1
|
A Pathfinder in High-Pressure Bioscience: In Memoriam of Gaston Hui Bon Hoa. BIOLOGY 2021; 10:biology10080778. [PMID: 34440010 PMCID: PMC8389544 DOI: 10.3390/biology10080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022]
|
2
|
Anzenbacher P, Marchal S, Palacký J, Anzenbacherová E, Domaschke T, Lange R, Shimizu T, Kitanishi K, Stranava M, Stiborová M, Martinkova M. Pressure effects reveal that changes in the redox states of the heme iron complexes in the sensor domains of two heme-based oxygen sensor proteins,EcDOS and YddV, have profound effects on their flexibility. FEBS J 2014; 281:5208-19. [DOI: 10.1111/febs.13060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Pavel Anzenbacher
- Institute of Pharmacology; Faculty of Medicine; Palacky University; Olomouc Czech Republic
| | - Stéphane Marchal
- INSERM U710; Place Eugène Bataillon; Montpellier France
- INSERM U1046; Centre Hospitalier Universitaire Arnaud de Villeneuve; Montpellier France
| | - Jan Palacký
- Institute of Pharmacology; Faculty of Medicine; Palacky University; Olomouc Czech Republic
| | - Eva Anzenbacherová
- Institute of Medical Chemistry and Biochemistry; Faculty of Medicine; Palacky University; Olomouc Czech Republic
| | | | - Reinhard Lange
- INSERM U710; Place Eugène Bataillon; Montpellier France
- INRA; UMR 1208 IATE; Equipe Biochimie et Technologie Alimentaires; Université Montpellier 2; Montpellier France
| | - Toru Shimizu
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Prague 2 Czech Republic
| | - Kenichi Kitanishi
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Prague 2 Czech Republic
| | - Martin Stranava
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Prague 2 Czech Republic
| | - Marie Stiborová
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Prague 2 Czech Republic
| | - Marketa Martinkova
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Prague 2 Czech Republic
| |
Collapse
|
3
|
Berka K, Anzenbacherová E, Hendrychová T, Lange R, Mašek V, Anzenbacher P, Otyepka M. Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. J Inorg Biochem 2012; 110:46-50. [DOI: 10.1016/j.jinorgbio.2012.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
|
4
|
Franke A, Hartmann E, Schlichting I, van Eldik R. A complete volume profile for the reversible binding of camphor to cytochrome P450(cam). J Biol Inorg Chem 2012; 17:447-63. [PMID: 22258082 DOI: 10.1007/s00775-011-0867-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/27/2011] [Indexed: 11/28/2022]
Abstract
The effect of pressure on the kinetics and thermodynamics of the reversible binding of camphor to cytochrome P450(cam) was studied as a function of the K(+) concentration. The determination of the reaction and activation volumes enabled the construction of the first complete volume profile for the reversible binding of camphor to P450(cam). Although the volume profiles constructed for the reactions conducted at low and high K(+) concentrations are rather similar, and both show a drastic volume increase on going from the reactant to the transition state and a relatively small volume change on going from the transition to the product state, the position of the transition state is largely affected by the K(+) concentration in solution. Similarly, the activation volume determined for the dissociation of camphor is influenced by the presence of K(+), which reflects changes in the ease of water entering the active site of camphor-bound P450(cam) that depends on the K(+) concentration. Careful analysis of the components that contribute to the observed volume changes allowed the estimation of the total number of water molecules expelled to the bulk solvent during the binding of camphor to P450(cam) and the subsequent spin transition. The results are discussed in reference to other studies reported in the literature that deal with the kinetics and thermodynamics of the binding of camphor to P450(cam) under various reaction conditions.
Collapse
Affiliation(s)
- Alicja Franke
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Germany
| | | | | | | |
Collapse
|
5
|
Hamdane D, Argentini M, Cornu D, Myllykallio H, Skouloubris S, Hui-Bon-Hoa G, Golinelli-Pimpaneau B. Insights into folate/FAD-dependent tRNA methyltransferase mechanism: role of two highly conserved cysteines in catalysis. J Biol Chem 2011; 286:36268-80. [PMID: 21846722 DOI: 10.1074/jbc.m111.256966] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flavoprotein TrmFO methylates specifically the C5 carbon of the highly conserved uridine 54 in tRNAs. Contrary to most methyltransferases, the 1-carbon unit transferred by TrmFO derives from 5,10-methylenetetrahydrofolate and not from S-adenosyl-L-methionine. The enzyme also employs the FAD hydroquinone as a reducing agent of the C5 methylene U54-tRNA intermediate in vitro. By analogy with the catalytic mechanism of thymidylate synthase ThyA, a conserved cysteine located near the FAD isoalloxazine ring was proposed to act as a nucleophile during catalysis. Here, we mutated this residue (Cys-53 in Bacillus subtilis TrmFO) to alanine and investigated its functional role. Biophysical characterization of this variant demonstrated the major structural role of Cys-53 in maintaining both the integrity and plasticity of the flavin binding site. Unexpectedly, gel mobility shift assays showed that, like the wild-type enzyme, the inactive C53A variant was capable of forming a covalent complex with a 5-fluorouridine-containing mini-RNA. This result confirms the existence of a covalent intermediate during catalysis but rules out a nucleophilic role for Cys-53. To identify the actual nucleophile, two other strictly conserved cysteines (Cys-192 and Cys-226) that are relatively far from the active site were replaced with alanine, and a double mutant C53A/C226A was generated. Interestingly, only mutations that target Cys-226 impeded TrmFO from forming a covalent complex and methylating tRNA. Altogether, we propose a revised mechanism for the m(5)U54 modification catalyzed by TrmFO, where Cys-226 attacks the C6 atom of the uridine, and Cys-53 plays the role of the general base abstracting the C5 proton.
Collapse
Affiliation(s)
- Djemel Hamdane
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Flexibility of human cytochrome P450 enzymes: Molecular dynamics and spectroscopy reveal important function-related variations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:58-68. [DOI: 10.1016/j.bbapap.2010.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/11/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022]
|
7
|
Sineva EV, Davydov DR. Cytochrome P450 from Photobacterium profundum SS9, a piezophilic bacterium, exhibits a tightened control of water access to the active site. Biochemistry 2010; 49:10636-46. [PMID: 21082780 PMCID: PMC3027307 DOI: 10.1021/bi101466y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report cloning, expression in Escherichia coli, and purification of cytochrome P450 from a deep-sea bacterium Photobacterium profundum strain SS9 (P450-SS9). The enzyme, which is predominately high spin (86%) in the absence of any added ligand, binds fatty acids and their derivatives and exhibits the highest affinity for myristic acid. Binding of the majority of saturated fatty acids displaces the spin equilibrium further toward the high-spin state, whereas the interactions with unsaturated fatty acids and their derivatives (arachidonoylglycine) have the opposite effect. Pressure perturbation studies showed that increasing pressure fails to displace the spin equilibrium completely to the low-spin state in the ligand-free P450-SS9 or in the complexes with either myristic acid or arachidonoylglycine. Stabilization of high-spin P450-SS9 signifies a pressure-induced transition to a state with reduced accessibility of the active site. This transition, which is apparently associated with substantial hydration of the protein, is characterized by the reaction volume change (ΔV) around -100 to -200 mL/mol and P(1/2) of 300-800 bar, which is close to the pressure of habitation of P. profundum. The transition to a state with confined water accessibility is hypothesized to represent a common feature of cytochromes P450 that serves to coordinate heme pocket hydration with ligand binding and the redox state. Displacement of the conformational equilibrium toward the "closed" state in P450-SS9 (even ligand-free) may have evolved to allow the protein to adapt to enhanced protein hydration at high hydrostatic pressures.
Collapse
Affiliation(s)
- Elena V. Sineva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0703
| | - Dmitri R. Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0703
| |
Collapse
|
8
|
SINEVA ELENAV, DAVYDOV DMITRIR. Constrained water access to the active site of cytochrome P450 from the piezophilic bacterium Photobacterium profundum. HIGH PRESSURE RESEARCH 2010; 30:466-474. [PMID: 21475616 PMCID: PMC3070315 DOI: 10.1080/08957959.2010.535208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Living species inhabiting ocean deeps must adapt to high hydrostatic pressure. This adaptation, which must enable functioning under conditions of promoted protein hydration, is especially important for proteins such as cytochromes P450 that exhibit functionally important hydration-dehydration dynamics. Here we study the interactions of substrates with cytochrome P450-SS9, a putative fatty acid hydroxylase from the piezophilic bacterium Photobacterium profundum SS9, and characterize the protein's barotropic properties. Comparison of P450-SS9 with cytochrome P450BM-3, a mesophilic fatty acid hydroxylase, suggests that P450-SS9 is characterized by severely confined accessibility and low water occupancy of the active site. This feature may reveal a mechanism of structural adaptation of the piezophilic enzyme. We also demonstrate that saturated and unsaturated fatty acids exert opposite effects on solvent accessibility and hydration of the active site. Modulation of the protein conformation by fatty acids is hypothesized to have an important physiological function in the piezophile.
Collapse
|
9
|
Talakad JC, Wilderman PR, Davydov DR, Kumar S, Halpert JR. Rational engineering of cytochromes P450 2B6 and 2B11 for enhanced stability: Insights into structural importance of residue 334. Arch Biochem Biophys 2009; 494:151-8. [PMID: 19944064 DOI: 10.1016/j.abb.2009.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022]
Abstract
Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques.
Collapse
Affiliation(s)
- Jyothi C Talakad
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0703, USA.
| | | | | | | | | |
Collapse
|
10
|
Isin EM, Guengerich FP. Substrate binding to cytochromes P450. Anal Bioanal Chem 2008; 392:1019-30. [PMID: 18622598 DOI: 10.1007/s00216-008-2244-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023]
Abstract
P450s have attracted tremendous attention owing to not only their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely, the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s, including mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active-site features. Some of the substrate binding studies extending over a period of more than 40 years of dedicated work have been summarized in this review and categorized by the techniques employed in the binding studies.
Collapse
Affiliation(s)
- Emre M Isin
- Biotransformation Section, Department of Discovery DMPK & Bioanalytical Chemistry, AstraZeneca R & D Mölndal, 431 83, Mölndal, Sweden.
| | | |
Collapse
|
11
|
Fourier transform infrared spectroscopy as a tool to study structural properties of cytochromes P450 (CYPs). Anal Bioanal Chem 2008; 392:1031-58. [DOI: 10.1007/s00216-008-2216-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/25/2008] [Accepted: 05/27/2008] [Indexed: 11/25/2022]
|
12
|
Hamdane D, Vasseur-Godbillon C, Baudin-Creuza V, Hoa GHB, Marden MC. Reversible Hexacoordination of α-Hemoglobin-stabilizing Protein (AHSP)/α-Hemoglobin Versus Pressure. J Biol Chem 2007; 282:6398-404. [PMID: 17194704 DOI: 10.1074/jbc.m610543200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using high hydrostatic pressure or hydrogen peroxide as perturbing agents, we demonstrate a protective effect of the chaperone AHSP for the alpha-chains of Hb. High pressure induces an irreversible aggregation of the ferrous deoxy alpha-chains, whereas the AHSP/alpha-Hb complex shows reversible hexacoordination of the alpha-Hb without protein aggregation. Upon pressure release, the relaxation kinetics of the transition from the hexacoordinated to pentacoordinated form of alpha-Hb in the presence of AHSP exhibit a biphasic shape. High pressure did not induce dissociation of alpha-Hb from its chaperone, as evidenced by the ligand binding kinetics that show a unique rate for the AHSP/alpha-Hb complex. For both free alpha-Hb and the AHSP/alpha-Hb complex, the bimolecular rate constant of CO binding (k(CO)(on)) versus pressure exhibits a bell shape, attributed to the transition of the rate-determining step from the chemical barrier to the migration of CO within the protein matrix. These results reveal a plasticity of the alpha-Hb active site in the presence of the chaperone and indicate that the AHSP was still active at 300 MPa. The ferric state of the AHSP/alpha-Hb complex shows hexacoordination even at atmospheric pressures, indicating a His-Fe-His binding scheme as previously observed in neuroglobin and cytoglobin. The reaction with hydrogen peroxide of ferric alpha-Hb within the complex also demonstrates a protection against aggregation.
Collapse
Affiliation(s)
- Djemel Hamdane
- INSERM U779, University of Paris XI, 94275 Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
13
|
Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P. What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta Gen Subj 2007; 1770:376-89. [PMID: 17069978 DOI: 10.1016/j.bbagen.2006.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/04/2006] [Accepted: 09/21/2006] [Indexed: 11/17/2022]
Abstract
Sufficient structural information on mammalian cytochromes P450 has now been published (including seventeen X-ray structures of these enzymes by June 2006) to allow characteristic features of these enzymes to be identified, including: (i) the presence of a common fold, typical of all P450s, (ii) similarities in the positioning of the heme cofactor, (iii) the spatial arrangement of certain structural elements, and (iv) the access/egress paths for substrates and products, (v) probably common orientation in the membrane, (vi) characteristic properties of the active sites with networks of water molecules, (vii) mode of interaction with redox partners and (viii) a certain degree of flexibility of the structure and active site determining the ease with which the enzyme may bind the substrates. As well as facilitating the identification of common features, comparison of the available structures allows differences among the structures to be identified, including variations in: (i) preferred access/egress paths to/from the active site, (ii) the active site volume and (iii) flexible regions. The availability of crystal structures provides opportunities for molecular dynamic simulations, providing data that are apparently complementary to experimental findings but also allow the dynamic behavior of access/egress paths and other dynamic features of the enzymes to be explored.
Collapse
Affiliation(s)
- Michal Otyepka
- Department of Physical Chemistry, Faculty of Sciences, Palacky University, Svobody 26, 771 46 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Schay G, Smeller L, Tsuneshige A, Yonetani T, Fidy J. Allosteric Effectors Influence the Tetramer Stability of Both R- and T-states of Hemoglobin A. J Biol Chem 2006; 281:25972-83. [PMID: 16822864 DOI: 10.1074/jbc.m604216200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contribution of heterotropic effectors to hemoglobin allostery is still not completely understood. With the recently proposed global allostery model, this question acquires crucial significance, because it relates tertiary conformational changes to effector binding in both the R- and T-states. In this context, an important question is how far the induced conformational changes propagate from the binding site(s) of the allosteric effectors. We present a study in which we monitored the interdimeric interface when the effectors such as Cl-, 2,3-diphosphoglycerate, inositol hexaphosphate, and bezafibrate were bound. We studied oxy-Hb and a hybrid form (alphaFeO2)2-(betaZn)2 as the T-state analogue by monitoring heme absorption and Trp intrinsic fluorescence under hydrostatic pressure. We observed a pressure-dependent change in the intrinsic fluorescence, which we attribute to a pressure-induced tetramer to dimer transition with characteristic pressures in the 70-200-megapascal range. The transition is sensitive to the binding of allosteric effectors. We fitted the data with a simple model for the tetramer-dimer transition and determined the dissociation constants at atmospheric pressure. In the R-state, we observed a stabilizing effect by the allosteric effectors, although in the T-analogue a stronger destabilizing effect was seen. The order of efficiency was the same in both states, but with the opposite trend as inositol hexaphosphate > 2,3-diphosphoglycerate > Cl-. We detected intrinsic fluorescence from bound bezafibrate that introduced uncertainty in the comparison with other effectors. The results support the global allostery model by showing that conformational changes propagate from the effector binding site to the interdimeric interfaces in both quaternary states.
Collapse
Affiliation(s)
- Gusztáv Schay
- Department of Biophysics and Radiation Biology and Biophysics Research Group of the Hungarian Academy of Sciences, Faculty of Medicine, Semmelweis University, P. O. Box 263 H 1444 Budapest, Hungary
| | | | | | | | | |
Collapse
|
15
|
Anzenbacherova E, Hudecek J, Murgida D, Hildebrandt P, Marchal S, Lange R, Anzenbacher P. Active sites of two orthologous cytochromes P450 2E1: Differences revealed by spectroscopic methods. Biochem Biophys Res Commun 2005; 338:477-82. [PMID: 16129410 DOI: 10.1016/j.bbrc.2005.08.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Indexed: 11/28/2022]
Abstract
Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry. In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics.
Collapse
Affiliation(s)
- Eva Anzenbacherova
- Institute of Medical Chemistry and Biochemistry, Faculty of Medicine, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
16
|
Franke A, Stochel G, Jung C, Van Eldik R. Substrate binding favors enhanced NO binding to P450cam. J Am Chem Soc 2004; 126:4181-91. [PMID: 15053607 DOI: 10.1021/ja038774d] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferric cytochrome P450cam from Pseudomonas putida (P450cam) in buffer solution at physiological pH 7.4 reversibly binds NO to yield the nitrosyl complex P450cam(NO). The presence of 1R-camphor affects the dynamics of NO binding to P450cam and enhances the association and dissociation rate constants significantly. In the case of the substrate-free form of P450cam, subconformers are evident and the NO binding kinetics are much slower than in the presence of the substrate. The association and dissociation processes were investigated by both laser flash photolysis and stopped-flow techniques at ambient and high pressure. Large and positive values of S and V observed for NO binding to and release from the substrate-free P450cam complex are consistent with the operation of a limiting dissociative ligand substitution mechanism, where the lability of coordinated water dominates the reactivity of the iron(III)-heme center with NO. In contrast, NO binding to P450cam in the presence of camphor displays negative activation entropy and activation volume values that support a mechanism dominated by a bond formation process. Volume profiles for the binding of NO appear to be a valuable approach to explain the differences observed for P450cam in the absence and presence of the substrate and enable the clarification of the underlying reaction mechanisms at a molecular level. Changes in spin state of the iron center during the binding/release of NO contribute significantly to the observed volume effects. The results are discussed in terms of relevance for the biological function of cytochrome P450 and in context to other investigations of the related reactions between NO and imidazole- and thiolate-ligated iron(III) hemoproteins.
Collapse
Affiliation(s)
- Alicja Franke
- Institute for Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
17
|
Jung C, Kozin SA, Canny B, Chervin JC, Hoa GHB. Compressibility and uncoupling of cytochrome P450cam: high pressure FTIR and activity studies. Biochem Biophys Res Commun 2003; 312:197-203. [PMID: 14630042 DOI: 10.1016/j.bbrc.2003.09.164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of the hydrostatic pressure on the CO ligand stretch vibration in cytochrome P450cam-CO bound with various substrates is studied by FTIR. The vibration frequency is linearily shifted to lower values with increasing pressure. The slope of the shift gives the isothermal compressibility of the heme pocket and is found to be related to the high-spin state content in an opposite direction to that previously observed from the pressure-induced shift of the Soret band. This opposite behaviour is explained by the dual effect of heme pocket water molecules both on the CO ligand and on electrostatic potentials produced by the protein at the distal side. The latter effect disturbs ligand-distal side contacts which are needed for a specific proton transfer in oxygen activation when dioxygen is the ligand. Their loss results in uncoupled H(2)O(2) formation.
Collapse
Affiliation(s)
- Christiane Jung
- Max-Delbrück-Center for Molecular Medicine, Protein Dynamics Laboratory, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | |
Collapse
|
18
|
Bancel F, Hoa GHB, Anzenbacher P, Balny C, Lange R. High pressure: a new tool to study P450 structure and function. Methods Enzymol 2003; 357:145-57. [PMID: 12424906 DOI: 10.1016/s0076-6879(02)57674-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Frédéric Bancel
- French National Institute for Health and Medical Research U 128, IFR 24, F-34293 Montpellier, France
| | | | | | | | | |
Collapse
|
19
|
Jung C, Bec N, Lange R. Substrates modulate the rate-determining step for CO binding in cytochrome P450cam (CYP101). A high-pressure stopped-flow study. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2989-96. [PMID: 12071963 DOI: 10.1046/j.1432-1033.2002.02980.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The high-pressure stopped-flow technique is applied to study the CO binding in cytochrome P450cam (P450cam) bound with homologous substrates (1R-camphor, camphane, norcamphor and norbornane) and in the substrate-free protein. The activation volume DeltaV # of the CO on-rate is positive for P450cam bound with substrates that do not contain methyl groups. The kon rate constant for these substrate complexes is in the order of 3 x 10(6) M(-1) x s(-1). In contrast, P450cam complexed with substrates carrying methyl groups show a negative activation volume and a low kon rate constant of approximately 3 x 10(4) M(-1) x s(-1). By relating kon and DeltaV # with values for the compressibility and the influx rate of water for the heme pocket of the substrate complexes it is concluded that the positive activation volume is indicative for a loosely bound substrate that guarantees a high solvent accessibility for the heme pocket and a very compressible active site. In addition, subconformers have been found for the substrate-free and camphane-bound protein which show different CO binding kinetics.
Collapse
Affiliation(s)
- Christiane Jung
- Max-Delbrück-Center for Molecular Medicine, Protein Dynamics Laboratory, Berlin, Germany.
| | | | | |
Collapse
|
20
|
Jung C. Cytochrome P-450-CO and substrates: lessons from ligand binding under high pressure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:309-28. [PMID: 11983405 DOI: 10.1016/s0167-4838(01)00353-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An overview of the application of high-pressure studies on the carbon monoxide complex of cytochrome P-450 is given. Different approaches to characterize ligand binding steps, the conformational states and substates and the compressibility of the ligand-bound complex are reviewed. A particular focus is the effect of substrates on these properties. It is shown that substrate mobility, compressibility and water accessibility are interrelated and may have functional meaning.
Collapse
Affiliation(s)
- Christiane Jung
- Max-Delbrück-Center for Molecular Medicine, Protein Dynamics Laboratory, Berlin, Germany.
| |
Collapse
|
21
|
Anzenbacher P, Hudecek J. Differences in flexibility of active sites of cytochromes P450 probed by resonance Raman and UV-Vis absorption spectroscopy. J Inorg Biochem 2001; 87:209-13. [PMID: 11744058 DOI: 10.1016/s0162-0134(01)00389-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spectroscopic methods reveal differences in flexibility and stability of P450 forms. Among microsomal P450s, the most flexible active site has been found in the CYP3A4 enzyme as it is compressible and the heme vinyl side chains may adopt two different conformations. On the other hand, active site of this enzyme denatures quite easily upon hydrostatic pressure. The most rigid active site able to withstand the effect of high pressure has CYP1A2. The bacterial CYP102 (BM3) flavocytochrome has also a rather stable, but flexible active site. The differences between CYP3A4 and CYP1A2 active sites apparently reflect their ability to bind various substrates: whereas the CYP3A4 binds a vast variety of structures, the CYP1A2 preferentially binds planar, aromatic structures and its substrate specificity is relatively narrow.
Collapse
Affiliation(s)
- P Anzenbacher
- Institute of Pharmacology, Faculty of Medicine, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | | |
Collapse
|
22
|
Tschirret-Guth RA, Koo LS, Hoa GH, Ortiz De Montellano PR. Reversible pressure deformation of a thermophilic cytochrome P450 enzyme (CYP119) and its active-site mutants. J Am Chem Soc 2001; 123:3412-7. [PMID: 11472111 DOI: 10.1021/ja003947+] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pressure stability of the thermophilic CYP119 from Sulfolobus solfataricus and its active-site Thr213 and Thr214 mutants was investigated. At 20 degrees C and pH 6.5, the protein undergoes a reversible P450-to-P420 inactivation with a midpoint at 380 MPa and a reaction volume change of -28 mL/mol. The volume of activation of the process was -9.5 mL/mol. The inactivation transition was retarded, and the absolute reaction volume was decreased by increasing temperature or by mutations that decrease the size of the active-site cavity. High pressure affected the tryptophan fluorescence yield, which decreased by about 37% at 480 MPa. The effect was reversible and suggested considerable contraction of the protein. Aerobic decomposition of iron-aryl complexes of the CYP119 T213A mutant under increasing hydrostatic pressure resulted in variation of the N-arylprotoporphyrin-IX regioisomer (N(B):N(A):N(C):N(D)) adduct pattern from 39:47:07:07 at 0.1 MPa to 23:36:14:27 at 400 MPa. Preincubation of the protein at 400 MPa followed by complex formation and decomposition gave the same regioisomer distribution as untreated protein. The results indicate that the protein is reversibly inactivated by pressure, in contrast to the irreversible inactivation of P450(cam) and other P450 enzymes, and that this inactivation process is modulated by changes in the active-site cavity dimensions.
Collapse
Affiliation(s)
- R A Tschirret-Guth
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, USA
| | | | | | | |
Collapse
|
23
|
Abstract
An overview of the application of Fourier transform infrared spectroscopy for the analysis of the structure of proteins and protein-ligand recognition is given. The principle of the technique and of the spectra analysis is demonstrated. Spectral signal assignments to vibrational modes of the peptide chromophore, amino acid side chains, cofactors and metal ligands are summarized. Several examples for protein-ligand recognition are discussed. A particular focus is heme proteins and, as an example, studies of cytochrome P450 are reviewed. Fourier transform infrared spectroscopy in combination with the various techniques such as time-resolved and low-temperature methods, site-directed mutagenesis and isotope labeling is a helpful approach to studying protein-ligand recognition.
Collapse
Affiliation(s)
- C Jung
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
24
|
Davydov DR, Petushkova NA, Archakov AI, Hoa GH. Stabilization of P450 2B4 by its association with P450 1A2 revealed by high-pressure spectroscopy. Biochem Biophys Res Commun 2000; 276:1005-12. [PMID: 11027582 DOI: 10.1006/bbrc.2000.3596] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effect of intermolecular interactions between cytochromes P450 1A2 (CYP1A2) and 2B4 (CYP2B4) on the barotropic inactivation of the ferrous carbonyl complexes of the hemoproteins. When taken separately, these hemoproteins reveal quite distinct barotropic behavior. While the 2B4(Fe(2+))-CO complex is very sensitive to hydrostatic pressures and undergoes P450 --> P420 transition at rather low pressures (P(1/2) = 297 MPa, DeltaV(0) = -61 ml/mol), the 1A2(Fe(2+))-CO is extremely resistant to barotropic inactivation. Only about 8% of the 1A2 was exposed to pressure-induced P450 --> P420 transition (P(1/2) = 420 MPa, DeltaV(0) = -28 ml/mol). The formation of the mixed oligomers of 2B4 and 1A2 was found to have a dramatic effect on the barotropic behavior of 2B4. In the heterooligomers of 1A2 and 2B4, the 2B4 hemoprotein appears to be largely protected from barotropic inactivation. In 1:1 mixed oligomers no more than 25% of the total P450 content undergoes P450 --> P420 inactivation with the molar reaction volume value (DeltaV(0) = -26 ml/mol) similar to those found for pure 1A2. Moreover, interactions between 1A2 and 2B4 results in a displacement of the Soret band of the ferrous carbonyl complex of CYP2B4 to shorter wavelength (from 451.3 to 448.4 nm) and largely strengthens the dependence of the Soret band wavenumber on hydrostatic pressure below 200 MPa. This effect suggests an important hydration of the CYP2B4 heme moiety in response to the interactions with CYP1A2. We discuss these results in terms of the hypothesis that the heterooligomerization of cytochromes P450 in microsomes plays an important role in the control of the activity and coupling of the microsomal monooxygenase.
Collapse
Affiliation(s)
- D R Davydov
- Institut of Biomedical Chemistry, Russian Academy of Medical Science, 10 Pogodinskaya, Moscow, 119832, Russia
| | | | | | | |
Collapse
|
25
|
Uchida T, Ishimori K, Morishima I. Unusual pressure effects on ligand rebinding to the human myoglobin Leucine 29 mutants. J Biol Chem 2000; 275:30309-16. [PMID: 10906339 DOI: 10.1074/jbc.m910287199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using high pressure flash photolysis, we revealed that the side chain of Leu(29) controls the reaction volume of the ligand migration process in myoglobin, which is the primary factor for the unusual activation volume of ligand binding in some Leu(29) mutants. As we previously reported (Adachi, S., Sunohara, N., Ishimori, K., and Morishima, I. (1992) J. Biol. Chem. 267, 12614-12621), CO bimolecular rebinding in the L29A mutant was unexpectedly decelerated by pressurization, suggesting that the rate-determining step is switched to ligand migration. However, very slow CO bimolecular rebinding of the mutants implies that bond formation is still the rate-determining step. To gain further insights into effects of the side chain on ligand binding, we prepared some new Leu(29) mutants to measure the CO and O(2) rebinding reaction rates under high hydrostatic pressure. CO bimolecular rebinding in the mutants bearing Gly or Ser at position 29 was also decelerated upon pressurization, resulting in apparent positive activation volumes (DeltaV), as observed for O(2) binding. Based on the three-state model, we concluded that the increased space available to ligands in these mutants enhances the volume difference between the geminate and deoxy states (DeltaV(32)), which shifts the apparent activation volume to the positive side, and that the apparent positive activation volume is not due to contribution of the ligand migration process to the rate-determining step.
Collapse
Affiliation(s)
- T Uchida
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
26
|
Anzenbacherová E, Bec N, Anzenbacher P, Hudecek J, Soucek P, Jung C, Munro AW, Lange R. Flexibility and stability of the structure of cytochromes P450 3A4 and BM-3. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2916-20. [PMID: 10806389 DOI: 10.1046/j.1432-1327.2000.01305.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flexibility of the structure and compressibility of the respective active site of cytochromes P450 3A4 (CYP3A4) and BM-3 (CYP102) were studied using absorption spectroscopy in the ultraviolet and visual regions. Conformational changes in the overall protein structures of both CYP3A4 and CYP102 due to the effects of temperature and pressure are reversible. However, the enzymes differ in the properties of their active sites. The CYP3A4 enzyme denatures to the inactive P420 form relatively easy, at 3000 bar over half is converted to P420. The compressibility of its active site is lower than that of CYP102 and is greater with the substrate bound, which is in line with the observed lack of a stabilizing effect of the substrate on its conformation under pressure. In contrast, CYP102, although having the most compressible active site among the P450s, possesses a structure that does not denature easily to the inactive (P420) form under pressure. In this respect, it resembles the P450 isolated from acidothermophilic archaebacteria [McLean, M.A., Maves, S.A., Weiss, K.E., Krepich, S. & Sligar, S.G. (1998) Biochem. Biophys. Res. Commun. 252, 166-172].
Collapse
Affiliation(s)
- E Anzenbacherová
- Institute for Experimental Biopharmacy, Academy of Sciences, PRO.MED. CS, Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Behlke J, Jung C. Dithionite reduced carbon monoxide complex of cytochrome P450cam is a monomer. Biochem Biophys Res Commun 1998; 253:558-60. [PMID: 9918766 DOI: 10.1006/bbrc.1998.9818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sedimentation experiments on cytochrome P450cam (CYP101) has been performed to compare the molecular mass of the protein in the oxidized state and as carbon monoxide complex. The oxidized protein in the absence of beta-mercaptoethanol is a dimer with a molecular mass of 92 kDa. Addition of mercaptoethanol avoids completely the dimerization. Dithionite reduced P450cam in the presence of carbon monoxide has been found to be a monomeric protein.
Collapse
Affiliation(s)
- J Behlke
- Max Delbrück Centrum for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
28
|
Heremans K, Smeller L. Protein structure and dynamics at high pressure. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1386:353-70. [PMID: 9733996 DOI: 10.1016/s0167-4838(98)00102-2] [Citation(s) in RCA: 338] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of pressure on the structure and dynamics of proteins is discussed in the framework of the pressure-temperature stability phase diagram. The elastic (reversible) properties, thermal expansion, compressibility and heat capacity, are correlated with the entropy, volume, and the coupling between entropy and volume fluctuations respectively. The experimental approaches that can be used to measure these quantities are reviewed. The plastic (conformational) changes reflect the changes in these properties in the cold, pressure and heat denaturation.
Collapse
Affiliation(s)
- K Heremans
- Department of Chemistry, Katholieke Universiteit Leuven, Belgium.
| | | |
Collapse
|
29
|
Uchida T, Ishimori K, Morishima I. The effects of heme pocket hydrophobicity on the ligand binding dynamics in myoglobin as studied with leucine 29 mutants. J Biol Chem 1997; 272:30108-14. [PMID: 9374489 DOI: 10.1074/jbc.272.48.30108] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To examine the effects of heme pocket hydrophobicity on the ligand binding in myoglobin, some artificial mutants of human myoglobin have been prepared, in which less hydrophobic amino acid residue (Ala, Gly, Ser) is located at the Leu29 (10th residue of the B helix) position. CO rebinding rates for the mutants were markedly decelerated, while the 1H, and 15N NMR spectra of the mutants show that the structural changes around the heme iron for these mutants are rather small. The kinetic and structural properties of the mutants indicate that the ligand binding rate depends on the hydrophobicity inside the heme cavity for these mutants in addition to the volume of the side chain at the 29-position. On the basis of the IR stretching frequency of liganded CO, invasion of water molecules into the heme pocket in the mutants is suggested, which would be induced by the decrease in the hydrophobicity due to the amino acid substitution. A slight red shift of the position of the Soret peak for the serine mutant L29S also supports the reduced hydrophobicity inside the heme cavity. We can concluded that, together with the kinetic properties of the mutants, the hydrophobicity of the heme pocket is one of the key factors in regulating the ligand binding to the heme iron.
Collapse
Affiliation(s)
- T Uchida
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-01, Japan.
| | | | | |
Collapse
|
30
|
Andersson LA, Johnson AK, Peterson JA. Active site analysis of P450 enzymes: comparative magnetic circular dichroism spectroscopy. Arch Biochem Biophys 1997; 345:79-87. [PMID: 9281314 DOI: 10.1006/abbi.1997.0248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent structural studies indicate that the substrate- and O2-binding distal pocket of the P450 enzymes are not identical. Thus, P450terp (CYP108) from the alpha-terpineol-metabolizing Pseudomonad differs from P450cam (CYP-101) (C. A. Hasemann et al., J. Mol. Biol. 236, 1169, 1994). In contrast, the distal pockets of P450terp and P450BMP (CYP102 heme domain; Bacillus megaterium) are more closely similar, including novel hydrogen-bonding interactions between the distal H2O ligand and the I helix (C. A. Hasemann et al., Structure, 3, 41-62, 1995). To evaluate the significance of these differences, we have compared solution magnetic circular dichroism (MCD) spectra of P450terp with spectra of other P450 enzymes (e.g., P450cam, P450BMP, P450BM-3holo, and P450BM1), as well as with spectra of chloroperoxidase and NO synthase. Spectra of native P450terp are more similar to those of P450BMP and those of mammalian P450LM-2 than to those of P450cam. Upon substrate-binding, the MCD spectra of ferric P450terp and all other thiolate-ligated heme systems examined to date display a strong Soret band that is distinctly unique relative to the typical Soret MCD pattern(s) of catalases or other 5-coordinate ferric heme systems. This intense negative MCD feature thus appears diagnostic for cysteinate-linked ferric hemes. In the case of ferrous P450s, the intensity of the Soret-region MCD trough varies between substrate-bound and substrate-free enzymes (despite the fact that the substrate is NOT in direct contact with the heme moiety). A novel finding of particular interest is the clear spectral shifts of the Soret MCD band between the substrate-bound and substrate-free forms of ferrous-CO-P450terp. No such observation has been made previously. Furthermore, the band positions for BOTH types of P450terp are red-shifted from known bands of ferrous-CO-P50cam. These data thus indicate a surprising sensitivity of MCD spectra to active-site polarity and to H2O occupancy, concurring with reports of distal pocket effects on CO-binding rates and equilibrium constants. Comparative analysis of the spectral properties of P450terp with MCD spectra of other P450 enzymes, as well as with chloroperoxidase and NO synthase, demonstrates both the expected similarities and the significant differences that reflect active-site structural features. The detailed spectral analysis of P450terp relative to other P450 enzymes presented herein includes the first observation of a substrate-induced spectral shift for a ferrous-CO-P450. Furthermore, testable structural predictions for P450-BM-1 and for the novel NO synthase enzyme (neither of which has been crystallized to date) are made herein. This work thus provides insights into structurally defined P450s and may also lead to understanding of other P450 enzymes.
Collapse
Affiliation(s)
- L A Andersson
- Department of Chemistry, Vassar College, Poughkeepsie, New York 12604-0589, USA.
| | | | | |
Collapse
|
31
|
Schulze H, Hoa GH, Jung C. Mobility of norbornane-type substrates and water accessibility in cytochrome P-450cam. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:77-92. [PMID: 9074618 DOI: 10.1016/s0167-4838(96)00192-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The behaviour of norbornane-type substrates bound to oxidised cytochrome P-450cam (CYP 101) in 60% (w/w) glycerol-containing phosphate buffer was investigated using electronic absorption spectroscopy. The high-pressure dependence study revealed that the value of the spin-state reaction-volume change decreased from -70 to -22.8 cm3/mol with decreasing high-spin state content from 99 to 63%. Simultaneously, the values for the enthalpy and entropy determined from the low-temperature dependence of the spin-state transition decreased from 73.7 to 24.3 kJ/mol and from 310.4 to 88.9 J/mol K, respectively. Under our experimental conditions the pH-value of the buffer remained at low temperatures and high pressures in the range of pH 7-8, in which no pH-value-induced spin-state conversion occurred. Therefore, the secondary effect of the temperature and pressure-induced pH change can be disregarded as being responsible for the observed spin-state transition effects. Substrate dissociation constants were determined. From the temperature-jump experiments (297 K to 180 K) we found a higher mobility in the active site for the substrates in the sequence (1R)-camphor, (1S)-camphor, camphane, (1R)- and (1S)-camphorquinone, norcamphor, and norbornane. Our findings can be explained by the incomplete fit of the methyl groups of the norbornane-type substrate to the protein, in particular to the I-helix, predominantly determining the substrate mobility and water accessibility to the protein.
Collapse
Affiliation(s)
- H Schulze
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | |
Collapse
|
32
|
Jung C, Schulze H, Deprez E. Role of the polarity of the heme environment for the CO stretch modes in cytochrome P-450cam-CO. Biochemistry 1996; 35:15088-94. [PMID: 8942676 DOI: 10.1021/bi961507i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The CO stretch mode of various substrate complexes of cytochrome P-450cam-CO was measured using FT infrared spectroscopy. At room temperature most of the complexes show a single, but often asymmetric infrared band. The representative wavenumber of this band for the various complexes increases when the high-spin content, induced by the substrates in the oxidized protein, decreases. Additionally, the increase of the CO stretch wavenumber (1939 to 1956 cm-1) correlates with the decrease of the Soret band wavenumber (22440 to 22373 cm-1). It is suggested that the polarity of the heme pocket is modulated by the substrates due to changed accessibility of the heme environment for water molecules. The increased water content compensates positive electrostatic potentials near the CO ligand, which results in loosening the contact of CO to the I helix.
Collapse
Affiliation(s)
- C Jung
- Max Delbrück Center for Molecular Medicine Berlin-Buch, Berlin, Germany.
| | | | | |
Collapse
|
33
|
Schulze H, Hoa GH, Helms V, Wade RC, Jung C. Structural changes in cytochrome P-450cam effected by the binding of the enantiomers (1R)-camphor and (1S)-camphor. Biochemistry 1996; 35:14127-38. [PMID: 8916898 DOI: 10.1021/bi9527303] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A comparative study of the enantiomeric substrate [(1R)-camphor- and (1S)-camphor)-bound cytochrome P-450cam concerns the spin-state equilibrium, substrate dissociation, the thermal unfolding of the protein structure, and the subconformer equilibria observed in the infrared spectra of the carbon monoxide (CO) complex of cytochrome P-450cam. The behavior of the different conformational equilibria in dependence on temperature, pressure, pH-value, cosolvent, and cation binding led us to suggest that (1S)-camphor is more loosely and less optimally bound in the heme pocket, which facilitates the access of solvent molecules into the heme-iron environment. The spin reaction volume difference measured using the high pressure technique is smaller by 16 +/- 9 cm3/mol for (1S)-camphor-bound P-450cam compared to the (1R)-camphor-bound P-450cam, which might indicate a higher water content in the protein and in the heme environment in the (1S)-camphor complex. The half-transition temperature of the thermal unfolding of 53.8 degrees C for the (1S)-camphor-bound oxidized cytochrome P-450cam is one degree lower than the value for the (1R)-camphor-bound protein (54.8 degrees C). In the reduced, CO-bound form of cytochrome P-450cam at 290 K the (1S)-camphor complex reveals another CO stretch vibration population distribution with slightly higher frequencies [1940.2 cm-1 (major band) and 1946.3 cm-1 (minor band)] compared to the (1R)-camphor complex [1939.7 cm-1 (major band) and 1930 cm-1 (minor band)]. A loosening of the contact between the iron-bound CO ligand and amino acids of the I-helix, probably induced by compensating effects of the increased water content, is suggested. Assuming the carbon monoxide complex as a model for the dioxygen complex, the more loosened binding of (1S)-camphor, therefore the increased water accessibility, and the weaker contact of the iron ligand to the I-helix might explain the higher amount of uncoupling of the cytochrome P-450 reaction cycle compared to that when (1R)-camphor is used as substrate.
Collapse
Affiliation(s)
- H Schulze
- Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, Berlin, Germany
| | | | | | | | | |
Collapse
|