1
|
Zhu Z, Cao H, Li X, Rong J, Cao X, Tian J. A Carbon Fixation Enhanced Chlamydomonas reinhardtii Strain for Achieving the Double-Win Between Growth and Biofuel Production Under Non-stressed Conditions. Front Bioeng Biotechnol 2021; 8:603513. [PMID: 33511104 PMCID: PMC7835968 DOI: 10.3389/fbioe.2020.603513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
The stressed cultivations are widely used in microalgae R&D for the biofuel production with the repress on growth to a certain degree, which limits the overall productivity. The balance between the growth and energy storage compounds accumulation is a target needing the combination of both strain selection or construction and culture optimization. Here, an engineered strain of Chlamydomonas reinhardtii, in which the chloroplast type glyceraldehyde-3-phosphate dehydrogenase (cGAPDH) was overexpressed and named as P3-GAPDH, was cultured on the Algal Station platform. Compared with wild type (WT), C. reinhardtii CC137c, in Tris-acetate-phosphate (TAP) medium, the highest density of WT and P3-GAPDH were 1.23 ± 0.13 and 1.74 ± 0.09 g L–1 within 96 h, and the maximum biomass productivity was 24.30 ± 1.65 and 28.54 ± 1.43 mg L–1 h–1, respectively. In terms of the energy storage compounds, both carbohydrate and fatty acids content doubled in P3-GAPDH, from 0.13 ± 0.02 to 0.26 ± 0.04 g L–1 for carbohydrate and from 0.08 ± 0.01 to 0.16 ± 0.01 g L–1 for fatty acids, among which poly unsaturated fatty acids increased by 65.8%. Together with the continuous monitor of the chlorophyll fluorescence dynamics parameters Fv/Fm and Fv’/Fm’ and pH of culture, enhanced Calvin cycle by overexpressed cGAPDH promoted the carbon conversion and subsequent energy storage compounds accumulation. C. reinhardtii P3-GAPDH strain showed the potential as a good chassis with high carbon conversion ability.
Collapse
Affiliation(s)
- Zhen Zhu
- School of Bioengineering, Dalian Polytechnic University, Dalian, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Division of Solar Energy, Dalian National Laboratory of Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huijiao Cao
- School of Bioengineering, Dalian Polytechnic University, Dalian, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Division of Solar Energy, Dalian National Laboratory of Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xu Li
- Research Centre of Renewable Energy, Research Institute of Petroleum Processing, Sinopec, Beijing, China
| | - Junfeng Rong
- Research Centre of Renewable Energy, Research Institute of Petroleum Processing, Sinopec, Beijing, China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Division of Solar Energy, Dalian National Laboratory of Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jing Tian
- School of Bioengineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Jiang HS, Zhang Y, Lu ZW, Lebrun R, Gontero B, Li W. Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900860. [PMID: 31111667 DOI: 10.1002/smll.201900860] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Widely used silver nanoparticles (AgNPs) are readily accessible to biological fluids and then surrounded by proteins. However, interactions between AgNPs and proteins are poorly understood. Two dehydrogenases, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and malate dehydrogenase (MDH), are chosen to investigate these interactions. Ag bound to thiol groups of these enzymes significantly decreases the number of free thiols available. Dose-dependent inhibition of enzyme activities is observed in both AgNPs and Ag+ treatments. Based on the concentration required to inhibit 50% activity, GAPDH and MDH are 24-30 fold more sensitive to Ag+ than to AgNPs suggesting that the measured 4.2% Ag+ containing AgNPs can be responsible for the enzymes inhibition. GAPDH, with a thiol group in its active site, is more sensitive to Ag than MDH, displaying many thiol groups but none in its active site, suggesting that thiol groups at the active site strongly determines the sensitivity of enzymes toward AgNPs. In contrast, the dramatic changes of circular dichroism spectra show that the global secondary structure of MDH under AgNPs treatment is more altered than that of GAPDH. In summary, this study shows that the thiol groups and their location on these dehydrogenases are crucial for the AgNPs effects.
Collapse
Affiliation(s)
- Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Yizhi Zhang
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Zhen Wei Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, 570228, China
| | - Régine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IMM, FR 3479, CNRS, 31 Chemin J. Aiguier, 13009, Marseille, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
3
|
Responses of the marine diatom Thalassiosira pseudonana to changes in CO 2 concentration: a proteomic approach. Sci Rep 2017; 7:42333. [PMID: 28181560 PMCID: PMC5299434 DOI: 10.1038/srep42333] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
The concentration of CO2 in many aquatic systems is variable, often lower than the KM of the primary carboxylating enzyme Rubisco, and in order to photosynthesize efficiently, many algae operate a facultative CO2 concentrating mechanism (CCM). Here we measured the responses of a marine diatom, Thalassiosira pseudonana, to high and low concentrations of CO2 at the level of transcripts, proteins and enzyme activity. Low CO2 caused many metabolic pathways to be remodeled. Carbon acquisition enzymes, primarily carbonic anhydrase, stress, degradation and signaling proteins were more abundant while proteins associated with nitrogen metabolism, energy production and chaperones were less abundant. A protein with similarities to the Ca2+/ calmodulin dependent protein kinase II_association domain, having a chloroplast targeting sequence, was only present at low CO2. This protein might be a specific response to CO2 limitation since a previous study showed that other stresses caused its reduction. The protein sequence was found in other marine diatoms and may play an important role in their response to low CO2 concentration.
Collapse
|
4
|
First Comprehensive Proteome Analyses of Lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L. Sci Rep 2016; 6:31576. [PMID: 27515067 PMCID: PMC4981852 DOI: 10.1038/srep31576] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/26/2016] [Indexed: 01/23/2023] Open
Abstract
Protein acetylation and succinylation are the most crucial protein post-translational modifications (PTMs) involved in the regulation of plant growth and development. In this study, we present the first lysine-acetylation and lysine-succinylation proteome analysis of seedling leaves in Brachypodium distachyon L (Bd). Using high accuracy nano LC-MS/MS combined with affinity purification, we identified a total of 636 lysine-acetylated sites in 353 proteins and 605 lysine-succinylated sites in 262 proteins. These proteins participated in many biology processes, with various molecular functions. In particular, 119 proteins and 115 sites were found to be both acetylated and succinylated, simultaneously. Among the 353 acetylated proteins, 148 had acetylation orthologs in Oryza sativa L., Arabidopsis thaliana, Synechocystis sp. PCC 6803, and Glycine max L. Among the 262 succinylated proteins, 170 of them were found to have homologous proteins in Oryza sativa L., Escherichia coli, Sacchayromyces cerevisiae, or Homo sapiens. Motif-X analysis of the acetylated and succinylated sites identified two new acetylated motifs (K---K and K-I-K) and twelve significantly enriched succinylated motifs for the first time, which could serve as possible binding loci for future studies in plants. Our comprehensive dataset provides a promising starting point for further functional analysis of acetylation and succinylation in Bd and other plant species.
Collapse
|
5
|
Mekhalfi M, Puppo C, Avilan L, Lebrun R, Mansuelle P, Maberly SC, Gontero B. Glyceraldehyde-3-phosphate dehydrogenase is regulated by ferredoxin-NADP reductase in the diatom Asterionella formosa. THE NEW PHYTOLOGIST 2014; 203:414-423. [PMID: 24799178 DOI: 10.1111/nph.12820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/22/2014] [Indexed: 05/24/2023]
Abstract
Diatoms are a widespread and ecologically important group of heterokont algae that contribute c. 20% to global productivity. Previous work has shown that regulation of their key Calvin cycle enzymes differs from that of the Plantae, and that in crude extracts, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can be inhibited by nicotinamide adenine dinucleotide phosphate reduced (NADPH) under oxidizing conditions. The freshwater diatom, Asterionella formosa, was studied using enzyme kinetics, chromatography, surface plasmon resonance, mass spectrometry and sequence analysis to determine the mechanism behind this GAPDH inhibition. GAPDH interacted with ferredoxin-nicotinamide adenine dinucleotide phosphate (NADP) reductase (FNR) from the primary phase of photosynthesis, and the small chloroplast protein, CP12. Sequences of copurified GAPDH and FNR were highly homologous with published sequences. However, the widespread ternary complex among GAPDH, phosphoribulokinase and CP12 was absent. Activity measurements under oxidizing conditions showed that NADPH can inhibit GAPDH-CP12 in the presence of FNR, explaining the earlier observed inhibition within crude extracts. Diatom plastids have a distinctive metabolism, including the lack of the oxidative pentose phosphate pathway, and so cannot produce NADPH in the dark. The observed down-regulation of GAPDH in the dark may allow NADPH to be rerouted towards other reductive processes contributing to their ecological success.
Collapse
Affiliation(s)
- Malika Mekhalfi
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Carine Puppo
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Luisana Avilan
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Régine Lebrun
- Plate-forme Protéomique, FR3479, IBiSA Marseille-Protéomique IMM-CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Pascal Mansuelle
- Plate-forme Protéomique, FR3479, IBiSA Marseille-Protéomique IMM-CNRS, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| | - Stephen C Maberly
- Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - Brigitte Gontero
- Aix-Marseille Université CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille Cedex 20, France
| |
Collapse
|
6
|
Lao YM, Lu Y, Jiang JG, Luo LX. Six regulatory elements lying in the promoter region imply the functional diversity of chloroplast GAPDH in Duanliella bardawil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9211-9220. [PMID: 22906227 DOI: 10.1021/jf302659z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-known proverbial protein involved in various functions in vivo. The functional diversity of GAPDH from Dunaliella bardawil (DbGAPDH) may relate to the regulatory elements lying in the promoter at the transcriptional level. Using RT-PCR and RACE reactions, gapdh cDNA was isolated, and the full-length genomic sequence was obtained by LA-PCR-based genome walking. The full-length cDNA sequence was 1645 bp containing an 1128 bp putative open reading frame (ORF), which coded a 375 amino acids-deduced polypeptide whose molecular weight was 40.27 kDa computationally. Protein conserved domain search and structural computation found that DbGAPDH consists of two structural conserved domains highly homologous in most species; multiple sequence alignment discovered two positive charge residues (Lys164 and Arg 233), which play a critical role in the protein-protein interaction between GAPDH, phosphoribulokinase (PRK), and CP12. Phylogenetic analysis demonstrated that DbGAPDH has a closer relationship with analogues from algae and higher plants than with those from other species. In silico analysis of the promoter region revealed six potential regulatory elements might be involved in four hypothesized functions characterized by chloroplast GAPDH: oxygen-, light-, pathogen-, and cold-induced regulation. These results might supply some hints for the functional diversity mechanisms of DbGAPDH, and fresh information for further research to bridge the gap between our knowledge of DNA and protein structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Yong-Min Lao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
7
|
Fermani S, Trivelli X, Sparla F, Thumiger A, Calvaresi M, Marri L, Falini G, Zerbetto F, Trost P. Conformational selection and folding-upon-binding of intrinsically disordered protein CP12 regulate photosynthetic enzymes assembly. J Biol Chem 2012; 287:21372-83. [PMID: 22514274 DOI: 10.1074/jbc.m112.350355] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon assimilation in plants is regulated by the reduction of specific protein disulfides by light and their re-oxidation in the dark. The redox switch CP12 is an intrinsically disordered protein that can form two disulfide bridges. In the dark oxidized CP12 forms an inactive supramolecular complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase, two enzymes of the carbon assimilation cycle. Here we show that binding of CP12 to GAPDH, the first step of ternary complex formation, follows an integrated mechanism that combines conformational selection with induced folding steps. Initially, a CP12 conformation characterized by a circular structural motif including the C-terminal disulfide is selected by GAPDH. Subsequently, the induced folding of the flexible C-terminal tail of CP12 in the active site of GAPDH stabilizes the binary complex. Formation of several hydrogen bonds compensates the entropic cost of CP12 fixation and terminates the interaction mechanism that contributes to carbon assimilation control.
Collapse
Affiliation(s)
- Simona Fermani
- Department of Chemistry G Ciamician, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Finkemeier I, Laxa M, Miguet L, Howden AJM, Sweetlove LJ. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1779-90. [PMID: 21311031 PMCID: PMC3091095 DOI: 10.1104/pp.110.171595] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/04/2011] [Indexed: 05/20/2023]
Abstract
Acetylation of the ε-amino group of lysine (Lys) is a reversible posttranslational modification recently discovered to be widespread, occurring on proteins outside the nucleus, in most subcellular locations in mammalian cells. Almost nothing is known about this modification in plants beyond the well-studied acetylation of histone proteins in the nucleus. Here, we report that Lys acetylation in plants also occurs on organellar and cytosolic proteins. We identified 91 Lys-acetylated sites on 74 proteins of diverse functional classes. Furthermore, our study suggests that Lys acetylation may be an important posttranslational modification in the chloroplast, since four Calvin cycle enzymes were acetylated. The plastid-encoded large subunit of Rubisco stands out because of the large number of acetylated sites occurring at important Lys residues that are involved in Rubisco tertiary structure formation and catalytic function. Using the human recombinant deacetylase sirtuin 3, it was demonstrated that Lys deacetylation significantly affects Rubisco activity as well as the activities of other central metabolic enzymes, such as the Calvin cycle enzyme phosphoglycerate kinase, the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase, and the tricarboxylic acid cycle enzyme malate dehydrogenase. Our results demonstrate that Lys acetylation also occurs on proteins outside the nucleus in Arabidopsis (Arabidopsis thaliana) and that Lys acetylation could be important in the regulation of key metabolic enzymes.
Collapse
|
9
|
Erales J, Mekhalfi M, Woudstra M, Gontero B. Molecular mechanism of NADPH-glyceraldehyde-3-phosphate dehydrogenase regulation through the C-terminus of CP12 in Chlamydomonas reinhardtii. Biochemistry 2011; 50:2881-8. [PMID: 21366264 DOI: 10.1021/bi1020259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Chlamydomonas reinhardtii, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) consists of four GapA subunits. This A4 GAPDH is not autonomously regulated, as the regulatory cysteine residues present on GapB subunits are missing in GapA subunits. The regulation of A4 GAPDH is provided by another protein, CP12. To determine the molecular mechanisms of regulation of A4 GAPDH, we mutated three residues (R82, R190, and S195) of GAPDH of C. reinhardtii. Kinetic studies of GAPDH mutants showed the importance of residue R82 in the specificity of GAPDH for NADPH, as previously shown for the spinach enzyme. The cofactor NADPH was not stabilized through the 2'-phosphate by the serine 195 residue of the algal GAPDH, unlike the case in spinach. The mutation of R190 also led to a structural change that was not observed in the spinach enzyme. This mutation led to a loss of activity for NADPH and NADH, indicating the crucial role of this residue in maintaining the algal GAPDH structure. Finally, the interaction between GAPDH mutants and wild-type and mutated CP12 was analyzed by immunoblotting experiments, surface plasmon resonance, and kinetic studies. The results obtained with these approaches highlight the involvement of the last residue of CP12, Asp80, in modulating the activity of GAPDH by preventing access of the cofactor NADPH to the active site. These results help us to bridge the gap between our knowledge of structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire d'Enzymologie de complexes supramoléculaires, BIP-UPR 9036, BIP-CNRS, IMM-Aix-Marseille Universities, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
10
|
Fermani S, Sparla F, Marri L, Thumiger A, Pupillo P, Falini G, Trost P. Structure of photosynthetic glyceraldehyde-3-phosphate dehydrogenase (isoform A4) from Arabidopsis thaliana in complex with NAD. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:621-6. [PMID: 20516587 DOI: 10.1107/s1744309110013527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/12/2010] [Indexed: 11/10/2022]
Abstract
The crystal structure of the A(4) isoform of photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Arabidopsis thaliana, expressed in recombinant form and complexed with NAD, is reported. The crystals, which were grown in 2.4 M ammonium sulfate and 0.1 M sodium citrate, belonged to space group I222. The asymmetric unit includes ten subunits, i.e. two independent tetramers plus a dimer that generates a third tetramer by a crystallographic symmetry operation. The crystal structure was solved by molecular replacement and refined to an R factor of 23.7% and an R(free) factor of 28.9% at 2.6 A resolution. In the final model, each subunit binds one NAD(+) molecule and two sulfates, which occupy the P(s) and the P(i) anion-binding sites. Detailed knowledge of this structure is instrumental for structural investigation of supramolecular complexes of A(4)-GAPDH, phosphoribulokinase and CP12, which are involved in the regulation of photosynthesis in the model plant A. thaliana.
Collapse
Affiliation(s)
- Simona Fermani
- Department of Chemistry, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Erales J, Lorenzi M, Lebrun R, Fournel A, Etienne E, Courcelle C, Guigliarelli B, Gontero B, Belle V. A new function of GAPDH from Chlamydomonas reinhardtii: a thiol-disulfide exchange reaction with CP12. Biochemistry 2009; 48:6034-40. [PMID: 19456123 DOI: 10.1021/bi900569h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CP12 is a flexible protein that is well-known to interact with GAPDH, and this association is crucial to the regulation of enzyme activity. This regulation is likely related to structural transitions of both proteins, but the molecular bases of these changes are not yet understood. To answer this issue, we undertook a study based on the use of paramagnetic probes grafted on cysteine residues and followed by EPR spectroscopy. We present a new application of this approach that enables us to probe the functional role of cysteine residues in protein-protein interactions. Algal CP12 contains four cysteine residues involved in two disulfide bridges in its oxidized state and has some alpha-helical secondary structural elements. In contrast, in its reduced state, CP12 is mainly unstructured and shares some physical properties with intrinsically disordered proteins. Treatment of CP12 with a methane thiosulfonate derivative spin-label (MTSL) led to the labeling of the cysteine residues involved in the C-terminal bridge only as revealed by mass spectrometry. Surprisingly, the partner protein GAPDH induced the cleavage of the disulfide bridge between the cysteine residues of CP12 and the spin-label, resulting in the full release of the label. We showed the existence of a transitory interaction between both proteins and proposed a mechanism based on a thiol-disulfide exchange reaction. The results of this study point out a novel role of the algal GAPDH which is often termed a "moonlighting" protein.
Collapse
Affiliation(s)
- Jenny Erales
- Bioenergetique et Ingenierie des Proteines, UPR 9036 CNRS et Aix-Marseille Universites, IFR 88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Erales J, Lignon S, Gontero B. CP12 from Chlamydomonas reinhardtii, a permanent specific "chaperone-like" protein of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 2009; 284:12735-44. [PMID: 19287002 DOI: 10.1074/jbc.m808254200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new role is reported for CP12, a highly unfolded and flexible protein, mainly known for its redox function with A(4) glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both reduced and oxidized CP12 can prevent the in vitro thermal inactivation and aggregation of GAPDH from Chlamydomonas reinhardtii. This mechanism is thus not redox-dependent. The protection is specific to CP12, because other proteins, such as bovine serum albumin, thioredoxin, and a general chaperone, Hsp33, do not fully prevent denaturation of GAPDH. Furthermore, CP12 acts as a specific chaperone, since it does not protect other proteins, such as catalase, alcohol dehydrogenase, or lysozyme. The interaction between CP12 and GAPDH is necessary to prevent the aggregation and inactivation, since the mutant C66S that does not form any complex with GAPDH cannot accomplish this protection. Unlike the C66S mutant, the C23S mutant that lacks the N-terminal bridge is partially able to protect and to slow down the inactivation and aggregation. Tryptic digestion coupled to mass spectrometry confirmed that the S-loop of GAPDH is the interaction site with CP12. Thus, CP12 not only has a redox function but also behaves as a specific "chaperone-like protein" for GAPDH, although a stable and not transitory interaction is observed. This new function of CP12 may explain why it is also present in complexes involving A(2)B(2) GAPDHs that possess a regulatory C-terminal extension (GapB subunit) and therefore do not require CP12 to be redox-regulated.
Collapse
Affiliation(s)
- Jenny Erales
- Laboratoire d'Enzymologie de Complexes Supramoléculaires, UPR 9036, Bioénergétique et Ingénierie des Protéines, Marseille Cedex 20, France
| | | | | |
Collapse
|
13
|
Mapping of a copper-binding site on the small CP12 chloroplastic protein of Chlamydomonas reinhardtii using top-down mass spectrometry and site-directed mutagenesis. Biochem J 2009; 419:75-82, 4 p following 82. [DOI: 10.1042/bj20082004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CP12 is a small chloroplastic protein involved in the Calvin cycle that was shown to bind copper, a metal ion that is involved in the transition of CP12 from a reduced to an oxidized state. In order to describe CP12's copper-binding properties, copper-IMAC experiments and site-directed mutagenesis based on computational modelling, were coupled with top-down MS [electrospray-ionization MS and MS/MS (tandem MS)]. Immobilized-copper-ion-affinity-chromatographic experiments allowed the primary characterization of the effects of mutation on copper binding. Top-down MS/MS experiments carried out under non-denaturing conditions on wild-type and mutant CP12–Cu2+ complexes then allowed fragment ions specifically binding the copper ion to be determined. Comparison of MS/MS datasets defined three regions involved in metal ion binding: residues Asp16–Asp23, Asp38–Lys50 and Asp70–Glu76, with the two first regions containing selected residues for mutation. These data confirmed that copper ligands involved glutamic acid and aspartic residues, a situation that contrasts with that obtaining for typical protein copper chelators. We propose that copper might play a role in the regulation of the biological activity of CP12.
Collapse
|
14
|
Erales J, Avilan L, Lebreton S, Gontero B. Exploring CP12 binding proteins revealed aldolase as a new partner for the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex - purification and kinetic characterization of this enzyme from Chlamydomonas reinhardtii. FEBS J 2008; 275:1248-59. [DOI: 10.1111/j.1742-4658.2008.06284.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Trost P, Fermani S, Marri L, Zaffagnini M, Falini G, Scagliarini S, Pupillo P, Sparla F. Thioredoxin-dependent regulation of photosynthetic glyceraldehyde-3-phosphate dehydrogenase: autonomous vs. CP12-dependent mechanisms. PHOTOSYNTHESIS RESEARCH 2006; 89:263-75. [PMID: 17031544 DOI: 10.1007/s11120-006-9099-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/21/2006] [Indexed: 05/03/2023]
Abstract
Regulation of the Calvin-Benson cycle under varying light/dark conditions is a common property of oxygenic photosynthetic organisms and photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the targets of this complex regulatory system. In cyanobacteria and most algae, photosynthetic GAPDH is a homotetramer of GapA subunits which do not contain regulatory domains. In these organisms, dark-inhibition of the Calvin-Benson cycle involves the formation of a kinetically inhibited supramolecular complex between GAPDH, the regulatory peptide CP12 and phosphoribulokinase. Conditions prevailing in the dark, i.e. oxidation of thioredoxins and low NADP(H)/NAD(H) ratio promote aggregation. Although this regulatory system has been inherited in higher plants, these phototrophs contain in addition a second type of GAPDH subunits (GapB) resulting from the fusion of GapA with the C-terminal half of CP12. Heterotetrameric A(2)B(2)-GAPDH constitutes the major photosynthetic GAPDH isoform of higher plants chloroplasts and coexists with CP12 and A(4)-GAPDH. GapB subunits of A(2)B(2)-GAPDH have inherited from CP12 a regulatory domain (CTE for C-terminal extension) which makes the enzyme sensitive to thioredoxins and pyridine nucleotides, resembling the GAPDH/CP12/PRK system. The two systems are similar in other respects: oxidizing conditions and low NADP(H)/NAD(H) ratios promote aggregation of A(2)B(2)-GAPDH into strongly inactivated A(8)B(8)-GAPDH hexadecamers, and both CP12 and CTE specifically affect the NADPH-dependent activity of GAPDH. The alternative, lower activity with NADH is always unaffected. Based on the crystal structure of spinach A(4)-GAPDH and the analysis of site-specific mutants, a model of the autonomous (CP12-independent) regulatory mechanism of A(2)B(2)-GAPDH is proposed. Both CP12 and CTE seem to regulate different photosynthetic GAPDH isoforms according to a common and ancient molecular mechanism.
Collapse
Affiliation(s)
- P Trost
- Laboratory of Molecular Plant Physiology, Department of Evolutionary Experimental Biology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lebreton S, Andreescu S, Graciet E, Gontero B. Mapping of the interaction site of CP12 with glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii. FEBS J 2006; 273:3358-69. [PMID: 16803460 DOI: 10.1111/j.1742-4658.2006.05342.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 8.5 kDa chloroplast protein CP12 is essential for assembly of the phosphoribulokinase/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complex from Chlamydomonas reinhardtii. After reduction of this complex with thioredoxin, phosphoribulokinase is released but CP12 remains tightly associated with GAPDH and downregulates its NADPH-dependent activity. We show that only incubation with reduced thioredoxin and the GAPDH substrate 1,3-bisphosphoglycerate leads to dissociation of the GAPDH/CP12 complex. Consequently, a significant twofold increase in the NADPH-dependent activity of GAPDH was observed. 1,3-Bisphosphoglycerate or reduced thioredoxin alone weaken the association, causing a smaller increase in GAPDH activity. CP12 thus behaves as a negative regulator of GAPDH activity. A mutant lacking the C-terminal disulfide bridge is unable to interact with GAPDH, whereas absence of the N-terminal disulfide bridge does not prevent the association with GAPDH. Trypsin-protection experiments indicated that GAPDH may be also bound to the central alpha-helix of CP12 which includes residues at position 36 (D) and 39 (E). Mutants of CP12 (D36A, E39A and E39K) but not D36K, reconstituted the GAPDH/CP12 complex. Although the dissociation constants measured by surface plasmon resonance were 2.5-75-fold higher with these mutants than with wild-type CP12 and GAPDH, they remained low. For the D36K mutation, we calculated a 7 kcal.mol(-1) destabilizing effect, which may correspond to loss of the stabilizing effect of an ionic bond for the interaction between GAPDH and CP12. It thus suggests that electrostatic forces are responsible for the interaction between GAPDH and CP12.
Collapse
Affiliation(s)
- Sandrine Lebreton
- Institut Jacques Monod, CNRS-Universités Paris VI et Paris VII, France
| | | | | | | |
Collapse
|
17
|
Mitchell BF, Pedersen LB, Feely M, Rosenbaum JL, Mitchell DR. ATP production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol Biol Cell 2005; 16:4509-18. [PMID: 16030251 PMCID: PMC1237060 DOI: 10.1091/mbc.e05-04-0347] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/06/2005] [Accepted: 07/12/2005] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic cilia and flagella are long, thin organelles, and diffusion from the cytoplasm may not be able to support the high ATP concentrations needed for dynein motor activity. We discovered enzyme activities in the Chlamydomonas reinhardtii flagellum that catalyze three steps of the lower half of glycolysis (phosphoglycerate mutase, enolase, and pyruvate kinase). These enzymes can generate one ATP molecule for every substrate molecule consumed. Flagellar fractionation shows that enolase is at least partially associated with the axoneme, whereas phosphoglycerate mutase and pyruvate kinase primarily reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies reported previously in the cpc1 strain. We conclude that in situ ATP synthesis throughout the flagellar compartment is essential for normal flagellar motility.
Collapse
Affiliation(s)
- Beth F Mitchell
- Department of Biology, Le Moyne College, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|