1
|
Bernal-Bayard P, Puerto-Galán L, Yruela I, García-Rubio I, Castell C, Ortega JM, Alonso PJ, Roncel M, Martínez JI, Hervás M, Navarro JA. The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2017; 133:273-287. [PMID: 28032235 DOI: 10.1007/s11120-016-0327-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.
Collapse
Affiliation(s)
- Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | | | - Inés García-Rubio
- Centro Universitario de la Defensa, Zaragoza, Spain
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pablo J Alonso
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús I Martínez
- Centro Universitario de la Defensa, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
2
|
Bína D, Herbstová M, Gardian Z, Vácha F, Litvín R. Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination. Sci Rep 2016; 6:25583. [PMID: 27149693 PMCID: PMC4857733 DOI: 10.1038/srep25583] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023] Open
Abstract
Spatial segregation of photosystems in the thylakoid membrane (lateral heterogeneity) observed in plants and in the green algae is usually considered to be absent in photoautotrophs possessing secondary plastids, such as diatoms. Contrary to this assumption, here we show that thylakoid membranes in the chloroplast of a marine diatom, Phaeodactylum tricornutum, contain large areas occupied exclusively by a supercomplex of photosystem I (PSI) and its associated Lhcr antenna. These membrane areas, hundreds of nanometers in size, comprise hundreds of tightly packed PSI-antenna complexes while lacking other components of the photosynthetic electron transport chain. Analyses of the spatial distribution of the PSI-Lhcr complexes have indicated elliptical particles, each 14 × 17 nm in diameter. On larger scales, the red-enhanced illumination exerts a significant effect on the ultrastructure of chloroplasts, creating superstacks of tens of thylakoid membranes.
Collapse
Affiliation(s)
- David Bína
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Miroslava Herbstová
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Zdenko Gardian
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - František Vácha
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radek Litvín
- Institute of Plant Molecular Biology, Biology Centre CAS, Department of Photosynthesis, Branišovská 31, České Budějovice, 37005, Czech Republic.,Faculty of Science, University of South Bohemia, Institute of Chemistry and Biochemistry, Branišovská 1760, České Budějovice, 37005, Czech Republic
| |
Collapse
|
3
|
Krupnik T, Kotabová E, van Bezouwen LS, Mazur R, Garstka M, Nixon PJ, Barber J, Kaňa R, Boekema EJ, Kargul J. A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J Biol Chem 2013; 288:23529-42. [PMID: 23775073 DOI: 10.1074/jbc.m113.484659] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extremely low pH levels and moderately high temperatures. The photosynthetic apparatus of the red alga Cyanidioschyzon merolae represents an intermediate type between cyanobacteria and higher plants, suggesting that this alga may provide the evolutionary link between prokaryotic and eukaryotic phototrophs. Although we now have a detailed structural model of photosystem II (PSII) from cyanobacteria at an atomic resolution, no corresponding structure of the eukaryotic PSII complex has been published to date. Here we report the isolation and characterization of a highly active and robust dimeric PSII complex from C. merolae. We show that this complex is highly stable across a range of extreme light, temperature, and pH conditions. By measuring fluorescence quenching properties of the isolated C. merolae PSII complex, we provide the first direct evidence of pH-dependent non-photochemical quenching in the red algal PSII reaction center. This type of quenching, together with high zeaxanthin content, appears to underlie photoprotection mechanisms that are efficiently employed by this robust natural water-splitting complex under excess irradiance. In order to provide structural details of this eukaryotic form of PSII, we have employed electron microscopy and single particle analyses to obtain a 17 Å map of the C. merolae PSII dimer in which we locate the position of the protein mass corresponding to the additional extrinsic protein stabilizing the oxygen-evolving complex, PsbQ'. We conclude that this lumenal subunit is present in the vicinity of the CP43 protein, close to the membrane plane.
Collapse
Affiliation(s)
- Tomasz Krupnik
- Department of Plant Molecular Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The extrinsic proteins of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:121-42. [PMID: 21801710 DOI: 10.1016/j.bbabio.2011.07.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/08/2023]
Abstract
In this review we examine the structure and function of the extrinsic proteins of Photosystem II. These proteins include PsbO, present in all oxygenic organisms, the PsbP and PsbQ proteins, which are found in higher plants and eukaryotic algae, and the PsbU, PsbV, CyanoQ, and CyanoP proteins, which are found in the cyanobacteria. These proteins serve to optimize oxygen evolution at physiological calcium and chloride concentrations. They also shield the Mn(4)CaO(5) cluster from exogenous reductants. Numerous biochemical, genetic and structural studies have been used to probe the structure and function of these proteins within the photosystem. We will discuss the most recent proposed functional roles for these components, their structures (as deduced from biochemical and X-ray crystallographic studies) and the locations of their proposed binding domains within the Photosystem II complex. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
5
|
Gardian Z, Tichý J, Vácha F. Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. PHOTOSYNTHESIS RESEARCH 2011; 108:25-32. [PMID: 21455629 DOI: 10.1007/s11120-011-9647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Photosynthetic carbon fixation by Chromophytes is one of the significant components of a carbon cycle on the Earth. Their photosynthetic apparatus is different in pigment composition from that of green plants and algae. In this work we report structural maps of photosystem I, photosystem II and light harvesting antenna complexes isolated from a soil chromophytic alga Xanthonema debile (class Xanthophyceae). Electron microscopy of negatively stained preparations followed by single particle analysis revealed that the overall structure of Xanthophytes' PSI and PSII complexes is similar to that known from higher plants or algae. Averaged top-view projections of Xanthophytes' light harvesting antenna complexes (XLH) showed two groups of particles. Smaller ones that correspond to a trimeric form of XLH, bigger particles resemble higher oligomeric form of XLH.
Collapse
Affiliation(s)
- Zdenko Gardian
- Biology Centre ASCR, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | | | | |
Collapse
|
6
|
Su HN, Xie BB, Zhang XY, Zhou BC, Zhang YZ. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. PHOTOSYNTHESIS RESEARCH 2010; 106:73-87. [PMID: 20521115 DOI: 10.1007/s11120-010-9560-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.
Collapse
Affiliation(s)
- Hai-Nan Su
- The State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Liu LN, Aartsma TJ, Thomas JC, Lamers GEM, Zhou BC, Zhang YZ. Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns. J Biol Chem 2008; 283:34946-53. [PMID: 18930925 PMCID: PMC3259867 DOI: 10.1074/jbc.m805114200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Indexed: 11/06/2022] Open
Abstract
The architecture of the entire photosynthetic membrane network determines, at the supramolecular level, the physiological roles of the photosynthetic protein complexes involved. So far, a precise picture of the native configuration of red algal thylakoids is still lacking. In this work, we investigated the supramolecular architectures of phycobilisomes (PBsomes) and native thylakoid membranes from the unicellular red alga Porphyridium cruentum using atomic force microscopy (AFM) and transmission electron microscopy. The topography of single PBsomes was characterized by AFM imaging on both isolated and membrane-combined PBsomes complexes. The native organization of thylakoid membranes presented variable arrangements of PBsomes on the membrane surface. It indicates that different light illuminations during growth allow diverse distribution of PBsomes upon the isolated photosynthetic membranes from P. cruentum, random arrangement or rather ordered arrays, to be observed. Furthermore, the distributions of PBsomes on the membrane surfaces are mostly crowded. This is the first investigation using AFM to visualize the native architecture of PBsomes and their crowding distribution on the thylakoid membrane from P. cruentum. Various distribution patterns of PBsomes under different light conditions indicate the photoadaptation of thylakoid membranes, probably promoting the energy-harvesting efficiency. These results provide important clues on the supramolecular architecture of red algal PBsomes and the diverse organizations of thylakoid membranes in vivo.
Collapse
Affiliation(s)
- Lu-Ning Liu
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Thijs J. Aartsma
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Jean-Claude Thomas
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Gerda E. M. Lamers
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Bai-Cheng Zhou
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| | - Yu-Zhong Zhang
- State Key Lab of Microbial Technology,
Marine Biotechnology Research Center, Shandong University, Jinan 250100,
China, the Department of Biophysics, Huygens
Laboratory, Leiden University, Leiden 2300RA, The Netherlands, the
UMR 8186 CNRS & Ecole Normale
Supérieure, Biologie Moléculaire des Organismes
Photosynthétiques, Paris F-75230, France, and the
Institute of Biology, Leiden University,
Wassenaarseweg 64, Leiden 2333AL, The Netherlands
| |
Collapse
|
8
|
Kereïche S, Kouřil R, Oostergetel GT, Fusetti F, Boekema EJ, Doust AB, van der Weij-de Wit CD, Dekker JP. Association of chlorophyll a/c2 complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1122-8. [DOI: 10.1016/j.bbabio.2008.04.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 04/10/2008] [Accepted: 04/22/2008] [Indexed: 11/25/2022]
|
9
|
Gardian Z, Bumba L, Schrofel A, Herbstova M, Nebesarova J, Vacha F. Organisation of Photosystem I and Photosystem II in red alga Cyanidium caldarium: Encounter of cyanobacterial and higher plant concepts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:725-31. [PMID: 17346666 DOI: 10.1016/j.bbabio.2007.01.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/19/2007] [Accepted: 01/30/2007] [Indexed: 11/25/2022]
Abstract
Structure and organisation of Photosystem I and Photosystem II isolated from red alga Cyanidium caldarium was determined by electron microscopy and single particle image analysis. The overall structure of Photosystem II was found to be similar to that known from cyanobacteria. The location of additional 20 kDa (PsbQ') extrinsic protein that forms part of the oxygen evolving complex was suggested to be in the vicinity of cytochrome c-550 (PsbV) and the 12 kDa (PsbU) protein. Photosystem I was determined as a monomeric unit consisting of PsaA/B core complex with varying amounts of antenna subunits attached. The number of these subunits was seen to be dependent on the light conditions used during cell cultivation. The role of PsaH and PsaG proteins of Photosystem I in trimerisation and antennae complexes binding is discussed.
Collapse
Affiliation(s)
- Zdenko Gardian
- Biological Centre, Academy of Sciences of the Czech Republic, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
10
|
Roose JL, Wegener KM, Pakrasi HB. The extrinsic proteins of Photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 92:369-87. [PMID: 17200881 DOI: 10.1007/s11120-006-9117-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/19/2006] [Indexed: 05/13/2023]
Abstract
Years of genetic, biochemical, and structural work have provided a number of insights into the oxygen evolving complex (OEC) of Photosystem II (PSII) for a variety of photosynthetic organisms. However, questions still remain about the functions and interactions among the various subunits that make up the OEC. After a brief introduction to the individual subunits Psb27, PsbP, PsbQ, PsbR, PsbU, and PsbV, a current picture of the OEC as a whole in cyanobacteria, red algae, green algae, and higher plants will be presented. Additionally, the role that these proteins play in the dynamic life cycle of PSII will be discussed.
Collapse
Affiliation(s)
- Johnna L Roose
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
11
|
Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M. Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem 2006; 281:32705-13. [PMID: 16923804 DOI: 10.1074/jbc.m606360200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.
Collapse
Affiliation(s)
- Kamoltip Promnares
- Faculty of Biological Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
12
|
Bumba L, Tichy M, Dobakova M, Komenda J, Vacha F. Localization of the PsbH subunit in photosystem II from the Synechocystis 6803 using the His-tagged Ni–NTA Nanogold labeling. J Struct Biol 2005; 152:28-35. [PMID: 16181791 DOI: 10.1016/j.jsb.2005.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/27/2005] [Accepted: 08/03/2005] [Indexed: 11/17/2022]
Abstract
The PsbH protein belongs to a group of small protein subunits of photosystem II (PSII) complex. This protein is predicted to have a single transmembrane helix and it is important for the assembly of the PSII complex as well as for the proper function at the acceptor side of PSII. To identify the location of the PsbH subunit, the PSII complex with His-tagged PsbH protein was isolated from the cyanobacterium Synechocystis sp. PCC 6803 and labeled by Ni(2+)-nitrilo triacetic acid Nanogold. Electron microscopy followed by single particle image analysis identified the location of the labeled His-tagged PsbH protein at the periphery of the dimeric PSII complex. These results indicate that the N terminus of the PsbH protein is located at the stromal surface of the PSII complex and close to the CP47 protein.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Plant and Molecular Biology, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Vacha F, Bumba L, Kaftan D, Vacha M. Microscopy and single molecule detection in photosynthesis. Micron 2005; 36:483-502. [PMID: 15951188 DOI: 10.1016/j.micron.2005.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/18/2005] [Accepted: 04/19/2005] [Indexed: 11/30/2022]
Abstract
Progress in various fields of microscopy techniques brought up enormous possibilities to study the photosynthesis down to the level of individual pigment-protein complexes. The aim of this review is to present recent developments in the photosynthesis research obtained using such highly advanced techniques. Three areas of microscopy techniques covering optical microscopy, electron microscopy and scanning probe microscopy are reviewed. Whereas the electron microscopy and scanning probe microscopy are used in photosynthesis mainly for structural studies of photosynthetic pigment-protein complexes, the optical microscopy is used also for functional studies.
Collapse
Affiliation(s)
- Frantisek Vacha
- Institute of Physical Biology, University of South Bohemia, Budejovice, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Bumba L, Prasil O, Vacha F. Antenna ring around trimeric Photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:1-5. [PMID: 15949978 DOI: 10.1016/j.bbabio.2005.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/07/2005] [Accepted: 02/22/2005] [Indexed: 11/18/2022]
Abstract
Prochlorothrix hollandica is one of the three known species of an unusual clade of cyanobacteria (formerly called "prochlorophytes") that contain chlorophyll a and b molecules bound to intrinsic light-harvesting antenna proteins. Here, we report the structural characterization of supramolecular complex consisting of Photosystem I (PSI) associated with the chlorophyll a/b-binding Pcb proteins. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the Pcb-PSI supercomplex consists of a central trimeric PSI surrounded by a ring of 18 Pcb subunits. We conclude that the formation of the Pcb ring around trimeric PSI represents a mechanism for increasing the light-harvesting efficiency in chlorophyll b-containing cyanobacteria.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Plant Molecular Biology, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|