1
|
Lázaro Á, Vila-Donat P, Manyes L. Emerging mycotoxins and preventive strategies related to gut microbiota changes: probiotics, prebiotics, and postbiotics - a systematic review. Food Funct 2024; 15:8998-9023. [PMID: 39229841 DOI: 10.1039/d4fo01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Recent research has focused on the involvement of the gut microbiota in various diseases, where probiotics, prebiotics, synbiotics, and postbiotics (PPSP) exert beneficial effects through modulation of the microbiome. This systematic review aims to provide insight into the interplay among emerging mycotoxins, gut microbiota, and PPSP. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In this review, unregulated yet highly recurrent mycotoxins are classified as emerging mycotoxins. The most frequently observed mycotoxins included those from the Fusarium genus-enniatins (n = 11) and beauvericin (n = 11)-and the Alternaria genus-alternariol monomethyl ether, altertoxin, and tentoxin (n = 10). Among probiotics, the most studied genera were Lactobacillus, Bifidobacterium, and the yeast Saccharomyces cerevisiae. Inulin and cellulose were the most found prebiotics. Data on synbiotics and postbiotics are scarce. Studies have shown that both the gut microbiota and PPSP can detoxify and mitigate the harmful effects of emerging mycotoxins. PPSP not only reduced mycotoxin bioaccessibility, but also counteracted their detrimental effects by activating health-promoting pathways such as short-chain fatty acid production, genoprotection, and reduction of oxidative stress. However, both quantitative and qualitative data remain limited, indicating a need for further in vivo and long-term studies. The formulation of PPSP as functional foods, feeds, or nutraceuticals should be considered a preventive strategy against the toxicity of emerging mycotoxins, for which, there is no established regulatory framework.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Pilar Vila-Donat
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Lara Manyes
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| |
Collapse
|
2
|
Louro H, Vettorazzi A, López de Cerain A, Spyropoulou A, Solhaug A, Straumfors A, Behr AC, Mertens B, Žegura B, Fæste CK, Ndiaye D, Spilioti E, Varga E, Dubreil E, Borsos E, Crudo F, Eriksen GS, Snapkow I, Henri J, Sanders J, Machera K, Gaté L, Le Hegarat L, Novak M, Smith NM, Krapf S, Hager S, Fessard V, Kohl Y, Silva MJ, Dirven H, Dietrich J, Marko D. Hazard characterization of Alternaria toxins to identify data gaps and improve risk assessment for human health. Arch Toxicol 2024; 98:425-469. [PMID: 38147116 PMCID: PMC10794282 DOI: 10.1007/s00204-023-03636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.
Collapse
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA) and Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Ariane Vettorazzi
- MITOX Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, UNAV-University of Navarra, Pamplona, Spain
| | - Adela López de Cerain
- MITOX Research Group, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, UNAV-University of Navarra, Pamplona, Spain
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61, Attica, Greece
| | - Anita Solhaug
- Norwegian Veterinary Institute, PO Box 64, 1431, Ås, Norway
| | - Anne Straumfors
- National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne-Cathrin Behr
- Department Food Safety, BfR, German Federal Institute for Risk Assessment, Max-Dohrnstraße 8-10, 10589, Berlin, Germany
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | | | - Dieynaba Ndiaye
- INRS, Institut National de Recherche et de Sécurité pour la Prévention des accidents du travail et des maladies professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre Lès Nancy Cedex, France
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61, Attica, Greece
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Food Hygiene and Technology, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Estelle Dubreil
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Eszter Borsos
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Francesco Crudo
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, 0456, Oslo, Norway
| | - Jérôme Henri
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Julie Sanders
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61, Attica, Greece
| | - Laurent Gaté
- INRS, Institut National de Recherche et de Sécurité pour la Prévention des accidents du travail et des maladies professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre Lès Nancy Cedex, France
| | - Ludovic Le Hegarat
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Nicola M Smith
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, 0456, Oslo, Norway
| | - Solveig Krapf
- National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Sonja Hager
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Valérie Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, 10 B rue Claude Bourgelat, 35306, Fougères, France
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-Von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA) and Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade Nova de Lisboa, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Hubert Dirven
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Lovisenberggate 8, 0456, Oslo, Norway
| | - Jessica Dietrich
- Department Safety in the Food Chain, BfR, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Brice-Tutt AC, Senadheera SN, Ganno ML, Eans SO, Khaliq T, Murray TF, McLaughlin JP, Aldrich JV. Phenylalanine Stereoisomers of CJ-15,208 and [d-Trp]CJ-15,208 Exhibit Distinctly Different Opioid Activity Profiles. Molecules 2020; 25:molecules25173999. [PMID: 32887303 PMCID: PMC7504817 DOI: 10.3390/molecules25173999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The macrocyclic tetrapeptide cyclo[Phe-d-Pro-Phe-Trp] (CJ-15,208) and its stereoisomer cyclo[Phe-d-Pro-Phe-d-Trp] exhibit different opioid activity profiles in vivo. The present study evaluated the influence of the Phe residues’ stereochemistry on the peptides’ opioid activity. Five stereoisomers were synthesized by a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance development, and place conditioning were also assessed in vivo. All of the stereoisomers exhibited antinociception following either intracerebroventricular or oral administration differentially mediated by multiple opioid receptors, with kappa opioid receptor (KOR) activity contributing for all of the peptides. However, unlike the parent peptides, KOR antagonism was exhibited by only one stereoisomer, while another isomer produced DOR antagonism. The stereoisomers of CJ-15,208 lacked significant respiratory effects, while the [d-Trp]CJ-15,208 stereoisomers did not elicit antinociceptive tolerance. Two isomers, cyclo[d-Phe-d-Pro-d-Phe-Trp] (3) and cyclo[Phe-d-Pro-d-Phe-d-Trp] (5), did not elicit either preference or aversion in a conditioned place preference assay. Collectively, these stereoisomers represent new lead compounds for further investigation in the development of safer opioid analgesics.
Collapse
Affiliation(s)
- Ariana C. Brice-Tutt
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
| | | | - Michelle L. Ganno
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA;
| | - Shainnel O. Eans
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
| | - Tanvir Khaliq
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA;
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
- Correspondence: (J.P.M.); (J.V.A.); Tel.: +1-352-273-7207 (J.P.M.); +1-352-273-8708 (J.V.A.)
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA;
- Correspondence: (J.P.M.); (J.V.A.); Tel.: +1-352-273-7207 (J.P.M.); +1-352-273-8708 (J.V.A.)
| |
Collapse
|
4
|
Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, Fenclova M, Stranska-Zachariasova M, Vitek L, Hajslova J, Ruml T. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins (Basel) 2020; 12:E148. [PMID: 32121188 PMCID: PMC7150870 DOI: 10.3390/toxins12030148] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Augustynkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Simona Dobiasova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Libor Vitek
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic;
- Faculty General Hospital, U Nemocnice 2, 12808 Praha 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| |
Collapse
|
5
|
Puntscher H, Cobankovic I, Marko D, Warth B. Quantitation of free and modified Alternaria mycotoxins in European food products by LC-MS/MS. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Hessel-Pras S, Kieshauer J, Roenn G, Luckert C, Braeuning A, Lampen A. In vitro characterization of hepatic toxicity of Alternaria toxins. Mycotoxin Res 2018; 35:157-168. [PMID: 30552586 DOI: 10.1007/s12550-018-0339-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Alternaria mycotoxins are secondary fungal metabolites which can contaminate food and feed. They are produced by Alternaria species with alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), and tentoxin (TEN) as the main representatives for Alternaria mycotoxins in food. Once passing the intestinal barrier, Alternaria toxins can reach the liver to exert yet uncharacterized molecular effects. Therefore, hepatic in vitro systems were used to examine selected Alternaria mycotoxins for their induction of metabolism-dependent cytotoxicity, phosphorylation of the histone H2AX as a surrogate marker for DNA double-strand breaks, and relevant marker genes for hepatotoxicity. Analysis of cell viability as well as the induction of H2AX phosphorylation in the hepatocarcinoma cell line HepG2 revealed a detoxification of 100 μmol/l AME and AOH by pre-treatment with S9 liver homogenate as shown by a decrease in cytotoxicity and H2AX histone phosphorylation to levels observed in control cells. Concentrations up to 100 μmol/l TeA and TEN did not induce H2AX phosphorylation whether metabolized or not. In the metabolically competent human hepatoma cell line HepaRG, no cytotoxicity of Alternaria toxins occurred even at high concentrations up to 100 μmol/l, which indicates a low cytotoxic potential. Induction of gene expression associated with liver toxicity was analyzed by quantitative real-time PCR using a specific hepatotoxicity PCR array in HepaRG cells: here, an evidence was found that 50 μmol/l of AOH, AME, TeA, and TEN might be associated with hepatotoxic effects, necrosis, and the development of diseases like cholestasis and phospholipidosis.
Collapse
Affiliation(s)
- Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Janine Kieshauer
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Giana Roenn
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Claudia Luckert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
7
|
Aldrich JV, Senadheera SN, Ross NC, Reilley KA, Ganno ML, Eans SE, Murray TF, McLaughlin JP. Alanine analogues of [D-Trp]CJ-15,208: novel opioid activity profiles and prevention of drug- and stress-induced reinstatement of cocaine-seeking behaviour. Br J Pharmacol 2015; 171:3212-22. [PMID: 24588614 DOI: 10.1111/bph.12664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/30/2014] [Accepted: 02/24/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The novel macrocyclic peptide cyclo[Phe-D-Pro-Phe-D-Trp] ([D-Trp]CJ-15,208) exhibits κ opioid (KOP) receptor antagonist activity in both in vitro and in vivo assays. The four alanine analogues of this peptide were synthesized and characterized both in vitro and in vivo to assess the contribution of different amino acid residues to the activity of [D-Trp]CJ-15,208. EXPERIMENTAL APPROACH The peptides were synthesized by a combination of solid phase peptide synthesis and cyclization in solution. The analogues were evaluated in vitro in receptor binding and functional assays, and in vivo with mice using a tail-withdrawal assay for antinociceptive and opioid antagonist activity. Mice demonstrating extinction of cocaine conditioned-place preference (CPP) were pretreated with selected analogues to evaluate prevention of stress or cocaine-induced reinstatement of CPP. KEY RESULTS The alanine analogues displayed pharmacological profiles in vivo distinctly different from [D-Trp]CJ-15,208. While the analogues exhibited varying opioid receptor affinities and κ and μ opioid receptor antagonist activity in vitro, they produced potent opioid receptor-mediated antinociception (ED50 = 0.28-4.19 nmol, i.c.v.) in vivo. Three of the analogues also displayed KOP receptor antagonist activity in vivo. Pretreatment with an analogue exhibiting both KOP receptor agonist and antagonist activity in vivo prevented both cocaine- and stress-induced reinstatement of cocaine-seeking behaviour in the CPP assay in a time-dependent manner. CONCLUSIONS AND IMPLICATIONS These unusual macrocyclic peptides exhibit in vivo opioid activity profiles different from the parent compound and represent novel compounds for potential development as therapeutics for drug abuse and possibly as analgesics.
Collapse
Affiliation(s)
- J V Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Eans SO, Ganno ML, Reilley KJ, Patkar KA, Senadheera SN, Aldrich JV, McLaughlin JP. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration. Br J Pharmacol 2014; 169:426-36. [PMID: 23425081 DOI: 10.1111/bph.12132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/18/2013] [Accepted: 01/30/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration. We hypothesized that the macrocyclic κ opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration. EXPERIMENTAL APPROACH C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488 and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with [D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim stress or a single additional session of cocaine place conditioning before redetermining place preference. KEY RESULTS Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively. [D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR antagonist activity, without affecting locomotor activity. CONCLUSIONS AND IMPLICATIONS The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is active after oral administration and demonstrates blood-brain barrier permeability. These data validate the use of systemically active peptides such as [D-Trp]CJ-15,208 as potentially useful therapeutics.
Collapse
Affiliation(s)
- Shainnel O Eans
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control 2013. [DOI: 10.1016/j.foodcont.2012.10.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu Y, Rychlik M. Development of a stable isotope dilution LC-MS/MS method for the Alternaria toxins tentoxin, dihydrotentoxin, and isotentoxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2970-2978. [PMID: 23432357 DOI: 10.1021/jf305111w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For the Alternaria toxins tentoxin, dihydrotentoxin, and isotentoxin, a stable isotope dilution LC-MS/MS method was first developed. Triply deuterated internal standards were prepared via total synthesis and introducing the labels in the last step before cyclization. Method validation was carried out by using potato starch, tomato puree, and white pepper powder as blank matrices. For the three toxins the limits of detection ranged from 0.10 to 0.99 μg/kg. The inter-/intraday relative standard deviations of the method were below 8.8%, and the recoveries ranged between 98 and 115%. Although cyclic peptides are known to show only negligible fragmentation, a low limit of detection was achieved with the optimization of mass spectrometry parameters and cleanup on C18-phenyl SPE columns providing a more selective binding of these phenyl-containing cyclic peptides. The method was applied to 103 food samples including bread, cereals, chips, juice, nuts, oil, sauce, seeds, and spices. Of these, 85% were contaminated with tentoxin and 55% were contaminated with dihydrotentoxin, whereas isotentoxin was not quantifiable. Maximal concentrations of tentoxin and dihydrotentoxin were 52.4 and 36.3 μg/kg, respectively, and were both detected in paprika powder.
Collapse
Affiliation(s)
- Yang Liu
- ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Alte Akademie 10, D-85354 Freising, Germany
| | | |
Collapse
|
11
|
Aldrich JV, Senadheera SN, Ross NC, Ganno ML, Eans SO, McLaughlin JP. The macrocyclic peptide natural product CJ-15,208 is orally active and prevents reinstatement of extinguished cocaine-seeking behavior. JOURNAL OF NATURAL PRODUCTS 2013; 76:433-438. [PMID: 23327691 PMCID: PMC3879116 DOI: 10.1021/np300697k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine-seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug-seeking behavior in abstinent subjects.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Ross NC, Reilley KJ, Murray TF, Aldrich JV, McLaughlin JP. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism. Br J Pharmacol 2012; 165:1097-108. [PMID: 21671905 DOI: 10.1111/j.1476-5381.2011.01544.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. EXPERIMENTAL APPROACH Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). KEY RESULTS The two isomers showed similar affinity and selectivity for κ receptors (K(i) 30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. CONCLUSIONS AND IMPLICATIONS The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse.
Collapse
Affiliation(s)
- Nicolette C Ross
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL 34987, USA
| | | | | | | | | |
Collapse
|
13
|
Scientific Opinion on the risks for animal and public health related to the presence ofAlternariatoxins in feed and food. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2407] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Lehner S, Neumann N, Sulyok M, Lemmens M, Krska R, Schuhmacher R. Evaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1457-68. [DOI: 10.1080/19440049.2011.599340] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Perrin L, Loiseau N, André F, Delaforge M. Metabolism of N-methyl-amide by cytochrome P450s. FEBS J 2011; 278:2167-78. [DOI: 10.1111/j.1742-4658.2011.08133.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Sulyok M, Krska R, Schuhmacher R. A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal Bioanal Chem 2007; 389:1505-23. [PMID: 17874237 DOI: 10.1007/s00216-007-1542-2] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/24/2007] [Accepted: 08/01/2007] [Indexed: 11/25/2022]
Abstract
This paper describes the extension of a previously published method based on liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS) from 39 to currently 87 analytes. Besides the mycotoxins for which regulated concentrations exist, the method now comprises not only almost all mycotoxins for which standards are commercially available, but also a number of other important metabolites produced by fungi involved in food spoilage. The method is based on a single extraction step using an acidified acetonitrile/water mixture followed by analysis of the diluted crude extract. Method performance characteristics were determined after spiking breadcrumbs as model matrix at multiple concentration levels. With very few exceptions, coefficients of variation of the whole procedure of <5% and repeatabilities at the highest spiking level of <7% were obtained. Limits of detection ranged between 0.02 and 225 microg kg(-1). The quantitative determination of ergopeptides was disturbed by epimerization due to the acidic conditions. From the remaining 77 analytes, the apparent recoveries of nine substances deviated significantly from the CEN target range of 70-110% due to incomplete extraction and/or matrix effects. In principle, the latter can be compensated for by the application of matrix-matched calibration. The developed method was applied to 18 moldy samples (including bread, fruits, vegetables, jam, cheese, chestnuts and red wine) from private households. This study revealed the great value of the described method: 37 different fungal metabolites were identified at concentrations of up to 33 mg kg(-1), and some of these have never been reported before in the context of moldy food products.
Collapse
Affiliation(s)
- Michael Sulyok
- Christian Doppler Laboratory for Mycotoxin Research, Department IFA-Tulln, University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenzstr. 20, 3430 Tulln, Austria
| | | | | |
Collapse
|
17
|
Loiseau N, Gomis JM, Santolini J, Delaforge M, André F. Predicting the conformational states of cyclic tetrapeptides. Biopolymers 2003; 69:363-85. [PMID: 12833263 DOI: 10.1002/bip.10339] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biologically active cyclic tetrapeptides, usually found among fungi metabolites, exhibit phytotoxic or cytostatic activities that are likely to be governed by specific conformations adopted in solution. For conformational studies and drug design, there is a strong interest in using fast and reliable methods to determine correctly the conformational population of cyclotetrapeptides. We show here that standard molecular mechanics computational approach gives satisfactory results. The method was validated step by step by experimental data either obtained after synthesis and NMR analysis, or found in the literature. The cyclo(Gly)(4), cyclo(Ala)(4), cyclo(Sar)(4), and cyclo(SarGly)(2) peptides were used to evaluate the prediction of the peptide backbone conformation, and the detailed conformational analysis of tentoxin, a natural phytotoxic cyclotetrapeptide in which N-alkylated peptide bonds alternate with regular secondary ones, was used to validate the computation of conformers proportions. From the knowledge of an initial cyclic primary structure and of the D or L configuration of the amino acids, we show that it is possible to determine the exact orientation of carbonyl groups and to predict the nature of conformers present in solution. The proportion of each conformer can be inferred from a statistical thermodynamics approach by using the potential energy values of each conformer, computed by molecular mechanics methods with the TRIPOS force field, which allowed us to account for the solvent. The solvent contribution was processed by two different methods according to the nature of the interactions: whether through the dielectric constant introduced in the electrostatic potential, when interaction with solute molecules are weak or negligible, or through the computation of free energy of solvation using the algorithm SILVERWARE for solvents explicitly interacting with the solute. When applied to tentoxin, this conformational analysis yielded results in very good agreement with the experimental data reported by Pinet et al. (Biopolymers, 1995, Vol. 36, pp. 135-152), on both the nature of existing conformers and their relative proportions, whatever the nature of the considered solvent.
Collapse
Affiliation(s)
- Nicolas Loiseau
- CNRS-URA 2096, Protéines Membranaires Transductrices d'Energie, DBJC, et Département de Biologie, Joliet-Curie, CEA-Saclay, 91191 Gif-sur-Yvette cedex, France
| | | | | | | | | |
Collapse
|
18
|
Loiseau N, Delaforge M, Minoletti C, André F, Garrigues A, Orlowski S, Gomis JM. Structure-activity relationships of cyclotetrapeptides: interaction of tentoxin derivatives with three membrane proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:343-6. [PMID: 11764966 DOI: 10.1007/978-1-4615-0667-6_55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- N Loiseau
- Département de Recherche Médicale, Direction des Sciences du Vivant, CEA-Saclay, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Loiseau N, Cavelier F, Noel JP, Gomis JM. High yield synthesis of tentoxin, a cyclic tetrapeptide. J Pept Sci 2002; 8:335-46. [PMID: 12148783 DOI: 10.1002/psc.393] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tentoxin is a naturally occurring phytotoxic cyclic tetrapeptide excreted by fungi of the Alternaria alternata family. The four total syntheses of tentoxin published to date give poor total yields, mainly owing to two difficulties, the introduction of the dehydro amino acid and more especially the cyclization step. Here we describe a method that stereospecifically introduces Z-dehydrophenylalanine (deltaZPhe) by a modified Erlenmeyer aldolization reaction. The linear tetrapeptide, Boc-R1Ala-Leu-R2deltaZPhe-G1y-OMe (R1, R2: CH3, 14CH3), the precursor of tentoxin, was obtained in a 72% yield from Boc-Leu-Gly-OH. This linear tetrapeptide, labelled with carbon-14, was used for a comparative study of four cyclization reagents DPPA, DCC-PfpOH, HBTU and HATU. This last was the most effective and gave tentoxin in a 81% cyclization yield. The activated ester formed with this reagent displayed an enhanced capacity for cyclization, permitting cyclization in concentrated medium (10 mM). This new synthetic route gave tentoxin in a 60% yield from Boc-Leu-Gly-OH and offers a means of achieving the synthesis of hitherto elusive analogues.
Collapse
Affiliation(s)
- Nicolas Loiseau
- Département de Recherche Médicale, Service de Pharmacologie et d'Immunologie, CEA-Saclay, Gif sur Yvette, France
| | | | | | | |
Collapse
|
20
|
Abstract
This chapter is an update of the data on substrates, reactions, inducers, and inhibitors of human CYP enzymes published previously by Rendic and DiCarlo (1), now covering selection of the literature through 2001 in the reference section. The data are presented in a tabular form (Table 1) to provide a framework for predicting and interpreting the new P450 metabolic data. The data are formatted in an Excel format as most suitable for off-line searching and management of the Web-database. The data are presented as stated by the author(s) and in the case when several references are cited the data are presented according to the latest published information. The searchable database is available either as an Excel file (for information contact the author), or as a Web-searchable database (Human P450 Metabolism Database, www.gentest.com) enabling the readers easy and quick approach to the latest updates on human CYP metabolic reactions.
Collapse
Affiliation(s)
- Slobodan Rendic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.
| |
Collapse
|
21
|
Aninat C, Hayashi Y, André F, Delaforge M. Molecular requirements for inhibition of cytochrome p450 activities by roquefortine. Chem Res Toxicol 2001; 14:1259-65. [PMID: 11559041 DOI: 10.1021/tx015512l] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Roquefortine, a cyclopeptide derived from the diketopiperazine cyclo(Trp-dehydroHis), is a secondary metabolite produced by several Penicillium species. It has been reported to cause neurotoxic effect and to inhibit Gram-positive bacteria growth. The mechanisms responsible for its toxicity and metabolism are still unknown. In this study, we investigated the interaction of roquefortine with mammalian cytochromes P450. Roquefortine interaction with rat and human liver cytochromes P450 was monitored by difference UV-vis spectroscopy. It was found to interact with different forms of the cytochromes, giving rise to a type II difference spectrum, characteristic of the binding of an amino function to the heme iron. Roquefortine exhibited high affinity for microsomes from rats treated with various inducers, the K(s) values being in the range 0.2-8 microM. Similar results were observed with human P450 enzymes 1A1, 1A2, 2D6, and 3A4. Roquefortine had no effect on NAPDH cytochrome c reductase. Therefore, inhibition of NADPH consumption was observed using various rat liver microsomes alone or in the presence of 100 microM testosterone in the case of dexamethasone (DEX)-rat microsomes. Enzymatic inhibition was studied in terms of P450 3A activities, i.e., testosterone 6beta-hydroxylase (IC(50) around 10 microM) or bromocriptine metabolism (IC(50) > 50 microM) using DEX-rat liver microsomes or P450 3A4, benzphetamine N-demethylase using phenobarbital-rat liver microsomes (IC(50) > 30 microM), and ethoxyresorufin metabolism using 3-methylcholanthrene-rat liver microsomes (IC(50) 0.1 microM), P450 1A1, and 1A2. Roquefortine was compared with compounds of similar structure: cyclo(Phe-His), cyclo(Phe-dehydroHis), cyclo(Trp-His), phenylahistin. These studies indicate that the =N- imidazole moiety coordinates with the heme iron, and suggest that the dehydroHis moiety and the presence of a fused tetracycle play an important part in roquefortine inhibitory power.
Collapse
Affiliation(s)
- C Aninat
- CEA-Saclay, Laboratoire d'Etudes du Métabolisme des Médicaments, Service de Pharmacologie et d'Immunologie, Bât. 136, F-91191 Gif-sur-Yvette cedex, France
| | | | | | | |
Collapse
|
22
|
Delaforge M, Bouillé G, Jaouen M, Jankowski CK, Lamouroux C, Bensoussan C. Recognition and oxidative metabolism of cyclodipeptides by hepatic cytochrome P450. Peptides 2001; 22:557-65. [PMID: 11311724 DOI: 10.1016/s0196-9781(01)00364-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Possible recognition of peptide derivatives by hepatic cytochrome P450 3A has been suggested by binding and metabolism of numerous pseudopeptidic compounds such as ergot derivatives and cyclosporin. Natural linear or cyclic dipeptides containing hydrophobic amino acids produced by microorganisms and present in mammals are able to interact with the P450 active site through either iron-amine interactions (Type II) or hydrophobic Type I interactions. P450 3A from dexamethasone-treated rats or yeast-expressed P450 human 3A4 are the most potent in such interactions, which are particularly strong with peptides containing a histidyl residue. Some cyclodipeptides are rapidly transformed by rat cytochrome P450 3A to mono- or dihydroxylated metabolites, with turnovers around 3 nmoles min(-1) P450(-1). Linear peptides are poorly transformed in these conditions. This metabolism of cyclodipeptides occurs in 8 species including man. Such interactions and metabolism have only minor consequences in terms of P450 3A binding and metabolism of classical P450 3A substrates. These data reinforce the concept that, in addition to their effect on the regulation of P450 neosynthesis, naturally occurring endogenous peptides are also substrates of P450 3A. The physiological activities of these peptides may be modulated by their metabolism.
Collapse
Affiliation(s)
- M Delaforge
- C.E.A. Saclay, DSV/DRM/SPI, 91191, Gif sur Yvette Cedex, France.
| | | | | | | | | | | |
Collapse
|