1
|
Gustchina A, Li M, Andrianova AG, Kudzhaev AM, Lountos GT, Sekula B, Cherry S, Tropea JE, Smirnov IV, Wlodawer A, Rotanova TV. Unique Structural Fold of LonBA Protease from Bacillus subtilis, a Member of a Newly Identified Subfamily of Lon Proteases. Int J Mol Sci 2022; 23:11425. [PMID: 36232729 PMCID: PMC9569914 DOI: 10.3390/ijms231911425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.
Collapse
Affiliation(s)
- Alla Gustchina
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Mi Li
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna G Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Arsen M Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - George T Lountos
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bartosz Sekula
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Lodz, Poland
| | - Scott Cherry
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph E Tropea
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Tatyana V Rotanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
2
|
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme. Emerg Top Life Sci 2018; 2:561-580. [PMID: 32953999 DOI: 10.1042/etls20180025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Archaea are phylogenetically distinct from bacteria, and some of their proteolytic systems reflect this distinction. Here, the current knowledge of archaeal proteolysis is reviewed as it relates to protein metabolism, protein homeostasis, and cellular regulation including targeted proteolysis by proteasomes associated with AAA-ATPase networks and ubiquitin-like modification. Proteases and peptidases that facilitate the recycling of peptides to amino acids as well as membrane-associated and integral membrane proteases are also reviewed.
Collapse
|
3
|
Giménez MI, Cerletti M, De Castro RE. Archaeal membrane-associated proteases: insights on Haloferax volcanii and other haloarchaea. Front Microbiol 2015; 6:39. [PMID: 25774151 PMCID: PMC4343526 DOI: 10.3389/fmicb.2015.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
The function of membrane proteases range from general house-keeping to regulation of cellular processes. Although the biological role of these enzymes in archaea is poorly understood, some of them are implicated in the biogenesis of the archaeal cell envelope and surface structures. The membrane-bound ATP-dependent Lon protease is essential for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least two different proteases are needed in this archaeon to accomplish the posttranslational modifications of the S-layer glycoprotein. The rhomboid protease RhoII is involved in the N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two different signal peptidase I homologs exist in H. volcanii, Sec11a and Sec11b, which likely play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin precursors, being essential for the biogenesis and function of the archaellum and other cell surface structures in H. volcanii.
Collapse
Affiliation(s)
- María I Giménez
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| |
Collapse
|
4
|
Bulteau AL, Bayot A. Mitochondrial proteases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:595-601. [PMID: 21194520 DOI: 10.1016/j.bbabio.2010.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/13/2010] [Accepted: 12/18/2010] [Indexed: 01/12/2023]
Abstract
Mitochondria are a major source of intracellular reactive oxygen species, the production of which increases with cancer. The deleterious effects of reactive oxygen species may be responsible for the impairment of mitochondrial function observed during various pathophysiological states associated with oxidative stress and cancer. These organelles are also targets of oxidative damage (oxidation of mitochondrial DNA, lipids, protein). An important factor for protein maintenance in the presence of oxidative stress is enzymatic reversal of oxidative modifications and/or protein degradation. Failure of these processes is likely a critical component of the cancer process. Mitochondrial proteases degrade misfolded and non-assemble polypeptides, thus performing quality control surveillance in the organelle. Mitochondrial proteases may be directly involved in cancer development as recently shown for HtrA2/Omi or may regulate crucial mitochondrial molecule such as cytochrome c oxidase 4 a subunit of the cytochrome c oxidase complex degraded by the Lon protease. Thus, the role of mitochondrial proteases is further addressed in the context of oxidative stress and cancer.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- CRICM-INSERM-UMRS975, CNRS UMR 7225-UPMC, Hôpital de la Salpétrière, Bâtiment Pharmacie, 47 Bd de l'Hôpital, 75651 Paris Cedex 13, France.
| | | |
Collapse
|
5
|
Wang HM, Cheng KC, Lin CJ, Hsu SW, Fang WC, Hsu TF, Chiu CC, Chang HW, Hsu CH, Lee AYL. Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints. Cancer Sci 2010; 101:2612-20. [PMID: 21077998 PMCID: PMC11158771 DOI: 10.1111/j.1349-7006.2010.01701.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Several compounds from Cinnamomum kotoense show anticancer activities. However, the detailed mechanisms of most compounds from C. kotoense remain unknown. In this study, we investigated the anticancer activity of obtusilactone A (OA) and (-)-sesamin in lung cancer. Our results show that human Lon is upregulated in non-small-cell lung cancer (NSCLC) cell lines, and downregulation of Lon triggers caspase-3 mediated apoptosis. Through enzyme-based screening, we identified two small-molecule compounds, obtusilactone A (OA) and (-)-sesamin from C. kotoense, as potent Lon protease inhibitors. Obtusilactone A and (-)-sesamin interact with Ser855 and Lys898 residues in the active site of the Lon protease according to molecular docking analysis. Thus, we suggest that cancer cytotoxicity of the compounds is partly due to the inhibitory effects on Lon protease. In addition, the compounds are able to cause DNA double-strand breaks and activate checkpoints. Treatment with OA and (-)-sesamin induced p53-independent DNA damage responses in NSCLC cells, including G(1) /S checkpoint activation and apoptosis, as evidenced by phosphorylation of checkpoint proteins (H2AX, Nbs1, and Chk2), caspase-3 cleavage, and sub-G(1) accumulation. In conclusion, OA and (-)-sesamin act as both inhibitors of human mitochondrial Lon protease and DNA damage agents to activate the DNA damage checkpoints as well induce apoptosis in NSCLC cells. These dual functions open a bright avenue to develop more selective chemotherapy agents to overcome chemoresistance and sensitize cancer cells to other chemotherapeutics.
Collapse
Affiliation(s)
- Hui-Min Wang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bidle KA, Kirkland PA, Nannen JL, Maupin-Furlow JA. Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA. MICROBIOLOGY-SGM 2008; 154:1436-1443. [PMID: 18451052 DOI: 10.1099/mic.0.2007/015586-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A proteomic survey of the halophilic archaeon Haloferax volcanii was performed by comparative two-dimensional gel electrophoresis in order to determine the molecular effects of salt stress on the organism. Cells were grown under optimal (2.1 M) and high (3.5 M) NaCl conditions. From this analysis, over 44 protein spots responsive to these conditions were detected. These spots were excised, digested in-gel with trypsin, subjected to QSTAR tandem mass spectrometry (LC/MS/MS) analysis, and identified by comparing the MS/MS-derived peptide sequence to that deduced from the H. volcanii genome. Approximately 40 % of the proteins detected (18 in total) displayed differential abundance based on the detection of at least two peptide fragments per protein and overall MOWSE scores of >or=75 per protein. All of these identified proteins were either uniquely present or 2.3- to 26-fold higher in abundance under one condition compared to the other. The majority of proteins identified in this study were preferentially displayed under optimal salinity and primarily involved in translation, transport and metabolism. However, one protein of interest whose transcript levels were confirmed in these studies to be upregulated under high salt conditions was identified as a homologue of the phage shock protein PspA. The pspA gene belongs to the psp stress-responsive regulon commonly found among Gram-negative bacteria where its transcription is stimulated by a wide variety of stressors, including heat shock, osmotic shock and prolonged stationary-phase incubation. Homologues of PspA are also found among the genomes of cyanobacteria, higher plants and other Archaea, suggesting that this protein may retain some aspects of functional conservation across the three domains of life. Given its integral role in sensing a variety of membrane stressors in bacteria, these results suggest that PspA may play an important role in hypersaline adaptation in H. volcanii.
Collapse
Affiliation(s)
- Kelly A Bidle
- Department of Biology, Rider University, Lawrenceville, NJ, USA
| | - P Aaron Kirkland
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | | | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Maehara T, Hoshino T, Nakamura A. Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins. Extremophiles 2007; 12:285-96. [PMID: 18157502 DOI: 10.1007/s00792-007-0129-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 11/22/2007] [Indexed: 11/29/2022]
Abstract
In the genome of a thermophilic bacterium, Thermus thermophilus HB27, three genes, TTC0418, TTC0746 and TTC1975, were annotated as ATP-dependent protease La (Lon). Sequence comparisons indicated that TTC0418 and TTC0746 showed significant similarities to bacterial LonA-type proteases, such as Escherichia coli Lon protease, especially in regions corresponding to domains for ATP-binding and hydrolysis, and for proteolysis, but TTC1975 exhibited a similarity only at the C-terminal proteolytic domain. The enzymatic analyses, using purified recombinant proteins produced by E. coli, revealed that TTC0418 and TTC0746 exhibited peptidase and protease activities against two synthetic peptides and casein, respectively, in an ATP-dependent manner, and at the same time, both the enzymes had significant ATPase activities in the presence of substrates. On the other hand, TTC1975 possessed a protease activity against casein, but addition of ATP did not enhance this activity. Moreover, a T. thermophilus mutant deficient in both TTC0418 and TTC0746 showed a similar growth characteristic to an E. coli lon mutant, i.e., a growth defect lag after a nutritional downshift. These results indicate that TTC0418 and TTC0746 are actually members of bacterial LonA-type proteases with different substrate specificities, whereas TTC1975 should not be classified as a Lon protease. Finally, the effects of mutations deficient in these proteases were assessed on production of several heterologous gene products from Pyrococcus horikoshii and Geobacillus stearothermophilus. It was shown that TTC0746 mutation was more effective in improving production than the other two mutations, especially for production of P. horikoshii alpha-mannosidase and G. stearothermophilus alpha-amylase, indicating that the TTC0746 mutant of T. thermophilus HB27 may be useful for production of heterologous proteins from thermophiles and hyperthermophiles.
Collapse
Affiliation(s)
- Tomoko Maehara
- Division of Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
8
|
Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors. Biochimie 2007; 90:260-9. [PMID: 18021745 DOI: 10.1016/j.biochi.2007.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 10/19/2007] [Indexed: 01/21/2023]
Abstract
Cellular protein homeostasis results from the combination of protein biogenesis processes and protein quality control mechanisms, which contribute to the functional state of cells under normal and stress conditions. Proteolysis constitutes the final step by which short-lived, misfolded and damaged intracellular proteins are eliminated. Protein turnover and oxidatively modified protein degradation are mainly achieved by the proteasome in the cytosol and nucleus of eukaryotic cells while several ATP-dependent proteases including the matrix protease Lon take part in the mitochondrial protein degradation. Moreover, Lon protease seems to play a major role in the elimination of oxidatively modified proteins in the mitochondrial matrix. Specific inhibitors are commonly used to assess cellular functions of proteolytic systems as well as to identify their protein substrates. Here, we present and discuss known proteasome and Lon protease inhibitors. To date, very few inhibitors of Lon have been described and no specific inhibitors of this protease are available. The current knowledge on both catalytic mechanisms and inhibitors of these two proteases is first described and attempts to define specific non-peptidic inhibitors of the human Lon protease are presented.
Collapse
|
9
|
Rawlings ND, Morton FR. The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. Biochimie 2007; 90:243-59. [PMID: 17980477 DOI: 10.1016/j.biochi.2007.09.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 09/21/2007] [Indexed: 11/29/2022]
Abstract
Many of the 181 families of peptidases contain homologues that are known to have functions other than peptide bond hydrolysis. Distinguishing an active peptidase from a homologue that is not a peptidase requires specialist knowledge of the important active site residues, because replacement or lack of one of these catalytic residues is an important clue that the homologue in question is unlikely to hydrolyse peptide bonds. Now that the rate at which proteins are characterized is outstripped by the rate that genome sequences are determined, many genes are being incorrectly annotated because only sequence similarity is taken into consideration. We present a tool called the MEROPS batch BLAST which not only performs a comparison against the MEROPS sequence collection, but also does a pair-wise alignment with the closest homologue detected and calculates the position of the active site residues. A non-peptidase homologue can be distinguished by the absence or unacceptable replacement of any of these residues. An analysis of peptidase homologues in the genome of the bacterium Erythrobacter litoralis is presented as an example.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | |
Collapse
|
10
|
Besche H, Navon A, Zwickl P. The Membrane-Bound Lon Protease from Thermoplasma Displays Unfolding Activity. Isr J Chem 2006. [DOI: 10.1560/0env-nq8b-2wg6-nh8r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Bulteau AL, Szweda LI, Friguet B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 2006; 41:653-7. [PMID: 16677792 DOI: 10.1016/j.exger.2006.03.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/15/2006] [Accepted: 03/17/2006] [Indexed: 12/31/2022]
Abstract
Mitochondria are a major source of intracellular reactive oxygen species (ROS), the production of which increases with age. These organelles are also targets of oxidative damage. The deleterious effects of ROS may be responsible for impairment of mitochondrial function observed during various pathophysiological states associated with oxidative stress and aging. An important factor for protein maintenance in the presence of oxidative stress is enzymatic reversal of oxidative modifications and/or protein degradation. Failure of these protein maintenance systems is likely a critical component of the aging process. Mitochondrial matrix proteins are sensitive to oxidative inactivation and oxidized proteins are known to accumulate during aging. The ATP-stimulated mitochondrial Lon protease is a highly conserved protease found in prokaryotes and the mitochondrial compartment of eukaryotes and is believed to play an important role in the degradation of oxidized mitochondrial matrix proteins. Age-dependent declines in the activity and regulation of this proteolytic system may underlie accumulation of oxidatively modified and dysfunctional protein and loss in mitochondrial viability.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Université Denis Diderot-Paris 7, Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106/IFR 117, case courrier 7128, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
12
|
De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ. Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 2006; 30:17-35. [PMID: 16438678 DOI: 10.1111/j.1574-6976.2005.00003.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteases play key roles in many biological processes and have numerous applications in biotechnology and industry. Recent advances in the genetics, genomics and biochemistry of the halophilic Archaea provide a tremendous opportunity for understanding proteases and their function in the context of an archaeal cell. This review summarizes our current knowledge of haloarchaeal proteases and provides a reference for future research.
Collapse
Affiliation(s)
- Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
13
|
Maupin-Furlow JA, Gil MA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ. Archaeal proteasomes and other regulatory proteases. Curr Opin Microbiol 2005; 8:720-8. [PMID: 16256423 DOI: 10.1016/j.mib.2005.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/11/2005] [Indexed: 11/24/2022]
Abstract
Numerous proteases have been shown to catalyze the precisely-timed and rapid turnover of key cellular proteins. Often these regulatory proteases are either energy-dependent or intramembrane-cleaving. In archaea, two different types of energy-dependent proteases have been characterized: 20S proteasomes associated with proteasome-activating nucleotidases and membrane-associated Lon proteases. Interestingly, homologs of all three mechanistic classes of intramembrane-cleaving proteases are widely distributed in archaea. Similar to their eucaryal and bacterial counterparts, members of these uncharacterized proteases might promote the controlled release of membrane-anchored regulatory proteins or liberate small peptide reporters and/or effectors that function in cell signaling.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Botos I, Melnikov EE, Cherry S, Kozlov S, Makhovskaya OV, Tropea JE, Gustchina A, Rotanova TV, Wlodawer A. Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases. J Mol Biol 2005; 351:144-57. [PMID: 16002085 DOI: 10.1016/j.jmb.2005.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/31/2005] [Accepted: 06/02/2005] [Indexed: 11/24/2022]
Abstract
The atomic-resolution crystal structure of the proteolytic domain (P-domain, residues 415-621) of Archaeoglobus fulgidus B-type Lon protease (wtAfLonB) and the structures of several mutants have revealed significant differences in the conformation of the active-site residues when compared to other known Lon P-domains, despite the conservation of the overall fold. The catalytic Ser509 is facing the solvent and is distant from Lys552, the other member of the catalytic dyad. Instead, the adjacent Asp508 forms an ion pair with the catalytic lysine residue. Glu506, an analog of the putative third catalytic residue from a related Methanococcus jannaschii LonB, also faces the solvent and does not interact with the catalytic dyad. We have established that full-length wtAfLonB is proteolytically active in an ATP-dependent manner. The loss of enzymatic activity of the S509A mutant confirms the functional significance of this residue, while retention of considerable level of activity by the D508A and E506A mutants rules out their critical involvement in catalysis. In contrast to the full-length enzymes, all individually purified P-domains (wild-type and mutants) were inactive, and the mutations had no influence on the active-site structure. These findings raise the possibility that, although isolated proteolytic domains of both AfLonB and E.coli LonA are able to assemble into expected functional hexamers, the presence of the other domains, as well as substrate binding, may be needed to stabilize the productive conformation of their active sites. Thus, the observed conformational variability may reflect the differences in the stability of active-site structures for the proteolytic counterparts of single-chain Lon versus independently folded proteolytic subunits of two-chain AAA+ proteases.
Collapse
Affiliation(s)
- Istvan Botos
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|