1
|
Barton BE, Rock JK, Willie AM, Harris EA, Finnerty RM, Herrera GG, Anamthathmakula P, Winuthayanon W. Serine protease inhibitor disrupts sperm motility leading to reduced fertility in female mice†. Biol Reprod 2020; 103:400-410. [PMID: 32303757 PMCID: PMC7401027 DOI: 10.1093/biolre/ioaa049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 11/26/2022] Open
Abstract
Inhibition of the sperm transport process in the female reproductive tract could lead to infertility. We previously showed that a pan-serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), blocked semen liquefaction in vivo and resulted in a drastic decrease in the number of sperm in the oviduct of female mice. In this study, we used a mouse model to test the efficacy of AEBSF as a reversible contraceptive, a sperm motility inhibitor, and a spermicide. Additionally, this study evaluated the toxicity of AEBSF on mouse vaginal tissues in vivo and human endocervical cells in vitro. We found that female mice treated with AEBSF had significantly less pups born per litter as well as fertilization rates in vivo compared to the vehicle control. We then showed that AEBSF reduced sperm motility and fertilization capability in vitro in a dose-dependent manner. Furthermore, AEBSF also exhibited spermicidal effects. Lastly, AEBSF treatment in female mice for 10 min or 3 consecutive days did not alter vaginal cell viability in vivo, similar to that of the vehicle and non-treated controls. However, AEBSF decreased cell viability of human ectocervical (ECT) cell line in vitro, suggesting that cells in the lower reproductive tract in mice and humans responded differently to AEBSF. In summary, our study showed that AEBSF can be used as a prototype compound for the further development of novel non-hormonal contraceptives for women by targeting sperm transport in the female reproductive tract.
Collapse
Affiliation(s)
- Brooke E Barton
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Jenna K Rock
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anna M Willie
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Emily A Harris
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Ryan M Finnerty
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Gerardo G Herrera
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Li S, Winuthayanon W. Collection of Post-mating Semen from the Female Reproductive Tract and Measurement of Semen Liquefaction in Mice. J Vis Exp 2017. [PMID: 29286424 DOI: 10.3791/56670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In mice, ejaculated semen is deposited in the uterus. After ejaculation, the semen changes consistency from gel-like to watery, a process called liquefaction. In this study, we show how to collect the post-ejaculated semen from the female reproductive tract in a mouse model. First, adult female mice in the estrus stage were housed in a male's cage overnight. The next morning, copulation was confirmed by the presence of copulatory plug at the vaginal opening. Female mice with copulatory plugs were euthanized, and each reproductive tract was collected as a whole (vagina, uterus, oviducts, ovaries), ensuring a closed system to contain the semen. The reproductive tract was placed in a 1.5 mL microcentrifuge tube, and the vagina was cut off to release the semen into the tube. To ensure maximum semen volume for analysis, toothless forceps were used to squeeze the uterine horns from ovarian end to vaginal end expelling remaining semen. The whole reproductive tract was then discarded. The semen-containing tube was briefly spun down. A 25 μL capillary pipette was placed into the tube at a 180° angle (parallel to the tube wall). The amount of time used to fill the capillary tube to the 25 μL line was recorded. Semen from a proven male breeder usually takes approximately 60-180 s to fill a 25 μL capillary tube. This semen collection technique can also be used in other downstream applications such as sperm imaging and motility analysis.
Collapse
Affiliation(s)
- Shuai Li
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University;
| |
Collapse
|
3
|
POSVP(21), a major secretory androgen-dependent protein from sand rat seminal vesicles, identified as a transgelin. Asian J Androl 2010; 12:422-30. [PMID: 20400972 DOI: 10.1038/aja.2010.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The seminal vesicles of adult sand rat contain a major secretory protein band (MW 21 kDa) designated as Psammomys obesus seminal vesicles protein of 21 kDa (POSVP(21)). This protein is abundant in secretions, regulated by androgens and also present in the vaginal plug. POSVP(21) accounts for over 22.3% of soluble proteins from homogenate during the breeding season, 13.3% during the middle season and 5.3% during the hormonal regression season. It is absent during the non-breeding season. POSVP(21) is localized in the cytoplasm of epithelial cells and in secretory products in the lumen. It presents an immunological homology with two epididymal proteins with the same molecular weight and a high degree of homology with transgelin from rat (Rattus norvegicus).
Collapse
|
4
|
Martellini JA, Cole AL, Venkataraman N, Quinn GA, Svoboda P, Gangrade BK, Pohl J, Sørensen OE, Cole AM. Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. FASEB J 2009; 23:3609-18. [PMID: 19487309 DOI: 10.1096/fj.09-131961] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mucosal surfaces of the reproductive tract as well as their secretions have important roles in preventing sexual transmission of HIV-1. In the current study, the majority of the intrinsic anti-HIV-1 activity of human seminal plasma (SP) was determined to reside in the cationic polypeptide fraction. Antiviral assays utilizing luciferase reporter cells and lymphocytic cells revealed the ability of whole SP to prevent HIV-1 infection, even when SP was diluted 3200-fold. Subsequent fractionation by continuous flow acid-urea (AU)-PAGE and antiviral testing revealed that cationic polypeptides within SP were responsible for the majority of anti-HIV-1 activity. A proteomic approach was utilized to resolve and identify 52 individual cationic polypeptides that contribute to the aggregate anti-HIV-1 activity of SP. One peptide fragment of semenogelin I, termed SG-1, was purified from SP by a multistep chromatographic approach, protein sequenced, and determined to exhibit anti-HIV-1 activity against HIV-1. Anti-HIV-1 activity was transient, as whole SP incubated for prolonged time intervals exhibited a proportional decrease in anti-HIV-1 activity that was directly attributed to the degradation of semenogelin I peptides. Collectively, these results indicate that the cationic polypeptide fraction of SP is active against HIV-1, and that semenogelin-derived peptides contribute to the intrinsic anti-HIV-1 activity of SP.
Collapse
Affiliation(s)
- Julie A Martellini
- Department of Molecular Biology and Microbiology, Biomolecular Science Center, Burnett School of Biomedical Sciences at University of Central Florida, Orlando, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Metzger J, Luppa PB, Good DM, Mischak H. Adapting mass spectrometry-based platforms for clinical proteomics applications: The capillary electrophoresis coupled mass spectrometry paradigm. Crit Rev Clin Lab Sci 2009; 46:129-52. [PMID: 19404829 PMCID: PMC5769463 DOI: 10.1080/10408360902805261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Single biomarker detection is common in clinical laboratories due to the currently available method spectrum. For various diseases, however, no specific single biomarker could be identified. A strategy to overcome this diagnostic void is to shift from single analyte detection to multiplexed biomarker profiling. Mass spectrometric methods were employed for biomarker discovery in body fluids. The enormous complexity of biofluidic proteome compartments implies upstream fractionation. For this reason, mass spectrometry (MS) was coupled to two-dimensional gel electrophoresis, liquid chromatography, surface-enhanced laser desorption/ionization, or capillary electrophoresis (CE). Differences in performance and operating characteristics make them differentially suited for routine laboratory applications. Progress in the field of clinical proteomics relies not only on the use of an adequate technological platform, but also on a fast and efficient proteomic workflow including standardized sample preparation, proteomic data processing, statistical validation of biomarker selection, and sample classification. Based on CE-MS analysis, we describe how proteomic technology can be implemented in a clinical laboratory environment. In the last part of this review, we give an overview of CE-MS-based clinical studies and present information on identity and biological significance of the identified peptide biomarkers providing evidence of disease-induced changes in proteolytic processing and posttranslational modification.
Collapse
Affiliation(s)
- Jochen Metzger
- Mosaiques Diagnostics and Terapeutics AG, Mellendorfer Str. 7-9, Hannover 30625, Germany.
| | | | | | | |
Collapse
|
6
|
Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F, Polley R, Schmidt T, Schöfer W, Zürbig P, Good DM, Coon JJ, Mischak H. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl 2008; 2:556-570. [PMID: 19759844 DOI: 10.1002/prca.200780082] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Only 30% of patients with elevated serum prostate specific antigen (PSA) levels who undergo prostate biopsy are diagnosed with prostate cancer (PCa). Novel methods are needed to reduce the number of unnecessary biopsies. We report on the identification and validation of a panel of 12 novel biomarkers for prostate cancer (PCaP), using CE coupled MS. The biomarkers could be defined by comparing first void urine of 51 men with PCa and 35 with negative prostate biopsy. In contrast, midstream urine samples did not allow the identification of discriminatory molecules, suggesting that prostatic fluids may be the source of the defined biomarkers. Consequently, first void urine samples were tested for sufficient amounts of prostatic fluid, using a prostatic fluid indicative panel ("informative" polypeptide panel; IPP). A combination of IPP and PCaP to predict positive prostate biopsy was evaluated in a blinded prospective study. Two hundred thirteen of 264 samples matched the IPP criterion. PCa was detected with 89% sensitivity, 51% specificity. Including age and percent free PSA to the proteomic signatures resulted in 91% sensitivity, 69% specificity.
Collapse
Affiliation(s)
- Dan Theodorescu
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The onset of clinical assisted reproduction, a quarter of a century ago, required the isolation of motile spermatozoa. As the indication of assisted reproduction shifted from mere gynaecological indications to andrological indications during the years, this urged andrological research to understand the physiology of male germ cell better and develop more sophisticated techniques to separate functional spermatozoa from those that are immotile, have poor morphology or are not capable to fertilize oocytes. Initially, starting from simple washing of spermatozoa, separation techniques, based on different principles like migration, filtration or density gradient centrifugation evolved. The most simple and cheapest is the conventional swim-up procedure. A more sophisticated and most gentle migration method is migration-sedimentation. However, its yield is relatively small and the technique is therefore normally only limited to ejaculates with a high number of motile spermatozoa. Recently, however, the method was also successfully used to isolate spermatozoa for intracytoplasmic sperm injection (ICSI). Sperm separation methods that yield a higher number of motile spermatozoa are glass wool filtration or density gradient centrifugation with different media. Since Percoll as a density medium was removed from the market in 1996 for clinical use in the human because of its risk of contamination with endotoxins, other media like IxaPrep, Nycodenz, SilSelect, PureSperm or Isolate were developed in order to replace Percoll. Today, an array of different methods is available and the selection depends on the quality of the ejaculates, which also includes production of reactive oxygen species (ROS) by spermatozoa and leukocytes. Ejaculates with ROS production should not be separated by means of conventional swim-up, as this can severely damage the spermatozoa. In order to protect the male germ cells from the influence of ROS and to stimulate their motility to increase the yield, a number of substances can be added to the ejaculate or the separation medium. Caffeine, pentoxifylline and 2-deoxyadenosine are substances that were used to stimulate motility. Recent approaches to stimulate spermatozoa include bicarbonate, metal chelators or platelet-activating factor (PAF). While the use of PAF already resulted in pregnancies in intrauterine insemination, the suitability of the other substances for the clinical use still needs to be tested. Finally, the isolation of functional spermatozoa from highly viscous ejaculates is a special challenge and can be performed enzymatically to liquefy the ejaculate. The older method, by which the ejaculate is forcefully aspirated through a narrow-gauge needle, should be abandoned as it can severely damage spermatozoa, thus resulting in immotile sperm.
Collapse
Affiliation(s)
- Ralf R Henkel
- Department of Dermatology and Andrology, Justus Liebig University, Giessen, Gaffkystr. 14, Germany
| | - Wolf-Bernhard Schill
- Department of Dermatology and Andrology, Justus Liebig University, Giessen, Gaffkystr. 14, Germany
| |
Collapse
|
8
|
Abstract
The overall history and recent advances in surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) technology is reviewed herein. Fundamentals of SELDI-TOF analysis are presented while drawing comparisons with other laser-based mass spectrometry techniques. The application of SELDI-TOF-MS to functional genomics and biomarker discovery is discussed and exemplified by elucidating a biomarker candidate for prostatic carcinoma. Finally, a short discussion regarding future SELDI requirements and developments is supplied.
Collapse
Affiliation(s)
- M Merchant
- Ciphergen Biosystems, Inc., Palo Alto, CA 94306, USA
| | | |
Collapse
|
9
|
Honea KL, Houserman VL, Merryman DC, Free DA, Stringfellow SE. Effect of limited proteolysis with alpha-chymotrypsin on semen with an abnormal sperm penetration assay and possible application for in vitro fertilization or intrauterine insemination. J Assist Reprod Genet 1993; 10:255-60. [PMID: 8130429 DOI: 10.1007/bf01204938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE This study was designed to assess the impact of limited proteolysis with alpha-chymotrypsin on the sperm penetration assay (SPA) of infertile patients and to identify a group whose results would normalize with this pretreatment. Further, the application of this treatment to semen of these patients during in vitro fertilization (IVF) and intrauterine insemination (IUI) was reported. RESULTS Three groups were identified. In one, SPA was abnormal and improved to normal with pretreatment; in the second, SPA was abnormal and did not normalize; and in the third, SPA was normal and improved significantly (included in this group are three known fertile controls). CONCLUSION Chymotrypsin pretreatment and repeat SPA are advocated for patients with abnormal SPA. If normalization occurs, pretreatment of semen for IVF or IUI is a therapy to be considered.
Collapse
Affiliation(s)
- K L Honea
- ART Program at Birmingham, Alabama 35209
| | | | | | | | | |
Collapse
|
10
|
Lilja H, Lundwall A. Molecular cloning of epididymal and seminal vesicular transcripts encoding a semenogelin-related protein. Proc Natl Acad Sci U S A 1992; 89:4559-63. [PMID: 1584792 PMCID: PMC49122 DOI: 10.1073/pnas.89.10.4559] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Freshly ejaculated human semen has the appearance of a loose gel in which the predominant structural protein components are the seminal vesicle-secreted semenogelins (Sg). The primary structure of the 439-residue SgI has previously been obtained by cDNA cloning. This cDNA cross-hybridizes to a larger transcript coding for a second secretory protein, SgII. Here we report the almost complete structure of a precursor of SgII established by lambda gt11 clones isolated from epididymal and seminal vesicular cDNA libraries. The deduced amino acid sequence of the 559-residue mature protein has a molecular weight of 62,931 but an increase in weight may be provided by asparagine-linked oligosaccharide attachment at residue 249. SgII, which has 78% overall identity with SgI, contains eight 60-residue regions that display conspicuous internal sequence similarity, whereas SgI only contains six of these regions. The SgII structure is translated from an open reading frame in a polyadenylylated 2.4-kilobase transcript. The message is abundant in the seminal vesicles but rare in the epididymis.
Collapse
Affiliation(s)
- H Lilja
- Department of Clinical Chemistry, Lund University, Malmö General Hospital, Sweden
| | | |
Collapse
|