1
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
2
|
Expression Vectors and Gene Fusions for the Directed Modification of the Carotenoid Biosynthesis Pathway in Mucor circinelloides. Methods Mol Biol 2018; 1852:239-256. [PMID: 30109635 DOI: 10.1007/978-1-4939-8742-9_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Several fungal species, particularly some included in the Mucoromycotina, have been used to develop fermentation processes for the production of β-carotene. Oxygenated derivatives of β-carotene (xanthophylls) are desirable value-added products, and the preference by the market of carotenoids from biological sources has increased the research in different carotenoid-producing organisms. We currently use Mucor circinelloides f. lusitanicus as a model organism to develop strains with an increased content of new and more valuable carotenoids. The main carotenoid accumulated by M. circinelloides is β-carotene, although it has some hydroxylase activity and produces low amounts of zeaxanthin. On the other hand, in astaxanthin-producing organisms two enzymatic activities are required for the production of astaxanthin from β-carotene: a hydroxylase and a ketolase. In this chapter, we delineate part of our efforts to construct genetically modified strains that could advance in the improvement of carotenoid accumulation by this fungus and the diversification of its carotenoid content. Accordingly, we describe detailed and empirically tested protocols for the construction of functional expression vectors and gene fusions.
Collapse
|
3
|
Avalos J, Pardo-Medina J, Parra-Rivero O, Ruger-Herreros M, Rodríguez-Ortiz R, Hornero-Méndez D, Limón MC. Carotenoid Biosynthesis in Fusarium. J Fungi (Basel) 2017; 3:E39. [PMID: 29371556 PMCID: PMC5715946 DOI: 10.3390/jof3030039] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023] Open
Abstract
Many fungi of the genus Fusarium stand out for the complexity of their secondary metabolism. Individual species may differ in their metabolic capacities, but they usually share the ability to synthesize carotenoids, a family of hydrophobic terpenoid pigments widely distributed in nature. Early studies on carotenoid biosynthesis in Fusariumaquaeductuum have been recently extended in Fusarium fujikuroi and Fusarium oxysporum, well-known biotechnological and phytopathogenic models, respectively. The major Fusarium carotenoid is neurosporaxanthin, a carboxylic xanthophyll synthesized from geranylgeranyl pyrophosphate through the activity of four enzymes, encoded by the genes carRA, carB, carT and carD. These fungi produce also minor amounts of β-carotene, which may be cleaved by the CarX oxygenase to produce retinal, the rhodopsin's chromophore. The genes needed to produce retinal are organized in a gene cluster with a rhodopsin gene, while other carotenoid genes are not linked. In the investigated Fusarium species, the synthesis of carotenoids is induced by light through the transcriptional induction of the structural genes. In some species, deep-pigmented mutants with up-regulated expression of these genes are affected in the regulatory gene carS. The molecular mechanisms underlying the control by light and by the CarS protein are currently under investigation.
Collapse
Affiliation(s)
- Javier Avalos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Javier Pardo-Medina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Obdulia Parra-Rivero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Macarena Ruger-Herreros
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Roberto Rodríguez-Ortiz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
- Present Address: CONACYT-Instituto de Neurobiología-UNAM, Juriquilla, Querétaro 076230, Mexico.
| | - Dámaso Hornero-Méndez
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | - María Carmen Limón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
4
|
|
5
|
Huang WL, Lee KR, Shiao MS. Inhibition of Trichothecin and Ergosterol Biosynthesis inTrichothecium roseumby Lovastatin. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Rodríguez-Ortiz R, Limón MC, Avalos J. Functional analysis of the carS gene of Fusarium
fujikuroi. Mol Genet Genomics 2013; 288:157-73. [DOI: 10.1007/s00438-013-0739-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/11/2013] [Indexed: 12/27/2022]
|
7
|
Albermann S, Linnemannstöns P, Tudzynski B. Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl Microbiol Biotechnol 2012; 97:2979-95. [PMID: 22983595 DOI: 10.1007/s00253-012-4377-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
The rice pathogen Fusarium fujikuroi is known to produce a wide range of secondary metabolites, such as the pigments bikaverin and fusarubins, the mycotoxins fusarins and fusaric acid, and the phytohormones gibberellic acids (GAs), which are applied as plant growth regulators in agri- and horticulture. The development of high-producing strains is a prerequisite for the efficient biotechnological production of GAs. In this work, we used different molecular approaches for strain improvement to directly affect expression of early isoprenoid genes as well as GA biosynthetic genes. Overexpression of the first GA pathway gene ggs2, encoding geranylgeranyl diphosphate synthase 2, or additional integration of ggs2 and cps/ks, the latter encoding the bifunctional ent-copalyldiphosphate synthase/ent-kaurene synthase, revealed an enhanced production level of 150%. However, overexpression of hmgR and fppS, encoding the key enzymes of the mevalonate pathway, hydroxymethylglutaryl coenzyme A reductase, and farnesyldiphosphate synthase, resulted in a reduced production level probably due to a negative feedback regulation of HmgR. Subsequent deletion of the transmembrane domains of HmgR and overexpression of the remaining catalytic domain led to an increased GA content (250%). Using green fluorescent protein and mCherry fusion constructs, we localized Cps/Ks in the cytosol, Ggs2 in small point-like structures, which are not the peroxisomes, and HmgR at the endoplasmatic reticulum. In summary, it was shown for the first time that amplification or truncation of key enzymes of the isoprenoid and GA pathway results in elevated production levels (2.5-fold). Fluorescence microscopy revealed localization of the key enzymes in different compartments.
Collapse
Affiliation(s)
- Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | | | | |
Collapse
|
8
|
García-Martínez J, Ádám AL, Avalos J. Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PLoS One 2012; 7:e28849. [PMID: 22291883 PMCID: PMC3266886 DOI: 10.1371/journal.pone.0028849] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023] Open
Abstract
The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H2O2), but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group.
Collapse
Affiliation(s)
| | - Attila L. Ádám
- Mycology Group of the Hungarian Academy of Sciences, Agricultural Biotechnology Center, Institute of Plant Protection, Szent István University, Gödöllő, Hungary
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
9
|
Iturriaga EA, Papp T, Alvarez MI, Eslava AP. Gene fusions for the directed modification of the carotenoid biosynthesis pathway in Mucor circinelloides. Methods Mol Biol 2012; 898:109-122. [PMID: 22711120 DOI: 10.1007/978-1-61779-918-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Several fungal species, particularly some included in the Mucorales, have been used to develop fermentation processes for the production of β-carotene. Oxygenated derivatives of β-carotene are more valuable products, and the preference by the market of carotenoids from biological sources has increased the research in different carotenoid-producing organisms. We currently use Mucor circinelloides as a model organism to develop strains able to produce new, more valuable, and with an increased content of carotenoids. In this chapter we describe part of our efforts to construct active gene fusions which could advance in the diversification of carotenoid production by this fungus. The main carotenoid accumulated by M. circinelloides is β-carotene, although it has some hydroxylase activity and produces low amounts of zeaxanthin. Two enzymatic activities are required for the production of astaxanthin from β-carotene: a hydroxylase and a ketolase. We used the ctrW gene of Paracoccus sp. N81106, encoding a bacterial β-carotene ketolase, to construct gene fusions with two fungal genes essential for the modification of the pathway in M. circinelloides. First we fused it to the carRP gene of M. circinelloides, which is responsible for the phytoene synthase and lycopene cyclase activities in this fungus. The expected activity of this fusion gene would be the accumulation by M. circinelloides of canthaxanthin and probably some astaxanthin. A second construction was the fusion of the crtW gene of Paracoccus sp. to the crtS gene of Xanthophyllomyces dendrorhous, responsible for the synthesis of astaxanthin from β-carotene in this fungus, but which was shown to have only hydroxylase activity in M. circinelloides. The expected result in M. circinelloides transformants was the accumulation of astaxanthin. Here we describe a detailed and empirically tested protocol for the construction of these gene fusions.
Collapse
Affiliation(s)
- Enrique A Iturriaga
- Área de Genética, Departamento de Microbiología y Genética, University of Salamanca, Salamanca, Spain.
| | | | | | | |
Collapse
|
10
|
Díaz-Sánchez V, Estrada AF, Trautmann D, Limón MC, Al-Babili S, Avalos J. Analysis of al-2 mutations in Neurospora. PLoS One 2011; 6:e21948. [PMID: 21818281 PMCID: PMC3139582 DOI: 10.1371/journal.pone.0021948] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 06/14/2011] [Indexed: 01/06/2023] Open
Abstract
The orange pigmentation of the fungus Neurospora crassa is due to the accumulation of the xanthophyll neurosporaxanthin and precursor carotenoids. Two key reactions in the synthesis of these pigments, the formation of phytoene from geranylgeranyl pyrophosphate and the introduction of β cycles in desaturated carotenoid products, are catalyzed by two domains of a bifunctional protein, encoded by the gene al-2. We have determined the sequence of nine al-2 mutant alleles and analyzed the carotenoid content in the corresponding strains. One of the mutants is reddish and it is mutated in the cyclase domain of the protein, and the remaining eight mutants are albino and harbor different mutations on the phytoene synthase (PS) domain. Some of the mutations are expected to produce truncated polypeptides. A strain lacking most of the PS domain contained trace amounts of a carotenoid-like pigment, tentatively identified as the squalene desaturation product diapolycopene. In support, trace amounts of this compound were also found in a knock-out mutant for gene al-2, but not in that for gene al-1, coding for the carotene desaturase. The cyclase activity of the AL-2 enzyme from two albino mutants was investigated by heterologous expression in an appropriately engineered E. coli strain. One of the AL-2 enzymes, predictably with only 20% of the PS domain, showed full cyclase activity, suggesting functional independence of both domains. However, the second mutant showed no cyclase activity, indicating that some alterations in the phytoene synthase segment affect the cyclase domain. Expression experiments showed a diminished photoinduction of al-2 transcripts in the al-2 mutants compared to the wild type strain, suggesting a synergic effect between reduced expression and impaired enzymatic activities in the generation of their albino phenotypes.
Collapse
Affiliation(s)
- Violeta Díaz-Sánchez
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Alejandro F. Estrada
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Danika Trautmann
- Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Salim Al-Babili
- Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
11
|
Tsuyuki R, Yoshinari T, Sakamoto N, Nagasawa H, Sakuda S. Enhancement of trichothecene production in Fusarium graminearum by cobalt chloride. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1760-1766. [PMID: 21299216 DOI: 10.1021/jf103969d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effects of cobalt chloride on the production of trichothecene and ergosterol in Fusarium graminearum were examined. Incorporation experiments with (13)C-labeled acetate and leucine confirmed that both 3-acetyldeoxynivalenol and ergosterol were biosynthesized via a mevalonate pathway by the fungus, although hydroxymethyl-glutaryl CoA (HMG-CoA) from intact leucine was able to be partially used for ergosterol production. Addition of cobalt chloride at concentrations of 3-30 μM into liquid culture strongly enhanced 3-acetyldeoxynivalenol production by the fungus, whereas the amount of ergosterol and the mycelial weight of the fungus did not change. The mRNA levels of genes encoding trichothecene biosynthetic proteins (TRI4 and TRI6), ergosterol biosynthetic enzymes (ERG3 and ERG25), and enzymes involved in the mevalonate pathway (HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR)) were all strongly up-regulated in the presence of cobalt chloride. Precocene II, a specific trichothecene production inhibitor, suppressed the effects of cobalt chloride on Tri4, Tri6, HMGS, and HMGR, but did not affect erg3 and erg25. These results indicate that cobalt chloride is useful for investigating regulatory mechanisms of trichothecene and ergosterol production in F. graminearum.
Collapse
Affiliation(s)
- Rie Tsuyuki
- Department of Applied Biological Chemistry, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
12
|
Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J Ind Microbiol Biotechnol 2010; 37:1171-82. [DOI: 10.1007/s10295-010-0764-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
13
|
Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol 2009; 85:1991-2000. [DOI: 10.1007/s00253-009-2282-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
|
14
|
Regulation of carotenogenesis and secondary metabolism by nitrogen in wild-type Fusarium fujikuroi and carotenoid-overproducing mutants. Appl Environ Microbiol 2008; 75:405-13. [PMID: 19047398 DOI: 10.1128/aem.01089-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.
Collapse
|
15
|
|
16
|
Prado-Cabrero A, Estrada AF, Al-Babili S, Avalos J. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol 2007; 64:448-60. [PMID: 17493127 DOI: 10.1111/j.1365-2958.2007.05665.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The synthesis of the acidic apo-carotenoid neurosporaxanthin by the fungus Fusarium fujikuroi depends on four enzyme activities: phytoene synthase and carotene cyclase, encoded by the bifunctional gene carRA, a carotene desaturase, encoded by carB, and a postulated cleaving enzyme converting torulene (C(40)) into neurosporaxanthin (C(35)). Based on sequence homology to carotenoid oxygenases, we identified the novel fungal enzyme CarT. Sequencing of the carT allele in a torulene-accumulating mutant of F. fujikuroi revealed a mutation affecting a highly conserved amino acid, and introduction of a heterologous carT gene in this mutant restored the ability to produce neurosporaxanthin, pointing to CarT as the enzyme responsible for torulene cleavage. Expression of carT in lycopene-accumulating E. coli cells resulted in the formation of minor amounts of apo-carotenoids, but no enzymatic activity was observed in beta-carotene-accumulating cells, indicating a preference for acyclic or monocyclic carotenes. The purified CarT enzyme efficiently cleaved torulene in vitro to produce beta-apo-4'-carotenal, the aldehyde corresponding to the acidic neurosporaxanthin, and was also active on other monocyclic synthetic substrates. In agreement with its role in carotenoid biosynthesis, the carT transcript levels are induced by light and upregulated in carotenoid-overproducing mutants, as already found for other car genes.
Collapse
Affiliation(s)
- Alfonso Prado-Cabrero
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
17
|
Kuzina V, Domenech C, Cerdá-Olmedo E. Relationships among the biosyntheses of ubiquinone, carotene, sterols, and triacylglycerols in Zygomycetes. Arch Microbiol 2006; 186:485-93. [PMID: 17009023 DOI: 10.1007/s00203-006-0166-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/21/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
The Zygomycetes Phycomyces blakesleeanus and Blakeslea trispora are actual or potential sources of beta-carotene, ergosterol, ubiquinone, edible oil, and other compounds. By feeding [14C]acetyl-CoA, L-[14C]leucine, or R-[14C]mevalonate in the presence of excess unlabeled glucose, we found that ubiquinone (the terpenoid moiety), beta-carotene, and triacylglycerols were made from separate pools of all their common intermediates; the pools for ubiquinone and ergosterol were indistinguishable. Fatty acids were not labeled from mevalonate, showing the absence in these fungi of a shunt pathway that would recycle carbon from mevalonate and its products back to central metabolism. The overproduction of carotene in a Phycomyces mutant and in sexually mated cultures of Blakeslea modified the relative use of labeled and unlabeled carbon sources in the production of carotene, but not of the other compounds. We concluded that carotene, ubiquinone, and triacylglycerols are synthesized in separate subcellular compartments, while sterols and ubiquinone are synthesized in the same compartments or in compartments that exchange precursors. Carotene biosynthesis was regulated specifically and not by flow diversion in a branched pathway.
Collapse
Affiliation(s)
- Vera Kuzina
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, 41080, Sevilla, Spain
| | | | | |
Collapse
|
18
|
Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke PA. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 2005; 243:107-15. [PMID: 15668008 DOI: 10.1016/j.femsle.2004.11.050] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 11/26/2004] [Accepted: 11/29/2004] [Indexed: 11/23/2022] Open
Abstract
This paper reports the production of monoterpenes, which elicit a floral aroma in wine, by strains of the yeast Saccharomyces cerevisiae. Terpenes, which are typical components of the essential oils of flowers and fruits, are also present as free and glycosylated conjugates amongst the secondary metabolites of certain wine grape varieties of Vitis vinifera. Hence, when these compounds are present in wine they are considered to originate from grape and not fermentation. However, the biosynthesis of monoterpenes by S. cerevisiae in the absence of grape derived precursors is shown here to be of de novo origin in wine yeast strains. Higher concentration of assimilable nitrogen increased accumulation of linalool and citronellol. Microaerobic compared with anaerobic conditions favored terpene accumulation in the ferment. The amount of linalool produced by some strains of S. cerevisiae could be of sensory importance in wine production. These unexpected results are discussed in relation to the known sterol biosynthetic pathway and to an alternative pathway for terpene biosynthesis not previously described in yeast.
Collapse
Affiliation(s)
- Francisco M Carrau
- Seccion Enologia, Departmento de Ciencia y Tecnologia de Alimentos, Facultad de Quimica, Universidad de la Republica, 11800 Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tudzynski B. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 2004; 66:597-611. [PMID: 15578178 DOI: 10.1007/s00253-004-1805-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/27/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
Gibberellins (GAs) constitute a large family of tetracyclic diterpenoid carboxylic acids, some members of which function as growth hormones in higher plants. As well as being phytohormones, GAs are also present in some fungi and bacteria. In recent years, GA biosynthetic genes from Fusarium fujikuroi and Arabidopsis thaliana have been cloned and well characterised. Although higher plants and the fungus both produce structurally identical GAs, there are important differences indicating that GA biosynthetic pathways have evolved independently in higher plants and fungi. The fact that horizontal gene transfer of GA genes from the plant to the fungus can be excluded, and that GA genes are obviously missing in closely related Fusarium species, raises the question of the origin of fungal GA biosynthetic genes. Besides characterisation of F. fujikuroi GA pathway genes, much progress has been made in the molecular analysis of regulatory mechanisms, especially the nitrogen metabolite repression controlling fungal GA biosynthesis. Basic research in this field has been shown to have an impact on biotechnology. Cloning of genes, construction of knock-out mutants, gene amplification, and regulation studies at the molecular level are powerful tools for improvement of production strains. Besides increased yields of the final product, GA3, it is now possible to produce intermediates of the GA biosynthetic pathway, such as ent-kaurene, ent-kaurenoic acid, and GA14, in high amounts using different knock-out mutants. This review concentrates mainly on the fungal biosynthetic pathway, the genes and enzymes involved, the regulation network, the biotechnological relevance of recent studies, and on evolutionary aspects of GA biosynthetic genes.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Schlossgarten 3, 48149, Münster, Germany.
| |
Collapse
|
20
|
Ginger ML, Chance ML, Sadler IH, Goad LJ. The biosynthetic incorporation of the intact leucine skeleton into sterol by the trypanosomatid Leishmania mexicana. J Biol Chem 2001; 276:11674-82. [PMID: 11148203 DOI: 10.1074/jbc.m006850200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino acid leucine is efficiently used by the trypanosomatid Leishmania mexicana for sterol biosynthesis. The incubation of [2-(13)C]leucine with L. mexicana promastigotes in the presence of ketoconazole gave 14alpha-methylergosta-8,24(24(1))-3beta-ol as the major sterol, which was shown by mass spectrometry to contain up to six atoms of (13)C per molecule. (13)C NMR analysis of the 14alpha-methylergosta-8,24(24(1))-3beta-ol revealed that it was labeled in only six positions: C-2, C-6, C-11, C-12, C-16, and C-23. This established that the leucine skeleton is incorporated intact into the isoprenoid pathway leading to sterol; it is not converted first to acetyl-CoA, as in animals and plants, with utilization of the acetyl-CoA to regenerate 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). An inhibitor of HMG-CoA synthase (L-659,699) blocked the incorporation of [1-(14)C]acetate into sterol but had no inhibitory effect on [U-(14)C]leucine incorporation. The HMG-CoA reductase inhibitor lovastatin inhibited promastigote growth and [U-(14)C]leucine incorporation into sterol. The addition of unlabeled mevalonic acid (MVA) overcame the lovastatin inhibition of growth and also diluted the incorporation of [1-(14)C]leucine into sterol. These results are compatible with two routes by which the leucine skeleton may enter intact into the isoprenoid pathway. The catabolism of leucine could generate HMG-CoA that is then directly reduced to MVA for incorporation into sterol. Alternatively, a compound produced as an intermediate in leucine breakdown to HMG-CoA (e.g. dimethylcrotonyl-CoA) could be directly reduced to produce an isoprene alcohol followed by phosphorylation to enter the isoprenoid pathway post-MVA.
Collapse
Affiliation(s)
- M L Ginger
- School of Biological Sciences, University of Liverpool, Life Sciences Building, Crown St., Liverpool L69 7ZB, United Kingdom
| | | | | | | |
Collapse
|
21
|
Structure and function of the genes involved in the biosynthesis of carotenoids in the mucorales. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Fernández-Martín R, Domenech C, Cerdá-Olmedo E, Avalos J. ent-Kaurene and squalene synthesis in Fusarium fujikuroi cell-free extracts. PHYTOCHEMISTRY 2000; 54:723-728. [PMID: 10975508 DOI: 10.1016/s0031-9422(00)00159-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sterols and gibberellins are the main terpenoids in the Ascomycete Fusarium fujikuroi. Their respective precursors squalene and ent-kaur-16-ene (henceforth called kaurene) were the main terpenoids synthesised from radioactive mevalonate by extracts of F. fujikuroi in vitro. Kaurene predominated when the extracts were obtained from mycelia engaged in gibberellin production. Squalene predominated in all other cases, and particularly when the extracts were obtained from mutants with various defects in gibberellin synthesis or nitrogen-fed wild-type cultures. New protein synthesis was required to maintain the production of gibberellins in vivo and of kaurene in vitro, but not to maintain the capacity to produce squalene in vitro. Addition of a nitrogen source to cultures engaged in gibberellin production caused a large, transient increase in the mycelial concentration of L-glutamine and abolished the accumulation of gibberellins immediately and the capacity to produce kaurene later.
Collapse
|
23
|
Jarvis BB. The Role of Natural Products in Evolution. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0079-9920(00)80002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
24
|
Abstract
Gibberellins, fatty acids and the polyketides bikaverin and fusarin C are synthesized from a common precursor, acetyl-CoA. The production of these compounds in Gibberella fujikuroi was strongly influenced by aeration, determined by the air/medium ratio in shaken batch cultures. Higher aeration resulted in increased growth and the production of bikaverin and gibberellins. Low aeration stimulated fatty acid and fusarin C production. Feeding experiments with labeled leucine or acetate resulted in different proportions of labeled palmitic acid and bikaverin, indicating that these compounds are synthesized from independent acetate pools.
Collapse
Affiliation(s)
- W Giordano
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Argentina
| | | |
Collapse
|
25
|
Giordano W, Avalos J, Fernández-Martín R, Cerdá-Olmedo E, Domenech CE. Lovastatin inhibits the production of gibberellins but not sterol or carotenoid biosynthesis in Gibberella fujikuroi. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2997-3002. [PMID: 10537222 DOI: 10.1099/00221287-145-10-2997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sterols, carotenoids and gibberellins are synthesized after the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate in different subcellular compartments of the fungus Gibberella fujikuroi. Lovastatin inhibits growth in many organisms, presumably because of the inhibition of the synthesis of essential terpenoids. However, in G. fujikuroi growth of the mycelia and sterol and carotenoid content were not affected by the presence of lovastatin. Nevertheless, lovastatin did inhibit the accumulation of gibberellins in the culture medium; this inhibition, however, was counteracted by the addition of mevalonate to the medium. The conversion of HMG-CoA to mevalonate in cell-free extracts was inhibited by 10 nM lovastatin. Since G. fujikuroi apparently possesses a single gene for HMG-CoA reductase, as shown by Southern hybridization and PCR amplification, it was concluded that the biosynthesis of sterols, carotenoids and gibberellins shares a single HMG-CoA reductase, but the respective subcellular compartments are differentially accessible to lovastatin.
Collapse
Affiliation(s)
- W Giordano
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
26
|
Giordano W, Avalos J, Cerdá-Olmedo E, Domenech CE. Nitrogen availability and production of bikaverin and gibberellins inGibberella fujikuroi. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13530.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Avalos J, Fernández-Martín R, Prado MM, Cerdá-Olmedo E. Gibberellin biosynthesis inGibberella. ACTA ACUST UNITED AC 1999. [DOI: 10.1080/12538078.1999.10515801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Tudzynski B, Hölter K. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 1998; 25:157-70. [PMID: 9917370 DOI: 10.1006/fgbi.1998.1095] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differential screening of a Gibberella fujikuroi cDNA library was used to successfully clone and identify genes involved in the pathway of gibberellin biosynthesis. Several cDNA clones that hybridized preferentially to a cDNA probe prepared from mycelium induced for gibberellin production were isolated and characterized. The deduced amino acid sequences of two (identical) clones contained the conserved heme-binding motif of cytochrome P450 monooxygenases (FXXGXXXCXG). One of these cDNA fragments was used as a homologous probe for the screening of a genomic library. A hybridizing 6.7-kb genomic SalI fragment was cloned into pUC19. The sequencing of this clone revealed that a second cytochrome P450 monooxygenase gene was closely linked to the first one. Since at least four cytochrome P450 monooxygenase-catalyzed steps are involved in the synthesis of gibberellins, chromosome walking was performed to find a further gene of this family or other genes involved in gibberellin pathway. Next to the two P450 monooxygenase genes, a putative geranylgeranyl diphosphate synthase gene, the copalyl diphosphate synthase gene, which is the first specific gene of the gibberellin pathway, and a third P450 monooxygenase gene were identified. These results suggest that at least some of the genes involved in the biosynthesis of gibberellins are closely linked in a gene cluster in G. fujikuroi, as has been recently found for other "dispensable" pathways in fungi.
Collapse
Affiliation(s)
- B Tudzynski
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, 48149, Germany
| | | |
Collapse
|
29
|
Disch A, Rohmer M. On the absence of the glyceraldehyde 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol Lett 1998; 168:201-8. [PMID: 9835029 DOI: 10.1111/j.1574-6968.1998.tb13274.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The biosynthesis of isopentenyl diphosphate, the central intermediate of isoprenoid formation, was investigated in the fungus Aschersonia aleyrodis and the yeast Rhodotorula glutinis. The incorporation of 13C-labeled glucose or acetate into their isoprenoids showed that ergosterol in both micro-organisms, ubiquinone in R. glutinis and dihydro-ubiquinone, beta-carotene and triterpenes of the hopane series in A. aleyrodis were synthesized via the mevalonate pathway. No evidence for the presence of the alternative mevalonate-independent glyceraldehyde 3-phosphate/pyruvate pathway was found.
Collapse
Affiliation(s)
- A Disch
- Université Louis Pasteur/CNRS, Institut Le Bel, Strasbourg, France
| | | |
Collapse
|
30
|
|
31
|
Albelo ST, Domenech CE. Carbons from choline present in the phospholipids of Pseudomonas aeruginosa. FEMS Microbiol Lett 1997; 156:271-4. [PMID: 9513276 DOI: 10.1111/j.1574-6968.1997.tb12739.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The phospholipid composition of Pseudomonas aeruginosa grown in a mineral medium with choline as the carbon source was: phosphatidylethanolamine, 71.6 +/- 1.4%; phosphatidylglycerol, 11.8 +/- 0.4%; diphosphatidylglycerol, 0.8 +/- 0.4%; phosphatidic acid, 2.4 +/- 0.6%; lysophosphatidylethanolamine, 1.6 +/- 0.3%; phosphatidylcholine 7.9 +/- 0.3%; lysophosphatidylcholine, 3.9 +/- 0.7%. The molar ratio between the acidic and the neutral phospholipids was 0.18. Radiolabeling experiments with [methyl-14C]choline or [1,2-14C]choline carried out in cell suspension from bacteria that were grown in the presence of choline as the sole carbon source demonstrated that the carbons of the N-methyl groups of choline contributed to the synthesis of fatty acids while the carbons comprising the backbone of choline were used for the synthesis of glycerol.
Collapse
Affiliation(s)
- S T Albelo
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | | |
Collapse
|