1
|
Liu SI, Haung JY, Barve IJ, Huang SC, Sun CM. Enantioselective Synthesis of Hydantoin and Diketopiperazine-Fused Tetrahydroisoquinolines via Pictet-Spengler Reaction. ACS COMBINATORIAL SCIENCE 2019; 21:336-344. [PMID: 30839194 DOI: 10.1021/acscombsci.9b00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantioselective synthesis of iso-, isothio-, and isoselenohydantoin and diketopiperazine-fused tetrahydroisoquinolines from l-Dopa was reported. The route consists of an Pictet-Spengler reaction of ( S)-2-amino-3-(3,4-dimethoxyphenyl)propanoates with various aldehydes to afford diastereomeric tetrahydroisoquinolines. Next step, the tetrahydroisoquinolines were further reacted with iso-, isothio-, or isoselenocyanates to construct hydantoin. Similarly, the diketopiperazine moiety was constructed by subjecting tetrahydroisoquinolines to a condensation reaction with chloroacetyl chloride followed by nucleophilic addition with various primary amines.
Collapse
Affiliation(s)
- Shih-I Liu
- Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Jia-Yun Haung
- Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Indrajeet J. Barve
- Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 300, Taiwan
- Department of Chemistry, MES Abasaheb Garware College, Pune, Maharashtra 411004, India
| | - Sheng-Cih Huang
- Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 300, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807-08, Taiwan
| |
Collapse
|
2
|
Pastore A, Temussi P. When "IUPs" were "BAPs": How to study the nonconformation of intrinsically unfolded polyaminoacid chains. Biopolymers 2016; 100:592-600. [PMID: 23896858 DOI: 10.1002/bip.22363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/12/2013] [Indexed: 01/21/2023]
Abstract
Ideas often recur. It has been pointed out recently that proteins are not always the well-structured entities we have become accustomed to from crystallographic studies, but may be intrinsically unstructured or contain unstructured regions. This feature, far from making these proteins less interesting, is an essential requirement for their function. Fascinating though it may be, the concept of so-called intrinsically unfolded (or unordered) proteins (IUPs), also often referred to as intrinsically disordered proteins (IDPs), is not new: it directly links back to the 1970s when the attention of many structural biologists was focused on biologically active peptides, which like IUPs lack a specific defined conformation. The recurrent nature of this concept may now be of topical interest since it suggests the transfer, upon suitable adaptation, of old tools to develop new ideas. Here, we review some of the approaches that were developed for the study of peptides and discuss how they could inspire powerful new methodologies for the study of IUPs.
Collapse
Affiliation(s)
- Annalisa Pastore
- National Institute for Medical Research, The Ridgeway, London, NW7 1AA, United Kingdom
| | | |
Collapse
|
3
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 643] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
|
5
|
Bryant SD, Jinsmaa Y, Salvadori S, Okada Y, Lazarus LH. Dmt and opioid peptides: a potent alliance. Biopolymers 2004; 71:86-102. [PMID: 12767112 DOI: 10.1002/bip.10399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance.
Collapse
Affiliation(s)
- Sharon D Bryant
- Peptide Neurochemistry, LCBRA, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
6
|
Bryant SD, George C, Flippen-Anderson JL, Deschamps JR, Salvadori S, Balboni G, Guerrini R, Lazarus LH. Crystal structures of dipeptides containing the Dmt-Tic pharmacophore. J Med Chem 2002; 45:5506-13. [PMID: 12459018 DOI: 10.1021/jm020330p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crystal structures of three analogues of the potent delta-opioid receptor antagonist H-Dmt-Tic-OH (2',6'-dimethyl-L-tyrosine-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylate), N,N (CH(3))(2)-Dmt-Tic-OH (1), H-Dmt-Tic-NH-1-adamantane (2), and N,N(CH(3))(2)-Dmt-Tic-NH-1-adamantane (3) were determined by X-ray single-crystal analysis. Crystals of 1 were grown by slow evaporation, while those of 2 and 3 were grown by vapor diffusion. Compounds 1 and 3 crystallized in the monoclinic space group P2(1), and 2 crystallized in the tetragonal space group P4(3). Common backbone atom superimpositions of structures derived from X-ray diffraction studies resulted in root-mean-square (rms) deviations of 0.2-0.5 A, while all-atom superimpositions gave higher rms deviations from 0.8 to 1.2 A. Intramolecular distances between the aromatic ring centers of Dmt and Tic were 5.1 A in 1, 6.3 A in 2, and 6.5 A in 3. The orientation of the C-terminal substituent 1-adamantane in 2 and 3 was affected by differences in the psi torsion angles and strong hydrogen bonds with adjacent molecules. Despite the high delta-opioid receptor affinity exhibited by each analogue (K(i) < 0.3 nM), high mu receptor affinity (K(i) < 1 nM) was manifested only with the bulky C-terminal 1-adamantane analogues 2 and 3. Furthermore, the bioactivity of both 2 and 3 exhibited mu-agonism, while 3 also had potent delta-antagonist activity. Those data demonstrated that a C-terminal hydrophobic group was an important determinant for eliciting mu-agonism, whereas N-methylation maintained delta-antagonism. Furthermore, the structural results support the hypothesis that expanded dimensions between aromatic nuclei is important for acquiring mu-agonism.
Collapse
Affiliation(s)
- Sharon D Bryant
- Peptide Neurochemistry, LCBRA, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop C3-04, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Balboni G, Guerrini R, Salvadori S, Bianchi C, Rizzi D, Bryant SD, Lazarus LH. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. J Med Chem 2002; 45:713-20. [PMID: 11806723 DOI: 10.1021/jm010449i] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I09126 Cagliary, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Santagada V, Caliendo G, Severino B, Perissutti E, Ceccarelli F, Giusti L, Mazzoni MR, Salvadori S, Temussi PA. Probing the shape of a hydrophobic pocket in the active site of delta-opioid antagonists. J Pept Sci 2001; 7:374-85. [PMID: 11495498 DOI: 10.1002/psc.331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The change of selectivity and the induction of antagonism by the insertion of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the second position of several opioid peptides have led to the interpretation of Tyr-Tic as a specific message domain for delta-opioid antagonists and to the discovery of dipeptides with substantial opioid activity. Selectivity and activity increase enormously when Tyr is substituted by 2',6'-dimethyl tyrosine (Dmt), hinting that the side chain of Dmt fits a hydrophobic cavity of the receptor very tightly and precisely. We have investigated the specificity of this fit by systematic changes of the substituents on the aromatic ring of ryr. Mono- and disubstitutions different from 2',6'- invariably lead to catastrophic decreases of activity. The only substitution compatible with retention of substantial antagonism is 2-methyl. An analysis of the conformational properties of all analogues reveals that substitutions do not affect the global shape of the molecule significantly. Accordingly, it is possible to use the shape of the different side chains to map the hydrophobic cavity of the receptor. The resulting complementary image is funnel shaped.
Collapse
Affiliation(s)
- V Santagada
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Balboni G, Salvadori S, Guerrini R, Bianchi C, Santagada V, Calliendo G, Bryant SD, Lazarus LH. Opioid pseudopeptides containing heteroaromatic or heteroaliphatic nuclei. Peptides 2000; 21:1663-71. [PMID: 11090920 DOI: 10.1016/s0196-9781(00)00315-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In lieu of H-Dmt-Tic-OH, H-Dmt-analogues included 2-amino-3(1H-benzoimidazol-2-yl)-propionic acid, N(Bzl)Gly, L-octahydroindole-2-carboxylic acid, [3S-(3alpha,4abeta, 8abeta)]-decahydro-3-isoquinoline carboxylic acid, benzimidazole-, pyridoindole- or spiroinden-derivatives, or C-terminally modified. L- or D-Ala, Sar, or Pro were spacers between aromatic nuclei. Only H-Dmt-(Xaa-)-pyridoindole exhibited high affinities with delta and mu antagonism. The peptides competed equally against [3H]DPDPE (delta agonist) or [3H]N,N(CH3)2-Dmt-Tic-OH (delta antagonist) signaling a single delta binding site. The data confirm the importance of Tic for delta affinity and antagonism, while heterocyclic or heteroaliphatic nuclei, or spacer exert effects on mu- and delta-receptor properties.
Collapse
MESH Headings
- Alanine/chemistry
- Benzimidazoles/chemistry
- Binding Sites
- Carbolines/chemistry
- Carboxylic Acids/chemistry
- Dipeptides/chemistry
- Isoquinolines/chemistry
- Kinetics
- Ligands
- Peptides/chemical synthesis
- Peptides/chemistry
- Proline/chemistry
- Propionates/chemistry
- Protein Conformation
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Serine/chemistry
- Tetrahydroisoquinolines
- Tyrosine/analogs & derivatives
- Tyrosine/chemistry
Collapse
Affiliation(s)
- G Balboni
- Department of Toxicology, University of Cagliari, I-09126, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Salvadori S, Guerrini R, Balboni G, Bianchi C, Bryant SD, Cooper PS, Lazarus LH. Further studies on the Dmt-Tic pharmacophore: hydrophobic substituents at the C-terminus endow delta antagonists to manifest mu agonism or mu antagonism. J Med Chem 1999; 42:5010-9. [PMID: 10585210 DOI: 10.1021/jm990165m] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty N- and/or C-modified Dmt-Tic analogues yielded similar K(i) values with either [(3)H]DPDPE (delta(1) agonist) or [(3)H]N, N(Me)(2)-Dmt-Tic-OH (delta antagonist). N-Methylation enhanced delta antagonism while N-piperidine-1-yl, N-pyrrolidine-1-yl, and N-pyrrole-1-yl were detrimental. Dmt-Tic-X (X = -NHNH(2), -NHCH(3), -NH-1-adamantyl, -NH-tBu, -NH-5-tetrazolyl) had high delta affinities (K(i) = 0.16 to 1 nM) with variable mu affinities to yield nonselective or weakly mu-selective analogues. N, N-(Me)(2)Dmt-Tic-NH-1-adamantane exhibited dual delta and mu receptor affinities (K(i)delta = 0.16 nM and K(i)mu = 1.12 nM) and potent delta antagonism (pA(2) = 9.06) with mu agonism (IC(50) = 16 nM). H-Dmt-betaHTic-OH (methylene bridge between C(alpha) of Tic and carboxylate function) yielded a biostable peptide with high delta affinity (K(i) = 0.85 nM) and delta antagonism (pA(2) = 8.85) without mu bioactivity. Dmt-Tic-Ala-X (X = -NHCH(3), -OCH(3), -NH-1-adamantyl, -NHtBu) exhibited high delta affinities (K(i) = 0.06 to 0.2 nM) and elevated mu affinities (K(i) = 2.5 to 11 nM), but only H-Dmt-Tic-Ala-NH-1-adamantane and H-Dmt-Tic-Ala-NHtBu yielded delta receptor antagonism (pA(2) = 9.29 and 9.16, respectively). Thus, Dmt-Tic with hydrophobic C-terminal substituents enhanced mu affinity to provide delta antagonists with dual receptor affinities and bifunctional activity.
Collapse
MESH Headings
- Adamantane/analogs & derivatives
- Adamantane/chemical synthesis
- Adamantane/metabolism
- Adamantane/pharmacology
- Animals
- Binding, Competitive
- Brain/metabolism
- Dipeptides/chemical synthesis
- Dipeptides/metabolism
- Dipeptides/pharmacology
- Electric Stimulation
- Enkephalin, D-Penicillamine (2,5)-/metabolism
- Guinea Pigs
- Ileum/drug effects
- Male
- Methylation
- Mice
- Oligopeptides/chemical synthesis
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Rats
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Structure-Activity Relationship
- Synaptosomes/metabolism
- Tetrahydroisoquinolines
- Tritium
- Vas Deferens/drug effects
Collapse
Affiliation(s)
- S Salvadori
- Department of Pharmaceutical Science and Biotechnology Center, University of Ferrara, I-441000 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.
Collapse
Affiliation(s)
- L H Lazarus
- Peptide Neurochemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
12
|
Lazarus LH, Bryant SD, Cooper PS, Guerrini R, Balboni G, Salvadori S. Design of δ-opioid peptide antagonists for emerging drug applications. Drug Discov Today 1998. [DOI: 10.1016/s1359-6446(98)01187-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Capasso S, Mazzarella L. Activation of diketopiperazine formation by alkylammonium carboxylate salts and aprotic dipolar protophobic solvents. Peptides 1998; 19:389-91. [PMID: 9493873 DOI: 10.1016/s0196-9781(97)00325-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diketopiperazine formation from the N-terminal residues of a peptide chain is accelerated by aprotic dipolar protophobic solvents and catalyzed in organic solvents by alkylammonium carboxylate salts. The t1/2 for the first-order reaction of H-Ala-Pro-NH2 x TFA falls from 20 d in methanol to 3.6 min in acetonitrile containing 0.02 mol dm(-3) triethylammonium acetate; for H-Ala-Ala-NH2 x TFA in the same reaction media t1/2 falls from an unmeasurably long time to 1.3 d.
Collapse
Affiliation(s)
- S Capasso
- Centro di Studio di Biocristallografia, C.N.R., Napoli, Italy.
| | | |
Collapse
|
14
|
Guerrini R, Capasso A, Marastoni M, Bryant SD, Cooper PS, Lazarus LH, Temussi PA, Salvadori S. Rational design of dynorphin A analogues with delta-receptor selectivity and antagonism for delta- and kappa-receptors. Bioorg Med Chem 1998; 6:57-62. [PMID: 9502105 DOI: 10.1016/s0968-0896(97)10008-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Substitution of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in place of Gly2 in dynorphin A-(1-13)-NH2 and -(1-11)-NH2 (DYN) analogues (1 and 2) decreased the affinity to the kappa, delta, and mu receptors, and kappa selectivity. The analogue [D-Ala2, des-Gly3]DYN (4), a chimera between deltorphin/dermorphin N-terminal tripeptide and DYN, was virtually inactive for kappa-sites while the affinities for delta- and mu-receptors remained essentially unchanged. The doubly substituted analogue [2',6'-dimethyl-L-tyrosine (Dmt1)-Tic2]DYN (3) exhibited high delta-affinity (Ki=0.39 nM) while mu- and kappa-affinities were only an order of magnitude less (4-5 nM). Bioactivity of [Tic2]DYN peptides (1-3) on guinea-pig ileum and rabbit jejunum revealed potent delta- and kappa-antagonism, while the delta agonist potency of 4 was comparable to DYN. Thus, conversion from a kappa-agonist to antagonist occurred with the inclusion of Tic into DYN analogues, similar to the appearance of antagonist properties with delta- and mu-opioid agonists containing a Tic2 residue.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Drug Design
- Dynorphins/chemical synthesis
- Dynorphins/pharmacology
- Electrophysiology
- Guinea Pigs
- Ileum
- Isoquinolines/chemistry
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Oligopeptides/chemistry
- Peptide Fragments/chemical synthesis
- Peptide Fragments/pharmacology
- Rabbits
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/antagonists & inhibitors
- Structure-Activity Relationship
- Tetrahydroisoquinolines
Collapse
Affiliation(s)
- R Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Capasso A, Amodeo P, Balboni G, Guerrini R, Lazarus LH, Temussi PA, Salvadori S. Design of mu selective opioid dipeptide antagonists. FEBS Lett 1997; 417:141-4. [PMID: 9395092 DOI: 10.1016/s0014-5793(97)01271-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have recently designed potent delta selective opioid antagonist dipeptides on the basis of a simple conformational analysis. Following a similar procedure we found a mu selective dipeptide antagonist, 2,6-dimethyl-Tyr-D-Phe-NH2. Although its selectivity is not as high as those of the quoted delta selective dipeptides it has good in vitro activity and looks very promising for further development since the 2,6-dimethyl-Tyr-D-Phe message, like the delta selective 2,6-dimethyl-Tyr-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid counterpart, seems able to impart antagonism to longer peptides.
Collapse
Affiliation(s)
- A Capasso
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Italy
| | | | | | | | | | | | | |
Collapse
|