1
|
Wu X, Chen L, Lin X, Chen X, Han C, Tian F, Wan X, Liu Q, He F, Chen L, Zhong Y, Yang H, Zhang F. Integrating physiological and transcriptome analyses clarified the molecular regulation mechanism of PyWRKY48 in poplar under cadmium stress. Int J Biol Macromol 2023; 238:124072. [PMID: 36934813 DOI: 10.1016/j.ijbiomac.2023.124072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
WRKY transcription factors (TFs) play an important role in regulating plant growth and responses to environmental stress. However, the molecular mechanism of WRKY to cadmium (Cd) stress is unclear, which prevents phytoremediation of Cd-contaminated soil from widely application. To determine the underlying mechanism, PyWRKY48-overexpressing poplars were obtained (OE-32 and OE-67) to study the Cd tolerance and accumulation in poplars. Results showed that the Cd content in the aboveground part of the two transgenic poplar lines were 1.57 and 1.99 times higher than that of wild type (WT), and lateral roots, GSH, PCs content and GST activity increased significantly. RNA-seq. data about transgenic and WT poplars revealed that 2074 differentially expressed genes (DEGs) in roots, 4325 in leaves, and 499 in both tissues. And these DEGs were mainly concentrated in ABC transport protein (PaABC), heavy-metal binding protein (PaHIPP), and transportation and loading of xylem (PaNPF, PaBSP) proteins, and they enhanced Cd accumulation. Meanwhile, PyWRKY48 increased the Cd tolerance of transgenic poplars by up-regulating the expression of PaGRP, PaPER and PaPHOS, which encode cell wall proteins, antioxidant enzyme, and heavy metal-associated proteins, respectively. In addition, overexpression PyWRKY48 promoted poplar growth by increasing the chlorophyll and carotenoid content. ENVIRONMENTAL IMPLICATION: This study generated PyWRKY48-overexpressing poplars and functionally verified them in Cd-contaminated soil, to analyze the effects of the gene on poplar growth, Cd tolerance and Cd accumulation. RNA seq. data revealed that several genes are involved in Cd exposure. This may provide a strong molecular basis and new ideas for improving the phytoremediation efficiency of Cd-contaminated soils. Importantly, the transgenic poplars grew better and accumulated more Cd than the wild-type. Therefore, PyWRKY48-overexpressing poplars could be considered useful for mitigating environmental pollution.
Collapse
Affiliation(s)
- Xiaolu Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lulu Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinyi Lin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoxi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengyu Han
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feifei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xueqin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lianghua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu Zhong
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hanbo Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Xiong H, Ma H, Zhao H, Yang L, Hu B, Wang J, Shi X, Zhang Y, Rennenberg H. Integrated physiological, proteome and gene expression analyses provide new insights into nitrogen remobilization in citrus trees. TREE PHYSIOLOGY 2022; 42:1628-1645. [PMID: 35225347 DOI: 10.1093/treephys/tpac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) remobilization is an important physiological process that supports the growth and development of trees. However, in evergreen broad-leaved tree species, such as citrus, the mechanisms of N remobilization are not completely understood. Therefore, we quantified the potential of N remobilization from senescing leaves of spring shoots to mature leaves of autumn shoots of citrus trees under different soil N availabilities and further explored the underlying N metabolism characteristics by physiological, proteome and gene expression analyses. Citrus exposed to low N had an approximately 38% N remobilization efficiency (NRE), whereas citrus exposed to high N had an NRE efficiency of only 4.8%. Integrated physiological, proteomic and gene expression analyses showed that photosynthesis, N and carbohydrate metabolism interact with N remobilization. The improvement of N metabolism and photosynthesis, the accumulation of proline and arginine, and delayed degradation of storage protein in senescing leaves are the result of sufficient N supply and low N remobilization. Proteome further showed that energy generation proteins and glutamate synthase were hub proteins affecting N remobilization. In addition, N requirement of mature leaves is likely met by soil supply at high N nutrition, thereby resulting in low N remobilization. These results provide insight into N remobilization mechanisms of citrus that are of significance for N fertilizer management in orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Haotian Ma
- Health Science Center, Xi' an Jiaotong University, Xi'an 710061, China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Linsheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400716, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
3
|
Zhang MJ, Fu Q, Chen MS, He H, Tang M, Ni J, Tao YB, Xu ZF. Characterization of the bark storage protein gene ( JcBSP) family in the perennial woody plant Jatropha curcas and the function of JcBSP1 in Arabidopsis thaliana. PeerJ 2022; 10:e12938. [PMID: 35186503 PMCID: PMC8833228 DOI: 10.7717/peerj.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Bark storage protein (BSP) plays an important role in seasonal nitrogen cycling in perennial deciduous trees. However, there is no report on the function of BSP in the perennial woody oil plant Jatropha curcas. METHODS In this study, we identified six members of JcBSP gene family in J. curcas genome. The patterns, seasonal changes, and responses to nitrogen treatment in gene expression of JcBSPs were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Overexpression of JcBSP1 in transgenic Arabidopsis thaliana was driven by a constitutive cauliflower mosaic virus (CaMV) 35S RNA promoter. RESULTS JcBSP members were found to be expressed in various tissues, except seeds. The seasonal changes in the total protein concentration and JcBSP1 expression in the stems of J. curcas were positively correlated, as both increased in autumn and winter and decreased in spring and summer. In addition, the JcBSP1 expression in J. curcas seedlings treated with different concentrations of an NH4NO3 solution was positively correlated with the NH4NO3 concentration and application duration. Furthermore, JcBSP1 overexpression in Arabidopsis resulted in a phenotype of enlarged rosette leaves, flowers, and seeds, and significantly increased the seed weight and yield in transgenic plants.
Collapse
Affiliation(s)
- Ming-Jun Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China,CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Huiying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Jun Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Yan-Bin Tao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Zeng J, Sheng H, Liu Y, Wang Y, Wang Y, Kang H, Fan X, Sha L, Yuan S, Zhou Y. High Nitrogen Supply Induces Physiological Responsiveness to Long Photoperiod in Barley. FRONTIERS IN PLANT SCIENCE 2017; 8:569. [PMID: 28446919 PMCID: PMC5388745 DOI: 10.3389/fpls.2017.00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/29/2017] [Indexed: 05/07/2023]
Abstract
Photoperiod and nutrient nitrogen (N) supply influence the growth, development, and productivity of crops. This study examined the physiological, biochemical, and morpho-anatomical traits of NA5 and NA9, two barley cultivars with contrasting photoperiod lengths, under the combined treatment of photoperiod regime and N supply. Under long photoperiod, high N supply decreased net photosynthesis; decreased chlorophyll a and chlorophyll a/b; decreased ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD) activities; decreased ascorbate, glutathione, soluble protein, and soluble sugar; destroyed mesophyll cell integrity; and increased [Formula: see text], malondialdehyde, and proline in both NA5 and NA9. Under short photoperiod, high N content increased net photosynthesis; increased chlorophyll a and chlorophyll a/b; increased APX, CAT, and SOD activities; and increased antioxidants, soluble protein, and soluble sugar in NA9 but decreased the same parameters in NA5. These results indicated that N supply strongly affected photosynthetic capacity and the balance of reactive oxygen species in response to short and long photoperiod. High N supply enhanced the sensitivity of long-day barley to photoperiod change by inhibiting photosynthesis and decreasing antioxidant defense ability. High N mitigated the undesirable effects of shortened photoperiod in short-day barley. Therefore, the data from this study revealed that N status affects adaptation to photoperiod changes by maintaining redox homeostasis and photosynthetic capacity.
Collapse
Affiliation(s)
- Jian Zeng
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
- Institute of Natural Resources and Geographic Technology, Sichuan Agricultural UniversityWenjiang, China
| | - Huajin Sheng
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Yang Liu
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
| | - Yao Wang
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural UniversityWenjiang, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China
| |
Collapse
|
5
|
Liu B, Rennenberg H, Kreuzwieser J. Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees. PLoS One 2015; 10:e0136579. [PMID: 26308462 PMCID: PMC4550380 DOI: 10.1371/journal.pone.0136579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns.
Collapse
Affiliation(s)
- Bin Liu
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Nitrogen Nutrition of Trees in Temperate Forests—The Significance of Nitrogen Availability in the Pedosphere and Atmosphere. FORESTS 2015. [DOI: 10.3390/f6082820] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Estiarte M, Peñuelas J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. GLOBAL CHANGE BIOLOGY 2015; 21:1005-17. [PMID: 25384459 DOI: 10.1111/gcb.12804] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/29/2014] [Indexed: 05/07/2023]
Abstract
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.
Collapse
Affiliation(s)
- Marc Estiarte
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | | |
Collapse
|
8
|
Günthardt-Goerg MS, Arend M. Woody plant performance in a changing climate. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:1-4. [PMID: 23279293 DOI: 10.1111/j.1438-8677.2012.00698.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
|