonic CO2reduction and fixation. Here, we review the knowledge about the structure-based catalytic mechanism of each enzyme of hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Gangfeng Huang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Ulrich Ermler
- Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Methanothermobacter thermautotrophicus strain ΔH as a potential microorganism for bioconversion of CO2 to methane. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Ruth JC, Milton RD, Gu W, Spormann AM. Enhanced Electrosynthetic Hydrogen Evolution by Hydrogenases Embedded in a Redox-Active Hydrogel. Chemistry 2020; 26:7323-7329. [PMID: 32074397 DOI: 10.1002/chem.202000750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 01/27/2023]
Abstract
Molecular hydrogen is a major high-energy carrier for future energy technologies, if produced from renewable electrical energy. Hydrogenase enzymes offer a pathway for bioelectrochemically producing hydrogen that is advantageous over traditional platforms for hydrogen production because of low overpotentials and ambient operating temperature and pressure. However, electron delivery from the electrode surface to the enzyme's active site is often rate-limiting. Here, it is shown that three different hydrogenases from Clostridium pasteurianum and Methanococcus maripaludis, when immobilized at a cathode in a cobaltocene-functionalized polyallylamine (Cc-PAA) redox polymer, mediate rapid and efficient hydrogen evolution. Furthermore, it is shown that Cc-PAA-mediated hydrogenases can operate at high faradaic efficiency (80-100 %) and low apparent overpotential (-0.578 to -0.593 V vs. SHE). Specific activities of these hydrogenases in the electrosynthetic Cc-PAA assay were comparable to their respective activities in traditional methyl viologen assays, indicating that Cc-PAA mediates electron transfer at high rates, to most of the embedded enzymes.
Collapse
Affiliation(s)
- John C Ruth
- Department of Chemical Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Ross D Milton
- Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.,Current address: Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Wenyu Gu
- Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Alfred M Spormann
- Department of Chemical Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.,Department of Civil and Environmental Engineering, E250 James. H. Clark Center, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Methanogenesis involves direct hydride transfer from H2 to an organic substrate. Nat Rev Chem 2020; 4:213-221. [PMID: 37128042 DOI: 10.1038/s41570-020-0167-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Certain anaerobic microorganisms evolved a mechanism to use H2 as a reductant in their energy metabolisms. For these purposes, the microorganisms developed H2-activating enzymes, which are aspirational catalysts in a sustainable hydrogen economy. In the case of the hydrogenotrophic pathway performed by methanogenic archaea, 8e- are extracted from 4H2 and used as reducing equivalents to convert CO2 into CH4. Under standard cultivation conditions, these archaea express [NiFe]-hydrogenases, which are Ni-dependent and Fe-dependent enzymes and heterolytically cleave H2 into 2H+ and 2e-, the latter being supplied into the central metabolism. Under Ni-limiting conditions, F420-reducing [NiFe]-hydrogenases are downregulated and their functions are predominantly taken over by an upregulated [Fe]-hydrogenase. Unique in biology, this Fe-dependent hydrogenase cleaves H2 and directly transfers H- to an imidazolium-containing substrate. [Fe]-hydrogenase activates H2 at an Fe cofactor ligated by two CO molecules, an acyl group, a pyridinol N atom and a cysteine thiolate as the central constituent. This Fe centre has inspired chemists to not only design synthetic mimics to catalytically cleave H2 in solution but also for incorporation into apo-[Fe]-hydrogenase to give semi-synthetic proteins. This Perspective describes the enzymes involved in hydrogenotrophic methanogenesis, with a focus on those performing the reduction steps. Of these, we describe [Fe]-hydrogenases in detail and cover recent progress in their synthetic modelling.
Collapse
|
17
|
Anselmann SEL, Löffler C, Stärk HJ, Jehmlich N, von Bergen M, Brüls T, Boll M. The class II benzoyl-coenzyme A reductase complex from the sulfate-reducing Desulfosarcina cetonica. Environ Microbiol 2019; 21:4241-4252. [PMID: 31430028 DOI: 10.1111/1462-2920.14784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022]
Abstract
Benzoyl-CoA reductases (BCRs) catalyse a key reaction in the anaerobic degradation pathways of monocyclic aromatic substrates, the dearomatization of benzoyl-CoA (BzCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA) at the negative redox potential limit of diffusible enzymatic substrate/product couples (E°' = -622 mV). A 1-MDa class II BCR complex composed of the BamBCDEGHI subunits has so far only been isolated from the Fe(III)-respiring Geobacter metallireducens. It is supposed to drive endergonic benzene ring reduction at an active site W-pterin cofactor by flavin-based electron bifurcation. Here, we identified multiple copies of putative genes encoding the structural components of a class II BCR in sulfate reducing, Fe(III)-respiring and syntrophic bacteria. A soluble 950 kDa Bam[(BC)2 DEFGHI]2 complex was isolated from extracts of Desulfosarcina cetonica cells grown with benzoate/sulfate. Metal and cofactor analyses together with the identification of conserved binding motifs gave rise to 4 W-pterins, two selenocysteines, six flavin adenine dinucleotides, four Zn, and 48 FeS clusters. The complex exhibited 1,5-dienoyl-CoA-, NADPH- and ferredoxin-dependent oxidoreductase activities. Our results indicate that high-molecular class II BCR metalloenzyme machineries are remarkably conserved in strictly anaerobic bacteria with regard to subunit architecture and cofactor content, but their subcellular localization and electron acceptor preference may differ as a result of adaptations to variable energy metabolisms.
Collapse
Affiliation(s)
| | - Claudia Löffler
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.,Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Thomas Brüls
- CEA, DRF, IBFJ, Genoscope, Evry, France.,CNRS-UMR8030, Université d'Evry Val d'Essonne and Université Paris-Saclay, Evry, France
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
18
|
Müller V, Chowdhury NP, Basen M. Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism. Annu Rev Microbiol 2018; 72:331-353. [PMID: 29924687 DOI: 10.1146/annurev-micro-090816-093440] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A decade ago, a novel mechanism to drive thermodynamically unfavorable redox reactions was discovered that is used in prokaryotes to drive endergonic electron transfer reactions by a direct coupling to an exergonic redox reaction in one soluble enzyme complex. This process is referred to as flavin-based electron bifurcation, or FBEB. An important function of FBEB is that it allows the generation of reduced low-potential ferredoxin (Fdred) from comparably high-potential electron donors such as NADH or molecular hydrogen (H2). Fdred is then the electron donor for anaerobic respiratory chains leading to the synthesis of ATP. In many metabolic scenarios, Fd is reduced by metabolic oxidoreductases and Fdred then drives endergonic metabolic reactions such as H2 production by the reverse, electron confurcation. FBEB is energetically more economical than ATP hydrolysis or reverse electron transport as a driving force for endergonic redox reactions; thus, it does "save" cellular ATP. It is essential for autotrophic growth at the origin of life and also allows for heterotrophic growth on certain low-energy substrates.
Collapse
Affiliation(s)
- Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| | - Nilanjan Pal Chowdhury
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| | - Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| |
Collapse
|
19
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD + (Rnf) as Electron Acceptors: A Historical Review. Front Microbiol 2018; 9:401. [PMID: 29593673 PMCID: PMC5861303 DOI: 10.3389/fmicb.2018.00401] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction of ferredoxins (Fd) and flavodoxins (Fld). The first example was described in 2008 when it was found that the butyryl-CoA dehydrogenase-electron-transferring flavoprotein complex (Bcd-EtfAB) of Clostridium kluyveri couples the endergonic reduction of ferredoxin (E0′ = −420 mV) with NADH (−320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (−10 mV) with NADH. The discovery was followed by the finding of an electron-bifurcating Fd- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Thermotoga maritima (2009), Fd-dependent transhydrogenase (NfnAB) in various bacteria and archaea (2010), Fd- and H2-dependent heterodisulfide reductase (MvhADG-HdrABC) in methanogenic archaea (2011), Fd- and NADH-dependent caffeyl-CoA reductase (CarCDE) in Acetobacterium woodii (2013), Fd- and NAD-dependent formate dehydrogenase (HylABC-FdhF2) in Clostridium acidi-urici (2013), Fd- and NADP-dependent [FeFe]-hydrogenase (HytA-E) in Clostridium autoethanogrenum (2013), Fd(?)- and NADH-dependent methylene-tetrahydrofolate reductase (MetFV-HdrABC-MvhD) in Moorella thermoacetica (2014), Fd- and NAD-dependent lactate dehydrogenase (LctBCD) in A. woodii (2015), Fd- and F420H2-dependent heterodisulfide reductase (HdrA2B2C2) in Methanosarcina acetivorans (2017), and Fd- and NADH-dependent ubiquinol reductase (FixABCX) in Azotobacter vinelandii (2017). The electron-bifurcating flavoprotein complexes known to date fall into four groups that have evolved independently, namely those containing EtfAB (CarED, LctCB, FixBA) with bound FAD, a NuoF homolog (HydB, HytB, or HylB) harboring FMN, NfnB with bound FAD, or HdrA harboring FAD. All these flavoproteins are cytoplasmic except for the membrane-associated protein FixABCX. The organisms—in which they have been found—are strictly anaerobic microorganisms except for the aerobe A. vinelandii. The electron-bifurcating complexes are involved in a variety of processes such as butyric acid fermentation, methanogenesis, acetogenesis, anaerobic lactate oxidation, dissimilatory sulfate reduction, anaerobic- dearomatization, nitrogen fixation, and CO2 fixation. They contribute to energy conservation via the energy-converting ferredoxin: NAD+ reductase complex Rnf or the energy-converting ferredoxin-dependent hydrogenase complex Ech. This Review describes how this mechanism was discovered.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratory for Microbiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
20
|
Gilmore SP, Henske JK, Sexton JA, Solomon KV, Seppälä S, Yoo JI, Huyett LM, Pressman A, Cogan JZ, Kivenson V, Peng X, Tan Y, Valentine DL, O'Malley MA. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genomics 2017; 18:639. [PMID: 28826405 PMCID: PMC5563889 DOI: 10.1186/s12864-017-4036-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. RESULTS Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis of the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. CONCLUSIONS Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO2 and formate are common electron carriers in microbial communities.
Collapse
Affiliation(s)
- Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Jessica A Sexton
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Present Address: Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Justin I Yoo
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Lauren M Huyett
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Abe Pressman
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - James Z Cogan
- Biology Program, College of Creative Studies, University of California, Santa Barbara, California, USA
| | - Veronika Kivenson
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Xuefeng Peng
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.,Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - YerPeng Tan
- California NanoScience Institute, University of California, Santa Barbara, California, USA
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA.
| |
Collapse
|
21
|
Wagner T, Koch J, Ermler U, Shima S. Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science 2017; 357:699-703. [DOI: 10.1126/science.aan0425] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
|
22
|
Bai L, Fujishiro T, Huang G, Koch J, Takabayashi A, Yokono M, Tanaka A, Xu T, Hu X, Ermler U, Shima S. Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase. Faraday Discuss 2017; 198:37-58. [DOI: 10.1039/c6fd00209a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The greenhouse gas and energy carrier methane is produced on Earth mainly by methanogenic archaea. In the hydrogenotrophic methanogenic pathway the reduction of one CO2 to one methane molecule requires four molecules of H2 containing eight electrons. Four of the electrons from two H2 are supplied for reduction of an electron carrier F420, which is catalyzed by F420-reducing [NiFe]-hydrogenase under nickel-sufficient conditions. The same reaction is catalysed under nickel-limiting conditions by [Fe]-hydrogenase coupled with a reaction catalyzed by F420-dependent methylene tetrahydromethanopterin dehydrogenase. [Fe]-hydrogenase contains an iron-guanylylpyridinol (FeGP) cofactor for H2 activation at the active site. FeII of FeGP is coordinated to a pyridinol-nitrogen, an acyl-carbon, two CO and a cysteine-thiolate. We report here on comparative genomic analyses of biosynthetic genes of the FeGP cofactor, which are primarily located in a hmd-co-occurring (hcg) gene cluster. One of the gene products is HcgB which transfers the guanosine monophosphate (GMP) moiety from guanosine triphosphate (GTP) to a pyridinol precursor. Crystal structure analysis of HcgB from Methanococcus maripaludis and its complex with 6-carboxymethyl-3,5-dimethyl-4-hydroxy-2-pyridinol confirmed the physiological guanylyltransferase reaction. Furthermore, we tested the properties of semi-synthetic [Fe]-hydrogenases using the [Fe]-hydrogenase apoenzyme from several methanogenic archaea and a mimic of the FeGP cofactor. On the basis of the enzymatic reactions involved in the methanogenic pathway, we came up with an idea how the methanogenic pathway could be simplified to develop an artificial methanogenesis system.
Collapse
Affiliation(s)
- Liping Bai
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Takashi Fujishiro
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Gangfeng Huang
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Jürgen Koch
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
| | - Atsushi Takabayashi
- The Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Makio Yokono
- The Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Ayumi Tanaka
- The Institute of Low Temperature Science
- Hokkaido University
- Sapporo 060-0819
- Japan
| | - Tao Xu
- Institute of Chemical Science and Engineering
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Xile Hu
- Institute of Chemical Science and Engineering
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik
- 60438 Frankfurt/Main
- Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie
- 35043 Marburg
- Germany
- PRESTO
- Japan, Science and Technology Agency (JST)
| |
Collapse
|
23
|
Mazurkewich S, Seah SYK. Investigation into the Mode of Phosphate Activation in the 4-Hydroxy-4-Methyl-2-Oxoglutarate/4-Carboxy-4-Hydroxy-2-Oxoadipate Aldolase from Pseudomonas putida F1. PLoS One 2016; 11:e0164556. [PMID: 27741265 PMCID: PMC5065237 DOI: 10.1371/journal.pone.0164556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/03/2016] [Indexed: 11/18/2022] Open
Abstract
The 4-hydroxy-4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase is the last enzyme of both the gallate and protocatechuate 4,5-cleavage pathways which links aromatic catabolism to central cellular metabolism. The enzyme is a class II, divalent metal dependent, aldolase which is activated in the presence of inorganic phosphate (Pi), increasing its turnover rate >10-fold. This phosphate activation is unique for a class II aldolase. The aldolase pyruvate methyl proton exchange rate, a probe of the general acid half reaction, was increased 300-fold in the presence of 1 mM Pi and the rate enhancement followed saturation kinetics giving rise to a KM of 397 ± 30 μM. Docking studies revealed a potential Pi binding site close to, or overlapping with, the proposed general acid water site. Putative Pi binding residues were substituted by site-directed mutagenesis which resulted in reductions of Pi activation. Significantly, the active site residue Arg-123, known to be critical for the catalytic mechanism of the enzyme, was also implicated in supporting Pi mediated activation.
Collapse
Affiliation(s)
- Scott Mazurkewich
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis. J Bacteriol 2013; 195:5160-5. [PMID: 24039260 DOI: 10.1128/jb.00895-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavin-based electron bifurcation has recently been characterized as an essential energy conservation mechanism that is utilized by hydrogenotrophic methanogenic Archaea to generate low-potential electrons in an ATP-independent manner. Electron bifurcation likely takes place at the flavin associated with the α subunit of heterodisulfide reductase (HdrA). In Methanococcus maripaludis the electrons for this reaction come from either formate or H2 via formate dehydrogenase (Fdh) or Hdr-associated hydrogenase (Vhu). However, how these enzymes bind to HdrA to deliver electrons is unknown. Here, we present evidence that the δ subunit of hydrogenase (VhuD) is central to the interaction of both enzymes with HdrA. When M. maripaludis is grown under conditions where both Fdh and Vhu are expressed, these enzymes compete for binding to VhuD, which in turn binds to HdrA. Under these conditions, both enzymes are fully functional and are bound to VhuD in substoichiometric quantities. We also show that Fdh copurifies specifically with VhuD in the absence of other hydrogenase subunits. Surprisingly, in the absence of Vhu, growth on hydrogen still occurs; we show that this involves F420-reducing hydrogenase. The data presented here represent an initial characterization of specific protein interactions centered on Hdr in a hydrogenotrophic methanogen that utilizes multiple electron donors for growth.
Collapse
|
25
|
Lauterbach L, Lenz O, Vincent KA. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases. FEBS J 2013; 280:3058-68. [PMID: 23497170 DOI: 10.1111/febs.12245] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/15/2022]
Abstract
A large number of industrially relevant enzymes depend upon nicotinamide cofactors, which are too expensive to be added in stoichiometric amounts. Existing NAD(P)H-recycling systems suffer from low activity, or the generation of side products. H₂-driven cofactor regeneration has the advantage of 100% atom efficiency and the use of H₂ as a cheap reducing agent, in a world where sustainable energy carriers are increasingly attractive. The state of development of H₂-driven cofactor-recycling systems and examples of their integration with enzyme reactions are summarized in this article. The O₂-tolerant NAD⁺-reducing hydrogenase from Ralstonia eutropha is a particularly attractive candidate for this approach, and we therefore discuss its catalytic properties that are relevant for technical applications.
Collapse
|
26
|
Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 2011; 6:e22898. [PMID: 21829548 PMCID: PMC3146512 DOI: 10.1371/journal.pone.0022898] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022] Open
Abstract
We report complete genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultured representative of the order Methanocellales once recognized as an uncultured key archaeal group for methane emission in rice fields. The genome sequence of M. paludicola consists of a single circular chromosome of 2,957,635 bp containing 3004 protein-coding sequences (CDS). Genes for most of the functions known in the methanogenic archaea were identified, e.g. a full complement of hydrogenases and methanogenesis enzymes. The mixotrophic growth of M. paludicola was clarified by the genomic characterization and re-examined by the subsequent growth experiments. Comparative genome analysis with the previously reported genome sequence of RC-IMRE50, which was metagenomically reconstructed, demonstrated that about 70% of M. paludicola CDSs were genetically related with RC-IMRE50 CDSs. These CDSs included the genes involved in hydrogenotrophic methane production, incomplete TCA cycle, assimilatory sulfate reduction and so on. However, the genetic components for the carbon and nitrogen fixation and antioxidant system were different between the two Methanocellales genomes. The difference is likely associated with the physiological variability between M. paludicola and RC-IMRE50, further suggesting the genomic and physiological diversity of the Methanocellales methanogens. Comparative genome analysis among the previously determined methanogen genomes points to the genome-wide relatedness of the Methanocellales methanogens to the orders Methanosarcinales and Methanomicrobiales methanogens in terms of the genetic repertoire. Meanwhile, the unique evolutionary history of the Methanocellales methanogens is also traced in an aspect by the comparative genome analysis among the methanogens.
Collapse
|
27
|
Kaster AK, Moll J, Parey K, Thauer RK. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc Natl Acad Sci U S A 2011; 108:2981-6. [PMID: 21262829 PMCID: PMC3041090 DOI: 10.1073/pnas.1016761108] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In methanogenic archaea growing on H(2) and CO(2) the first step in methanogenesis is the ferredoxin-dependent endergonic reduction of CO(2) with H(2) to formylmethanofuran and the last step is the exergonic reduction of the heterodisulfide CoM-S-S-CoB with H(2) to coenzyme M (CoM-SH) and coenzyme B (CoB-SH). We recently proposed that in hydrogenotrophic methanogens the two reactions are energetically coupled via the cytoplasmic MvhADG/HdrABC complex. It is reported here that the purified complex from Methanothermobacter marburgensis catalyzes the CoM-S-S-CoB-dependent reduction of ferredoxin with H(2). Per mole CoM-S-S-CoB added, 1 mol of ferredoxin (Fd) was reduced, indicating an electron bifurcation coupling mechanism: 2H(2) + Fd(OX) + CoM-S-S-CoB-->Fd(red)(2-) + CoM-SH + CoB-SH + 2H(+). This stoichiometry of coupling is consistent with an ATP gain per mole methane from 4 H(2) and CO(2) of near 0.5 deduced from an H(2)-threshold concentration of 8 Pa and a growth yield of up to 3 g/mol methane.
Collapse
Affiliation(s)
| | - Johanna Moll
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Kristian Parey
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Rudolf K. Thauer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
28
|
Junier P, Junier T, Podell S, Sims DR, Detter JC, Lykidis A, Han CS, Wigginton NS, Gaasterland T, Bernier-Latmani R. The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environ Microbiol 2011; 12:2738-54. [PMID: 20482743 DOI: 10.1111/j.1462-2920.2010.02242.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spore-forming, Gram-positive sulfate-reducing bacteria (SRB) represent a group of SRB that dominates the deep subsurface as well as niches in which resistance to oxygen and dessication is an advantage. Desulfotomaculum reducens strain MI-1 is one of the few cultured representatives of that group with a complete genome sequence available. The metabolic versatility of this organism is reflected in the presence of genes encoding for the oxidation of various electron donors, including three- and four-carbon fatty acids and alcohols. Synteny in genes involved in sulfate reduction across all four sequenced Gram-positive SRB suggests a distinct sulfate-reduction mechanism for this group of bacteria. Based on the genomic information obtained for sulfate reduction in D. reducens, the transfer of electrons to the sulfite and APS reductases is proposed to take place via the quinone pool and heterodisulfide reductases respectively. In addition, both H(2) -evolving and H(2) -consuming cytoplasmic hydrogenases were identified in the genome, pointing to potential cytoplasmic H(2) cycling in the bacterium. The mechanism of metal reduction remains unknown.
Collapse
Affiliation(s)
- Pilar Junier
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Baltazar CSA, Marques MC, Soares CM, DeLacey AM, Pereira IAC, Matias PM. Nickel–Iron–Selenium Hydrogenases – An Overview. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001127] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carla S. A. Baltazar
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Marta C. Marques
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Cláudio M. Soares
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Antonio M. DeLacey
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain, Fax: +34‐915854760
| | - Inês A. C. Pereira
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
| | - Pedro M. Matias
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| |
Collapse
|
30
|
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20847933 PMCID: PMC2933860 DOI: 10.1155/2010/453642] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
Collapse
|
31
|
Major TA, Liu Y, Whitman WB. Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis. J Bacteriol 2010; 192:4022-30. [PMID: 20511510 PMCID: PMC2916364 DOI: 10.1128/jb.01446-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 05/07/2010] [Indexed: 11/20/2022] Open
Abstract
The Methanococcus maripaludis energy-conserving hydrogenase B (Ehb) generates low potential electrons required for autotrophic CO(2) assimilation. To analyze the importance of individual subunits in Ehb structure and function, markerless in-frame deletions were constructed in a number of M. maripaludis ehb genes. These genes encode the large and small hydrogenase subunits (ehbN and ehbM, respectively), a polyferredoxin and ferredoxin (ehbK and ehbL, respectively), and an ion translocator (ehbF). In addition, a gene replacement mutation was constructed for a gene encoding a putative membrane-spanning subunit (ehbO). When grown in minimal medium plus acetate (McA), all ehb mutants had severe growth deficiencies except the DeltaehbO::pac strain. The membrane-spanning ion translocator (DeltaehbF) and the large hydrogenase subunit (DeltaehbN) deletion strains displayed the severest growth defects. Deletion of the ehbN gene was of particular interest because this gene was not contiguous to the ehb operon. In-gel activity assays and Western blots confirmed that EhbN was part of the membrane-bound Ehb hydrogenase complex. The DeltaehbN strain was also sensitive to growth inhibition by aryl acids, indicating that Ehb was coupled to the indolepyruvate oxidoreductase (Ior), further supporting the hypothesis that Ehb provides low potential reductants for the anabolic oxidoreductases in M. maripaludis.
Collapse
Affiliation(s)
- Tiffany A. Major
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605
| | - Yuchen Liu
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605
| |
Collapse
|
32
|
Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2Storage. Annu Rev Biochem 2010; 79:507-36. [DOI: 10.1146/annurev.biochem.030508.152103] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany;
| |
Collapse
|
33
|
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci U S A 2010; 107:11050-5. [PMID: 20534465 DOI: 10.1073/pnas.1003653107] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.
Collapse
|
34
|
Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution. Biochem Biophys Res Commun 2010; 393:16-20. [DOI: 10.1016/j.bbrc.2010.01.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 11/21/2022]
|
35
|
Buan NR, Metcalf WW. Methanogenesis byMethanosarcina acetivoransinvolves two structurally and functionally distinct classes of heterodisulfide reductase. Mol Microbiol 2010; 75:843-53. [DOI: 10.1111/j.1365-2958.2009.06990.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 2009; 12:422-39. [PMID: 19878267 DOI: 10.1111/j.1462-2920.2009.02083.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial consortia mediating the anaerobic oxidation of methane with sulfate are composed of methanotrophic Archaea (ANME) and Bacteria related to sulfate-reducing Deltaproteobacteria. Cultured representatives are not available for any of the three ANME clades. Therefore, a metagenomic approach was applied to assess the genetic potential of ANME-1 archaea. In total, 3.4 Mbp sequence information was generated based on metagenomic fosmid libraries constructed directly from a methanotrophic microbial mat in the Black Sea. These sequence data represent, in 30 contigs, about 82-90% of a composite ANME-1 genome. The dataset supports the hypothesis of a reversal of the methanogenesis pathway. Indications for an assimilatory, but not for a dissimilatory sulfate reduction pathway in ANME-1, were found. Draft genome and expression analyses are consistent with acetate and formate as putative electron shuttles. Moreover, the dataset points towards downstream electron-accepting redox components different from the ones known from methanogenic archaea. Whereas catalytic subunits of [NiFe]-hydrogenases are lacking in the dataset, genes for an [FeFe]-hydrogenase homologue were identified, not yet described to be present in methanogenic archaea. Clustered genes annotated as secreted multiheme c-type cytochromes were identified, which have not yet been correlated with methanogenesis-related steps. The genes were shown to be expressed, suggesting direct electron transfer as an additional possible mode to shuttle electrons from ANME-1 to the bacterial sulfate-reducing partner.
Collapse
Affiliation(s)
- Anke Meyerdierks
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Stock T, Rother M. Selenoproteins in Archaea and Gram-positive bacteria. Biochim Biophys Acta Gen Subj 2009; 1790:1520-32. [PMID: 19344749 DOI: 10.1016/j.bbagen.2009.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
Abstract
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
38
|
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008; 6:579-91. [PMID: 18587410 DOI: 10.1038/nrmicro1931] [Citation(s) in RCA: 1176] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most methanogenic archaea can reduce CO(2) with H(2) to methane, and it is generally assumed that the reactions and mechanisms of energy conservation that are involved are largely the same in all methanogens. However, this does not take into account the fact that methanogens with cytochromes have considerably higher growth yields and threshold concentrations for H(2) than methanogens without cytochromes. These and other differences can be explained by the proposal outlined in this Review that in methanogens with cytochromes, the first and last steps in methanogenesis from CO(2) are coupled chemiosmotically, whereas in methanogens without cytochromes, these steps are energetically coupled by a cytoplasmic enzyme complex that mediates flavin-based electron bifurcation.
Collapse
Affiliation(s)
- Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
39
|
Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 2008; 10:2550-73. [PMID: 18631365 DOI: 10.1111/j.1462-2920.2008.01679.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This paper describes the genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum), which is the model acetogenic bacterium that has been widely used for elucidating the Wood-Ljungdahl pathway of CO and CO(2) fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into 3 mol of acetate and to grow autotrophically using H(2) and CO as electron donors and CO(2) as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO(2). Acetogenic bacteria also couple the Wood-Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols and aromatic compounds) and electron acceptors (CO(2), nitrate, nitrite, thiosulfate, dimethylsulfoxide and aromatic carboxyl groups). The genome consists of a single circular 2 628 784 bp chromosome encoding 2615 open reading frames (ORFs), which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. A total of 2384 (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in orthologue clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li L, Li Q, Rohlin L, Kim U, Salmon K, Rejtar T, Gunsalus RP, Karger BL, Ferry JG. Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res 2007; 6:759-71. [PMID: 17269732 PMCID: PMC2577390 DOI: 10.1021/pr060383l] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs methanol-grown cells metabolically labeled with 14N vs 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were > or =3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were > or =2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate.
Collapse
Affiliation(s)
- Lingyun Li
- Barnett Institute and Department of Chemistry, Northeastern University, Boston, MA 02115
| | - Qingbo Li
- Department of Biochemistry and Molecular Biology, and Center for Microbial Structural Biology, 205 South Frear Laboratory, The Pennsylvania State University, University Park, PA 16802
| | - Lars Rohlin
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - UnMi Kim
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Kirsty Salmon
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Tomas Rejtar
- Barnett Institute and Department of Chemistry, Northeastern University, Boston, MA 02115
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Barry L. Karger
- Barnett Institute and Department of Chemistry, Northeastern University, Boston, MA 02115
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, and Center for Microbial Structural Biology, 205 South Frear Laboratory, The Pennsylvania State University, University Park, PA 16802
- To whom correspondence should be addressed. Tel.: 814/863-5721; Fax: 814/863-6217; E-mail:
| |
Collapse
|
41
|
Deppenmeier U, Müller V. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 2007; 45:123-52. [PMID: 17713742 DOI: 10.1007/400_2006_026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methane-forming archaea are strictly anaerobic, ancient microbes that are widespread in nature. These organisms are commonly found in anaerobic environments such as rumen, anaerobic sediments of rivers and lakes, hyperthermal deep sea vents and even hypersaline environments. From an evolutionary standpoint they are close to the origin of life. Common to all methanogens is the biological production of methane by a unique pathway currently only found in archaea. Methanogens can grow on only a limited number of substrates such as H(2) + CO(2), formate, methanol and other methyl group-containing substrates and some on acetate. The free energy change associated with methanogenesis from these compounds allows for the synthesis of 1 (acetate) to a maximum of only 2 mol of ATP under standard conditions while under environmental conditions less than one ATP can be synthesized. Therefore, methanogens live close to the thermodynamic limit. To cope with this problem, they have evolved elaborate mechanisms of energy conservation using both protons and sodium ions as the coupling ion in one pathway. These energy conserving mechanisms are comprised of unique enzymes, cofactors and electron carriers present only in methanogens. This review will summarize the current knowledge of energy conservation of methanogens and focus on recent insights into structure and function of ion translocating enzymes found in these organisms.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | |
Collapse
|
42
|
Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 2006; 188:642-58. [PMID: 16385054 PMCID: PMC1347301 DOI: 10.1128/jb.188.2.642-658.2006] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/20/2005] [Indexed: 02/07/2023] Open
Abstract
Methanosphaera stadtmanae has the most restricted energy metabolism of all methanogenic archaea. This human intestinal inhabitant can generate methane only by reduction of methanol with H2 and is dependent on acetate as a carbon source. We report here the genome sequence of M. stadtmanae, which was found to be composed of 1,767,403 bp with an average G+C content of 28% and to harbor only 1,534 protein-encoding sequences (CDS). The genome lacks 37 CDS present in the genomes of all other methanogens. Among these are the CDS for synthesis of molybdopterin and for synthesis of the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex, which explains why M. stadtmanae cannot reduce CO2 to methane or oxidize methanol to CO2 and why this archaeon is dependent on acetate for biosynthesis of cell components. Four sets of mtaABC genes coding for methanol:coenzyme M methyltransferases were found in the genome of M. stadtmanae. These genes exhibit homology to mta genes previously identified in Methanosarcina species. The M. stadtmanae genome also contains at least 323 CDS not present in the genomes of all other archaea. Seventy-three of these CDS exhibit high levels of homology to CDS in genomes of bacteria and eukaryotes. These 73 CDS include 12 CDS which are unusually long (>2,400 bp) with conspicuous repetitive sequence elements, 13 CDS which exhibit sequence similarity on the protein level to CDS encoding enzymes involved in the biosynthesis of cell surface antigens in bacteria, and 5 CDS which exhibit sequence similarity to the subunits of bacterial type I and III restriction-modification systems.
Collapse
Affiliation(s)
- Wolfgang F Fricke
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hedderich R, Hamann N, Bennati M. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Biol Chem 2005; 386:961-70. [PMID: 16218868 DOI: 10.1515/bc.2005.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterodisulfide reductase (HDR) from methanogenic archaea is an iron-sulfur protein that catalyzes reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol-coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). Via the characterization of a paramagnetic reaction intermediate generated upon oxidation of the enzyme in the presence of coenzyme M, the enzyme was shown to contain a [4Fe-4S] cluster in its active site that catalyzes reduction of the disulfide substrate in two one-electron reduction steps. The formal thiyl radical generated by the initial one-electron reduction of the disulfide is stabilized via reduction and coordination of the resultant thiol to the [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Reiner Hedderich
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, D-35043 Marburg, Germany.
| | | | | |
Collapse
|
44
|
Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni MT. A Membrane-bound Multienzyme, Hydrogen-oxidizing, and Sulfur-reducing Complex from the Hyperthermophilic Bacterium Aquifex aeolicus. J Biol Chem 2005; 280:42004-15. [PMID: 16236714 DOI: 10.1074/jbc.m508034200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aquifex aeolicus is a hyperthermophilic, chemolithoautotrophic, hydrogen-oxidizing, and microaerophilic bacterium growing at 85 degrees C. We have shown that it can grow on an H2/S degrees medium and produce H2S from sulfur in the later exponential phase. The complex carrying the sulfur reducing activity (electron transport from H2 to S degrees ) has been purified and characterized. It is a membrane-bound multiprotein complex containing a [NiFe] hydrogenase and a sulfur reductase connected via quinones. The sulfur reductase is encoded by an operon annotated dms (dimethyl sulfoxide reductase) that we have renamed sre and is composed of three subunits. Sequence analysis showed that it belongs to the Me2SO reductase molybdoenzyme family and is similar to the sulfur/polysulfide/thiosulfate/tetrathionate reductases. The study of catalytic properties clearly demonstrated that it can reduce tetrathionate, sulfur, and polysulfide, but cannot reduce Me2SO and thiosulfate, and that NADPH increases the sulfur reducing activity. To date, this is the first characterization of a supercomplex from a bacterium that couples hydrogen oxidation and sulfur reduction. The distinctive feature in A. aeolicus is the cytoplasmic localization of the sulfur reduction, which is in accordance with the presence of sulfur globules in the cytoplasm. Association of this sulfur-reducing complex with a hydrogen-oxygen pathway complex (hydrogenase I, bc1 complex) in the membrane suggests that subcomplexes involved in respiratory chains in this bacterium are part of supramolecular organization.
Collapse
Affiliation(s)
- Marianne Guiral
- Laboratoire de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, 13402 Marseille, France
| | | | | | | | | | | |
Collapse
|
45
|
Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glöckner FO, Reinhardt R, Amann R. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ Microbiol 2005; 7:1937-51. [PMID: 16309392 DOI: 10.1111/j.1462-2920.2005.00844.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The anaerobic oxidation of methane is a globally significant process which is mediated by consortia of yet uncultivated methanotrophic archaea (ANME) and sulfate-reducing bacteria. In order to gain deeper insights into genome characteristics of the different ANME groups, large-insert genomic libraries were constructed using DNA extracted from a methanotrophic microbial mat growing in the anoxic part of the Black Sea, and from sediments above gas hydrates at the Hydrate Ridge off the coast of Oregon. Analysis of these fosmid libraries with respect to archaeal 16S rRNA gene diversity revealed a single ANME-1b ribotype for the Black Sea libraries, whereas the sequences derived from the Hydrate Ridge library phylogenetically affiliated with the ANME-2a, ANME-2c and ANME-3 group. Genome walking for ANME-1b resulted in a contiguous 155 kb composite genome fragment. The comparison of a set of four genomic fragments belonging to the different ANME groups revealed differences in the rRNA operon structure and the average G+C content, with the ANME-2c contig showing the highest divergence within the set. A detailed analysis of the ANME contigs with respect to genes putatively involved in the anaerobic oxidation of methane led to the identification of: (i) a putative N5,N10-methenyltetrahydromethanopterin cyclohydrolase gene, (ii) a gene cluster supposedly encoding a novel type of heterodisulfide reductase/dehydrogenase complex and (iii) a gene cluster putatively encoding a new type of CO dehydrogenase/acetyl-CoA synthase enzyme complex.
Collapse
Affiliation(s)
- Anke Meyerdierks
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Farhoud MH, Wessels HJCT, Steenbakkers PJM, Mattijssen S, Wevers RA, van Engelen BG, Jetten MSM, Smeitink JA, van den Heuvel LP, Keltjens JT. Protein complexes in the archaeon Methanothermobacter thermautotrophicus analyzed by blue native/SDS-PAGE and mass spectrometry. Mol Cell Proteomics 2005; 4:1653-63. [PMID: 16037073 DOI: 10.1074/mcp.m500171-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methanothermobacter thermautotrophicus is a thermophilic archaeon that produces methane as the end product of its primary metabolism. The biochemistry of methane formation has been extensively studied and is catalyzed by individual enzymes and proteins that are organized in protein complexes. Although much is known of the protein complexes involved in methanogenesis, only limited information is available on the associations of proteins involved in other cell processes of M. thermautotrophicus. To visualize and identify interacting and individual proteins of M. thermautotrophicus on a proteome-wide scale, protein preparations were separated using blue native electrophoresis followed by SDS-PAGE. A total of 361 proteins, corresponding to almost 20% of the predicted proteome, was identified using peptide mass fingerprinting after MALDI-TOF MS. All previously characterized complexes involved in energy generation could be visualized. Furthermore the expression and association of the heterodisulfide reductase and methylviologen-reducing hydrogenase complexes depended on culture conditions. Also homomeric supercomplexes of the ATP synthase stalk subcomplex and the N5-methyl-5,6,7,8-tetrahydromethanopterin:coenzyme M methyltransferase complex were separated. Chemical cross-linking experiments confirmed that the multimerization of both complexes was not experimentally induced. A considerable number of previously uncharacterized protein complexes were reproducibly visualized. These included an exosome-like complex consisting of four exosome core subunits, which associated with a tRNA-intron endonuclease, thereby expanding the constituency of archaeal exosomes. The results presented show the presence of novel complexes and demonstrate the added value of including blue native gel electrophoresis followed by SDS-PAGE in discovering protein complexes that are involved in catabolic, anabolic, and general cell processes.
Collapse
Affiliation(s)
- Murtada H Farhoud
- Nijmegen Center for Mitochondrial and Metabolic Disorders, Radboud University Nijmegen Medical Center, Geert Grooteplein 10, 6500 HB Nijmegen
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mander GJ, Pierik AJ, Huber H, Hedderich R. Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeonArchaeoglobus profundus. ACTA ACUST UNITED AC 2004; 271:1106-16. [PMID: 15009189 DOI: 10.1111/j.1432-1033.2004.04013.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heterodisulfide reductase (Hdr) is a unique disulfide reductase that plays a key role in the energy metabolism of methanogenic archaea. Two types of Hdr have been identified and characterized from distantly related methanogens. Here we show that the sulfate-reducing archaeon Archaeoglobus profundus cultivated on H2/sulfate forms enzymes related to both types of Hdr. From the membrane fraction of A. profundus, a two-subunit enzyme (HmeCD) composed of a b-type cytochrome and a hydrophilic iron-sulfur protein was isolated. The amino-terminal sequences of these subunits revealed high sequence identities to subunits HmeC and HmeD of the Hme complex from A. fulgidus. HmeC and HmeD in turn are closely related to subunits HdrE and HdrD of Hdr from Methanosarcina spp. From the soluble fraction of A. profundus a six-subunit enzyme complex (Mvh:Hdl) containing Ni, iron-sulfur clusters and FAD was isolated. Via amino-terminal sequencing, the encoding genes were identified in the genome of the closely related species A. fulgidus in which these genes are clustered. They encode a three-subunit [NiFe] hydrogenase with high sequence identity to the F420-nonreducing hydrogenase from Methanothermobacter spp. while the remaining three polypeptides are related to the three-subunit heterodisulfide reductase from Methanothermobacter spp. The oxidized enzyme exhibited an unusual EPR spectrum with gxyz = 2.014, 1.939 and 1.895 similar to that observed for oxidized Hme and Hdr. Upon reduction with H2 this signal was no longer detectable.
Collapse
Affiliation(s)
- Gerd J Mander
- Max-Planck-Institut for Terrestrial Microbiology, Marburg, Germany
| | | | | | | |
Collapse
|
48
|
Pires RH, Lourenço AI, Morais F, Teixeira M, Xavier AV, Saraiva LM, Pereira IAC. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1605:67-82. [PMID: 12907302 DOI: 10.1016/s0005-2728(03)00065-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the anaerobic respiration of sulfate, performed by sulfate-reducing prokaryotes, reduction of the terminal electron acceptor takes place in the cytoplasm. The membrane-associated electron transport chain that feeds electrons to the cytoplasmic reductases is still very poorly characterized. In this study we report the isolation and characterization of a novel membrane-bound redox complex from Desulfovibrio desulfuricans ATCC 27774. This complex is formed by three subunits, and contains two hemes b, two FAD groups and several iron-sulfur centers. The two hemes b are low-spin, with macroscopic redox potentials of +75 and -20 mV at pH 7.6. Both hemes are reduced by menadiol, a menaquinone analogue, indicating a function for this complex in the respiratory electron-transport chain. EPR studies of the as-isolated and dithionite-reduced complex support the presence of a [3Fe-4S](1+/0) center and at least four [4Fe-4S](2+/1+) centers. Cloning of the genes coding for the complex subunits revealed that they form a putative transcription unit and have homology to subunits of heterodisulfide reductases (Hdr). The first and second genes code for soluble proteins that have homology to HdrA, whereas the third gene codes for a novel type of membrane-associated protein that contains both a hydrophobic domain with homology to the heme b protein HdrE and a hydrophilic domain with homology to the iron-sulfur protein HdrC. Homologous operons are found in the genomes of other sulfate-reducing organisms and in the genome of the green-sulfur bacterium Chlorobium tepidum TLS. The isolated complex is the first example of a new family of respiratory complexes present in anaerobic prokaryotes.
Collapse
Affiliation(s)
- Ricardo H Pires
- Instituto de Tecnologia Qui;mica e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande 6, Oeiras 2780-156, Portugal
| | | | | | | | | | | | | |
Collapse
|
49
|
Pelmenschikov V, Siegbahn PEM. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation. J Biol Inorg Chem 2003; 8:653-62. [PMID: 12728361 DOI: 10.1007/s00775-003-0461-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Accepted: 03/31/2003] [Indexed: 10/26/2022]
Abstract
Hybrid density functional theory has been used to investigate the catalytic mechanism of methyl-coenzyme M reductase (MCR), an essential enzyme in methanogenesis. In a previous study of methane formation, a scheme was suggested involving oxidation of Ni(I) in the starting square-planar coordination to the high-spin Ni(II) form in the CoM-S-Ni(II)F(430) octahedral intermediate. The methyl radical, concomitantly released by methyl-coenzyme M (CoM), is rapidly quenched by hydrogen atom transfer from the coenzyme B (CoB) thiol group, yielding methane as the first product of the reaction. The present investigation primarily concerns the second and final step of the reaction: oxidation of CoB and CoM to the CoB-S-S-CoM heterodisulfide product and reduction of nickel back to the Ni(I) square-planar form. The activation energy for the second step is found to be around 10 kcal/mol, implying that the first step of methane formation with an activation energy of 20 kcal/mol should be rate-limiting. An oxygen of the Gln147 residue, occupying the rear axial position in the oxidized Ni(II) state, is shown to stabilize the intermediate by 6 kcal/mol, thereby slightly decreasing the barrier for the preceding rate-limiting transition state. The mechanism suggested is discussed in the context of available experimental data. An analysis of the flexibility of the F(430) cofactor during the reaction cycle is also given.
Collapse
Affiliation(s)
- Vladimir Pelmenschikov
- Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology (SCFAB), Stockholm University, 106 91, Stockholm, Sweden.
| | | |
Collapse
|
50
|
Duin EC, Bauer C, Jaun B, Hedderich R. Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme. FEBS Lett 2003; 538:81-4. [PMID: 12633857 DOI: 10.1016/s0014-5793(03)00134-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterodisulfide reductase (Hdr) from methanogenic Archaea catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). Upon reaction of the oxidized enzyme with CoM-SH a unique paramagnetic species is formed, which has been shown to be due to a novel type of [4Fe-4S](3+) cluster. In this work, it was addressed whether CoM-SH is directly attached to this [4Fe-4S] cluster using CoM-(33)SH as substrate and purified Hdr from Methanothermobacter marburgensis and Methanosarcina barkeri. With both enzymes treatment with CoM-(33)SH in the presence of duroquinone as an oxidant resulted in a significant broadening of the electron paramagnetic resonance spectrum as compared to CoM-SH as substrate. The signal broadening resulted from an unresolved anisotropic hyperfine coupling between the (33)S nucleus and the paramagnetic center. The results provide compelling evidence for a direct binding of CoM-SH to the [4Fe-4S] cluster in the active site of the enzyme.
Collapse
Affiliation(s)
- Evert C Duin
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany.
| | | | | | | |
Collapse
|