1
|
Ritika R, Saini S, Shavi S, Ramesh PN, Selokar NL, Ludri A, Singh MK. Curcumin enhances developmental competence and ameliorates heat stress in in vitro buffalo (Bubalus bubalis) embryos. Vet World 2024; 17:2433-2442. [PMID: 39829665 PMCID: PMC11736367 DOI: 10.14202/vetworld.2024.2433-2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aim Buffalo is the principal dairy animal and plays a major role in the economic growth of the dairy industry, contributing nearly 50% of the country's milk production. The Buffalo core body temperature is typically 38.5°C, but it can rise to 41.5°C in the summer, causing heat stress, which leads to the generation of reactive oxygen species or oxidative stress and affects the reproductive physiology of animals. Curcumin acts as an antioxidant, improves cellular development, and combats the effect of heat stress on in vitro-produced embryos. This study aimed to examine the impact of curcumin on developmental competence and the expression of important genes under normal and heat-stressed conditions during in vitro embryo production in buffalo. Materials and Methods Group-1: All embryo production steps (i.e., in vitro maturation [IVM], in vitro fertilization [IVF], and in vitro culture [IVC]) were conducted at 38.5°C. The presumed zygotes were cultured in media supplemented with different concentrations of curcumin, that is, 0 μM, 5 μM, and 10 μM of curcumin. Group-2: All embryo production steps (i.e., IVM, IVF, and IVC) were carried out at 38.5°C. The presumed zygotes were cultured in media supplemented with different concentrations of curcumin, that is, 0 μM, 5 μM, and 10 μM of curcumin, but the early cleaved embryos were exposed to heat stress (39.5°C) for 2 h after 48 h of IVF and then cultured at 38.5°C for embryo production. Results Blastocyst production was 16.63 ± 1.49%, 21.46 ± 0.67%, and 6.50 ± 1.17% at control, 5 μM and 10 μM of curcumin at 38.5°C, respectively, whereas at 39.5°C, it was 8.59 ± 1.20%, 15.21 ± 1.31%, and 3.03 ± 1.20% at control, 5 μM and 10 μM curcumin, respectively. The blastocyst rate was found to be significantly higher (p < 0.05) at 5 μM curcumin compared with the control or 10 μM at 38.5°C and 39.5°C. The antioxidant, antiapoptotic, and pluripotency-related genes exhibited higher (p < 0.05) expression in the presence of 5 μM curcumin compared to 10 μM or control at both temperatures. Conclusion Curcumin supplementation in embryo culture media effectively enhances embryo production in vitro and mitigates the adverse effects of heat stress.
Collapse
Affiliation(s)
- Ritika Ritika
- Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sudha Saini
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Shavi Shavi
- Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - P. N. Ramesh
- Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Naresh L. Selokar
- Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ashutosh Ludri
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Manoj Kumar Singh
- Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
2
|
Kumar S, Chaves MS, Ferreira ACA, Bezerra da Silva AF, Pereira LMC, Vale WG, Filho STR, Watanabe YF, Melo LM, Figueirêdo Freitas VJD. Oocyte competence and gene expression in parthenogenetic produced embryos from repeat breeder and normally fertile buffaloes (Bubalus bubalis) raised in sub-humid tropical climate. Anim Reprod Sci 2024; 262:107426. [PMID: 38377631 DOI: 10.1016/j.anireprosci.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
The reproductive management of the buffalo species still faces several unresolved problems, which directly affect the productivity of the herd, one of them being the presence of repeat breeder females. Given this scenario, this study aimed to verify the developmental competence of oocytes obtained from repeat breeder females and submitted to parthenogenetic activation. In addition, embryo gene expression was compared to normally fertile females. Murrah buffaloes were divided into two groups: repeat breeder (RB, n = 8) and normally fertile or control (CR, n = 7). Cumulus-oocyte complexes (COCs) were aspirated by transvaginal ovum pick-up from estrus synchronized females. The COCs were submitted to IVM for 24 h, and subsequently, the oocytes were activated using ionomycin, followed by 6-DMAP. Afterwards, the presumptive parthenotes were cultured for six or seven days in a microenvironment of 5 % CO2, 5 % O2, and 90 % N2 at 38.5 °C. The expression of OCT4, GLUT1, BCL2 and TFAM genes from blastocysts was evaluated. The overall COCs recovery rate was 70.9 % (190/268). The maturation (57.8 vs 71.1), cleavage (45.2 vs 62.2) and blastocyst (30.1 vs 45.9) rates did not differ (P > 0.05) between RB and CR females, respectively. Similarly, no significant difference (P > 0.05) was observed for the expression of studied genes in both RB and CR females. In conclusion, oocytes obtained from RB were as developmentally competent as those collected from CR females, with similar energy metabolism and in vitro development capacity. Thus, the low fertility rate of repeat breeder buffaloes, when compared to normal cyclic females, must be due to subsequent events to the blastocyst stage.
Collapse
Affiliation(s)
- Satish Kumar
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State, University of Ceará, 60714-903 Fortaleza, Brazil.
| | - Maiana Silva Chaves
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State, University of Ceará, 60714-903 Fortaleza, Brazil
| | - Anna Clara Accioly Ferreira
- Laboratory of Oocytes and Preantral Follicles Manipulation, Faculty of Veterinary, State, University of Ceará, 60714-903 Fortaleza, Brazil
| | - Ana Flavia Bezerra da Silva
- Laboratory of Oocytes and Preantral Follicles Manipulation, Faculty of Veterinary, State, University of Ceará, 60714-903 Fortaleza, Brazil
| | - Leda Maria Costa Pereira
- Post-Graduate Program in Veterinary Science, Faculty of Veterinary, State University of Ceará, 60714-903 Fortaleza, Brazil
| | - William Gomes Vale
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State, University of Ceará, 60714-903 Fortaleza, Brazil
| | | | | | - Luciana Magalhães Melo
- Molecular Genetics Research Unit, University Center Fametro (Unifametro), 60010-470 Fortaleza, Brazil
| | | |
Collapse
|
3
|
Tripathi SK, Nandi S, Gupta PSP, Mondal S. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology 2023; 201:41-52. [PMID: 36827868 DOI: 10.1016/j.theriogenology.2022.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The present study assessed the effects of supplementation of different antioxidants on oocyte maturation, embryo production, reactive oxygen species (ROS) production and expression of key developmental genes. In this study, using ovine as an animal model, we tested the hypothesis that antioxidant supplementation enhanced the developmental competence of oocytes. Ovine oocytes aspirated from local abattoir-derived ovaries were subjected to IVM with different concentrations of antioxidants [(Melatonin, Ascorbic acid (Vit C), alpha-tocopherol (Vit E), Sodium selenite (SS)]. Oocytes matured without any antioxidant supplementation were used as controls. The oocytes were assessed for maturation rates and ROS levels. Further, embryo production rates in terms of cleavage, blastocysts and total cell numbers were evaluated after performing in vitro fertilization. Real-Time PCR analysis was used to evaluate the expression of stress related gene (SOD-1), growth related (GDF-9, BMP-15), and apoptosis-related genes (BCL-2 and BAX). We observed that maturation rates were significantly higher in alpha-tocopherol (100 μM; 92.4%) groups followed by melatonin (30 μM; 89.1%) group. However, blastocyst rates in ascorbic acid (100 μM; 19.5%), melatonin (30 μM; 18.4%), alpha-tocopherol (100 μM; 18.2%), and sodium selenite (20 μM; 16.9%) groups were significantly higher (P 0.05) than that observed in the control groups. Total cell numbers in blastocysts in the melatonin, ascorbic acid and alpha-tocopherol groups were significantly higher than those observed in sodium selenite and control groups. ROS production was reduced in groups treated with melatonin (30 μM), vitamin C (100 μM), sodium selenite (20 μM) and α-tocopherol (200 μM) compared with that observed in the control group. Supplementation of antioxidants caused the alterations in mRNA expression of growth, stress, and apoptosis related gene expression in matured oocytes. The results recommend that antioxidants alpha-tocopherol (200 μM), sodium selenite (40 μM), melatonin (30 μM) and ascorbic acid (100 μM) during IVM reduced the oxidative stress by decreasing ROS levels in oocytes, thus improving embryo quantity and quality.
Collapse
Affiliation(s)
- S K Tripathi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India.
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| |
Collapse
|
4
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
5
|
Sollecito N, Alves R, Beletti M, Pereira E, Miranda M, Silva J, Borges A. Morphometry of bovine blastocysts produced in vitro in culture media with antioxidants cysteamine or oily extract of Lippia origanoides. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the ultrastructural morphometry of bovine embryos produced in vitro grown at different concentrations of antioxidants. After in vitro maturation and fertilization, the presumptive zygotes were assigned into five treatments. T1) without the addition of any antioxidants (negative control); T2) addition of 50μM/mL cysteamine; and T3, T4 and T5) adding 2.5μg/mL, 5.0μg/mL or 10.0μg/mL of the antioxidants derived from the oily extract from Lippia origanoides, respectively. On D7 of culture, the embryos in the blastocyst stage were fixed and prepared for electron transmission microscopy. These were evaluated for the proportion of cytoplasm-to-nucleus, cytoplasm-to-mitochondria, cytoplasm-to-vacuoles, cytoplasm-to-autophagic vacuoles and cytoplasm-to-lipid droplets. Blastocysts cultured in media containing oily extract of Lippia origanoides presented morphological characteristics such as high cell:mitochondria ratio and low cell:vacuoles and cell:autophagic vacuole ratio, possibly been morphological indicators of embryonic quality. Inner cell mass (ICM) from blastocysts cultured in media without any antioxidants had the highest cell:vacuole ratio. Similar results were found in the trophectoderm (TE) cells of blastocysts from treatment 2. Embryo culture media supplemented with antioxidants derived from Lippia origanoides oil produced embryos with a higher cytoplasmic proportion of organelles, such as mitochondria. Also, treatments without any antioxidants or with the addition of cysteamine presented cytoplasmic vacuolization, a characteristic related to production of poor-quality embryos.
Collapse
Affiliation(s)
| | - R.N. Alves
- Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | - A.M. Borges
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
6
|
El-Sanea AM, Abdoon ASS, Kandil OM, El-Toukhy NE, El-Maaty AMA, Ahmed HH. Effect of oxygen tension and antioxidants on the developmental competence of buffalo oocytes cultured in vitro. Vet World 2021; 14:78-84. [PMID: 33642789 PMCID: PMC7896883 DOI: 10.14202/vetworld.2021.78-84] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022] Open
Abstract
Aim: Oxidative stress (OS) is one of the major disruptors of oocyte developmental competence, which appears due to the imbalance between the production and neutralization of reactive oxygen species (ROS). Materials and Methods: In Experiment 1, buffalo oocytes were in vitro matured, fertilized, and cultured at 38.5°C under 5% CO2 + 20% O2 in standard CO2 incubator (OS) or under 5% O2 + 5% CO2 + 90% N2 (Multi-gas incubator, low O2). In Experiment 2, buffalo cumulus oocytes complexes (COCs) were matured in Basic maturation medium (BMM) composed of TCM199+ 10% FCS+ 10 µg/ml FSH+ 50 µg/ml gentamicin (control group) or in BMM supplemented with 50 μM ascorbic acid (ascorbic acid group) or 3.0 mM glutathione (glutathione group) or 10-5 M melatonin (melatonin group) and cultured at 38.5°C under 20% O2 for 24 h. Matured buffalo oocytes in control, ascorbic acid, or melatonin groups were fertilized and zygotes were cultured for 8 days under the same conditions. Results: In both experiments, maturation, cleavage, and blastocyst rates were recorded. Results showed that culture of buffalo oocytes under low O2 (5% O2) significantly increased maturation, cleavage, and blastocyst rates (p<0.05). Meanwhile, under 20% O2, addition of 10-5 M melatonin or 50 μM ascorbic acid to in vitro maturation (IVM) medium significantly improved cumulus cell expansion, nuclear maturation rates of buffalo oocytes (p<0.05), and increased cleavage and blastocyst rates (p<0.05). Conclusion: About 5% O2 is the optimum condition for in vitro production of buffalo embryos, and addition of 10-5 M melatonin to IVM medium for oocytes cultured under 20% O2 could alleviate the adverse effect of high oxygen tension and increased embryo yield.
Collapse
Affiliation(s)
- Amro M El-Sanea
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Tahrir St., Dokki 12622, Cairo, Egypt
| | - Ahmed Sabry S Abdoon
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Tahrir St., Dokki 12622, Cairo, Egypt
| | - Omaima M Kandil
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Tahrir St., Dokki 12622, Cairo, Egypt
| | - Nahed E El-Toukhy
- Department of Animal Physiology, Faculty of Veterinary Medicine, Cairo University, Giza Square 12211, Cairo, Egypt
| | - Amal M Abo El-Maaty
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Centre, Tahrir St., Dokki 12622, Cairo, Egypt
| | - Hodallah H Ahmed
- Department of Animal Physiology, Faculty of Veterinary Medicine, Cairo University, Giza Square 12211, Cairo, Egypt
| |
Collapse
|
7
|
Parthenogenetic activation of buffalo ( Bubalus bubalis) oocytes: comparison of different activation reagents and different media on their developmental competence and quantitative expression of developmentally regulated genes. ZYGOTE 2020; 29:49-58. [PMID: 33004105 DOI: 10.1017/s0967199420000519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was carried out to compare the efficacy of different methods to activate buffalo A + B and C + D quality oocytes parthenogenetically and to study the in vitro developmental competence of oocytes and expression of some important genes at the different developmental stages of parthenotes. The percentage of A + B oocytes (62.16 ± 5.06%, range 53.8-71.3%) was significantly higher (P < 0.001) compared with that of C + D oocytes (37.8 ± 5.00%, range 28.6-46.1%) retrieved from slaughterhouse buffalo ovaries. Among all combinations, ethanol activation followed by culture in research vitro cleave medium gave the highest cleavage and blastocyst yields for both A + B and C + D grade oocytes. Total cell numbers, inner cell mass/trophectoderm ratio and apoptotic index of A + B group blastocysts were significantly different (P < 0.05) from their C + D counterpart. To determine the status of expression patterns of developmentally regulated genes, the expression of cumulus-oocyte complexes, fertilization, developmental competence and apoptotic-related genes were also studied in parthenogenetically produced buffalo embryos at different stages, and indicated that the differential expression patterns of the above genes had a role in early embryonic development.
Collapse
|
8
|
Shahzad Q, Pu L, Ahmed Wadood A, Waqas M, Xie L, Shekhar Pareek C, Xu H, Liang X, Lu Y. Proteomics Analysis Reveals that Warburg Effect along with Modification in Lipid Metabolism Improves In Vitro Embryo Development under Low Oxygen. Int J Mol Sci 2020; 21:E1996. [PMID: 32183390 PMCID: PMC7139666 DOI: 10.3390/ijms21061996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanism regulating embryo development under reduced oxygen tension remains elusive. This study aimed to identify the molecular mechanism impacting embryo development under low oxygen conditions. Buffalo embryos were cultured under 5% or 20% oxygen and were evaluated according to their morphological parameters related to embryo development. The protein profiles of these embryos were compared using iTRAQ-based quantitative proteomics. Physiological O2 (5%) significantly promoted blastocyst yield, hatching rate, embryo quality and cell count as compared to atmospheric O2 (20%). The embryos in the 5% O2 group had an improved hatching rate of cryopreserved blastocysts post-warming (p < 0.05). Comparative proteome profiles of hatched blastocysts cultured under 5% vs. 20% O2 levels identified 43 differentially expressed proteins (DEPs). Functional analysis indicated that DEPs were mainly associated with glycolysis, fatty acid degradation, inositol phosphate metabolism and terpenoid backbone synthesis. Our results suggest that embryos under physiological oxygen had greater developmental potential due to the pronounced Warburg Effect (aerobic glycolysis). Moreover, our proteomic data suggested that higher lipid degradation, an elevated cholesterol level and a higher unsaturated to saturated fatty acid ratio might be involved in the better cryo-survival ability reported in embryos cultured under low oxygen. These data provide new information on the early embryo protein repertoire and general molecular mechanisms of embryo development under varying oxygen levels.
Collapse
Affiliation(s)
- Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Armughan Ahmed Wadood
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Muhammad Waqas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Chandra Shekhar Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Division of Functional genomics in biological and biomedical research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Xianwei Liang
- Guangxi Key Laboratory of Buffalo Genetics and Breeding, Buffalo Research Institute, Chinese 10 Academy of Agriculture Science, Nanning 530001, China;
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| |
Collapse
|
9
|
Mishra A, Ganesan RK, Dhali A, Reddy IJ. Interaction of apoptosis and pluripotency related transcripts for developmental potential of ovine embryos produced in vitro at different oxygen concentrations. Anim Biotechnol 2020; 32:470-478. [PMID: 32011969 DOI: 10.1080/10495398.2020.1721513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study in sheep model was to find out the interaction of apoptotic transcripts, that is, Bcl2, Bax, Casp3, PCNA and p53 and pluripotency related transcripts, that is, Sox2, Nanog and Oct4 in ovine embryos produced in vitro at different O2 concentrations (20% and 5% O2) to compare their developmental potential. Oxygen concentrations did not influence the maturation and cleavage rate but the percentage of morula and blastocysts was significantly more at 5% as compared to 20% O2. A significant upregulated expression of Bcl2 and PCNA genes and significantly downregulated expression of Casp3 and p53 were observed in the blastocysts at 5% than those at 20% O2. The expression of Bax was not influenced by the O2 concentration. Among the pluripotency related transcripts, the expression of Oct4 was significantly upregulated and the expression of Sox2 and Nanog was significantly downregulated in embryos at 5% than at 20% O2. The study concluded that the embryos produced in vitro at low O2 (5%) concentration regulate the expression of developmental genes related to apoptosis and pluripotency to improve the developmental potential of embryos as compared to high O2 (20%) concentration.
Collapse
Affiliation(s)
- Ashish Mishra
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Ramesh Kumar Ganesan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Arindam Dhali
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Ippala Janardhan Reddy
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|
10
|
G. RK, Mishra A, Reddy IJ, Dhali A, Roy SC. Low oxygen tension activates glucose metabolism, improves antioxidant capacity and augment developmental potential of ovine embryos in vitro. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Oxygen (O2) is one of the most powerful regulators of embryo function. Nevertheless, most in vitro embryo production studies do not consider O2 as a determining factor. Aim The present study was designed to assess the effect of different O2 (5 and 20%) concentrations on the developmental ability and expression of genes related to cellular antioxidant functions and glucose metabolism in the in vitro produced ovine embryos. Methods In vitro sheep embryos were produced at different O2 (5 and 20%) concentrations as per the laboratory protocol. Developmental stages of embryos at different O2 concentrations were compared. Messenger RNA abundance of antioxidant and glucose metabolism genes in embryos produced at different O2 concentrations were compared. Key results No significant (P < 0.05) effect of different O2 concentrations on oocyte maturation and cleavage rate was observed. In contrast, significantly (P < 0.05) more number of morula and blastocysts were observed at 5 compared with 20%O2. The expression level of the genes related to antioxidant functions (GPX, SOD1, SOD2 and CAT) and glucose metabolism (G6PD and HPRT) were found significantly (P < 0.05) greater in the embryos generated with 5 compared with 20% O2. In contrast, the expression of GAPDH did not differ significantly (P < 0.05) between the groups. Conclusions Ovine embryos at 5%O2 generated low ROS and synthesised more GSH due to the activation of G6PD and GPX that in turn increased the antioxidant capability and developmental potential of the embryos. Implications Embryos at higher O2 concentration (20%) generated more reactive oxygen species (ROS) that caused oxidative damage to the embryos and in turn reduced their developmental ability and alter gene expression.
Collapse
|
11
|
Dua D, Nagoorvali D, Chauhan MS, Palta P, Mathur P, Singh MK. Calcium ionophore enhanced developmental competence and apoptotic dynamics of goat parthenogenetic embryos produced in vitro. In Vitro Cell Dev Biol Anim 2019; 55:159-168. [PMID: 30737632 DOI: 10.1007/s11626-019-00322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
Parthenogenetically developed embryos are efficient sources of in vitro embryo production, having less ethical issue and being useful for investigating culture conditions/treatments, early developmental, genomic studies, and homonymous source of stem cells. Keeping its advantages in mind, we aimed to study the effects of different activating agents on embryo production and its quality and gene expression. In the present study, 1348 immature oocytes recovered were parthenogenetically developed to embryos. Usable-quality immature oocytes were collected by puncturing the surface follicles and matured in in vitro maturation (IVM) medium for 27 h in a humidified 5% CO2 incubator at 38.5°C. The matured oocytes were parthenogenetically activated by exposure to 5 μM calcium ionophore for 5 min or 7% ethanol for 7 min sequentially followed by 4 h incubation in 2 mM 6-DMAP and then in vitro cultured (IVC) in RVCL/G-2 medium for 8 days. Matured oocytes were activated by calcium ionophore, the cleavage rate observed was 76.67 ± 3.47%, and further they developed into 4-cell, 8-16-cell, morula, blastocyst, and hatched blastocyst with 85.30 ± 1.57%, 70.60 ± 2.00%, 45.05 ± 2.66%, 22.89 ± 2.40%, and 5.70 ± 1.97%, respectively. Whereas ethanol-activated oocytes showed cleavage rate of 87.60 ± 1.70% and further culture developed into 4-cell, 8-16 cell, morula, blastocyst, and hatched blastocyst with 86.14 ± 1.03%, 71.56 ± 2.21%, 40.90 ± 2.45%, 19.02 ± 1.26%, and 2.22 ± 0.38%, respectively. Blastocyst developed from calcium ionophore-activated oocytes showed significantly (P < 0.05) higher total cell number (282.25 ± 27.02 vs 206.00 ± 40.46) and a lower apoptotic index (2.42 ± 0.46 vs 4.07 ± 1.44) than blastocyst developed from ethanol-activated oocytes. The relative expression of anti-apoptotic genes (BCL2, BCL2A1, MCL) at different stages of embryos produced by either calcium ionophore or ethanol activation was found to be increased in earlier stages and decreased in later stages of embryonic development. Similarly, when these embryos were subjected to pro-apoptotic genes (BAX, BAD, BAK), expression was found to be slightly higher in blastocysts than other stages. This study shows that calcium ionophore-activated blastocysts were developmentally more competent than the ethanol-activated blastocysts.
Collapse
Affiliation(s)
- Diksha Dua
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - D Nagoorvali
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - M S Chauhan
- ICAR-Central Institute for Research on Goats, Makhdum, Mathura, 281122, India
| | - P Palta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - P Mathur
- Amity Institute of Biotechnology, Amity University, Noida, 201303, India
| | - M K Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
12
|
l-Ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. ZYGOTE 2018; 26:149-161. [DOI: 10.1017/s0967199418000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryThe objective of the study was to investigate the effect of l-ergothioneine (l-erg) (5 mM or 10 mM) supplementation in maturation medium on the developmental potential and OCTN1-dependant l-erg-mediated (10 mM) change in mRNA abundance of apoptotic (Bcl2, Bax, Casp3 and PCNA) and antioxidant (GPx, SOD1, SOD2 and CAT) genes in sheep oocytes and developmental stages of embryos produced in vitro. Oocytes matured with l-erg (10 mM) reduced their embryo toxicity by decreasing intracellular ROS and increasing intracellular GSH in matured oocytes that in turn improved developmental potential, resulting in significantly (P < 0.05) higher percentages of cleavage (53.72% vs 38.86, 46.56%), morulae (34.36% vs 20.62, 25.84%) and blastocysts (14.83% vs 6.98, 9.26%) compared with other lower concentrations (0 mM and 5 mM) of l-erg without change in maturation rate. l-Erg (10 mM) treatment did not influence the mRNA abundance of the majority of apoptotic and antioxidant genes studied in the matured oocytes and developmental stages of embryo. A gene expression study found that the SLC22A4 gene that encodes OCTN1, an integral membrane protein and specific transporter of l-erg was not expressed in oocytes and developmental stages of embryos. Therefore it was concluded from the study that although there was improvement in the developmental potential of sheep embryos by l-erg supplementation in maturation medium, there was no change in the expression of the majority of the genes studied due to the absence of the SLC22A4 gene in oocytes and embryos that encode OCTN1, which is responsible for transportation of l-erg across the membrane to alter gene expression.
Collapse
|
13
|
An L, Liu J, Du Y, Liu Z, Zhang F, Liu Y, Zhu X, Ling P, Chang S, Hu Y, Li Y, Xu B, Yang L, Xue F, Presicce GA, Du F. Synergistic effect of cysteamine, leukemia inhibitory factor, and Y27632 on goat oocyte maturation and embryo development in vitro. Theriogenology 2018; 108:56-62. [DOI: 10.1016/j.theriogenology.2017.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
14
|
Zare Z, Abouhamzeh B, Masteri Farahani R, Salehi M, Mohammadi M. Supplementation of L-carnitine during in vitro maturation of mouse oocytes affects expression of genes involved in oocyte and embryo competence:An experimental study. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.12.779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Sovernigo TC, Adona PR, Monzani PS, Guemra S, Barros FDA, Lopes FG, Leal CLV. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod Domest Anim 2017; 52:561-569. [DOI: 10.1111/rda.12946] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022]
Affiliation(s)
- TC Sovernigo
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
| | - PR Adona
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
- Centro de Ciência e Tecnologia de Leite e Derivados; Universidade Norte do Paraná; Londrina Paraná Brazil
- Laboratório de Reprodução Animal; Agropecuária Laffranchi; Tamarana Paraná Brazil
| | - PS Monzani
- Departamento de Medicina Veterinária; Universidade de São Paulo; Pirassununga São Paulo Brazil
| | - S Guemra
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
- Laboratório de Reprodução Animal; Agropecuária Laffranchi; Tamarana Paraná Brazil
| | - FDA Barros
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
| | - FG Lopes
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
| | - CLV Leal
- Departamento de Medicina Veterinária; Universidade de São Paulo; Pirassununga São Paulo Brazil
| |
Collapse
|
16
|
Mishra A, Reddy IJ, Gupta PSP, Mondal S. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with L-carnitine. Reprod Domest Anim 2016; 51:1020-1029. [DOI: 10.1111/rda.12789] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- A Mishra
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - IJ Reddy
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - PSP Gupta
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - S Mondal
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| |
Collapse
|
17
|
Developmental competence and expression profile of genes in buffalo (Bubalus bubalis) oocytes and embryos collected under different environmental stress. Cytotechnology 2016; 68:2271-2285. [PMID: 27650183 DOI: 10.1007/s10616-016-0022-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022] Open
Abstract
The study examined the effects of different environmental stress on developmental competence and the relative abundance (RA) of various gene transcripts in oocytes and embryos of buffalo. Oocytes collected during cold period (CP) and hot period (HP) were matured, fertilized and cultured in vitro to blastocyst hatching stage. The mRNA expression patterns of genes implicated in developmental competence (OCT-4, IGF-2R and GDF-9), heat shock (HSP-70.1), oxidative stress (MnSOD), metabolism (GLUT-1), pro-apoptosis (BAX) and anti-apoptosis (BCL-2) were evaluated in immature and matured oocytes as well as in pre-implantation stage embryos. Oocytes reaching MII stage, cleavage rates, blastocyst yield and hatching rates increased (P < 0.05) during the CP. In MII oocytes and 2-cell embryos, the RA of OCT-4, IGF-2R, GDF-9, MnSOD and GLUT-1 decreased (P < 0.05) during the HP. In 4-cell embryos, the RA of OCT-4, IGF-2R and BCL-2 decreased (P < 0.05) in the HP, whereas GDF-9 increased (P < 0.05). In 8-to 16-cell embryos, the RA of OCT-4 and BCL-2 decreased (P < 0. 05) in the HP, whereas HSP-70.1 and BAX expression increased (P < 0.05). In morula and blastocyst, the RA of OCT-4, IGF-2R and MnSOD decreased (P < 0.05) during the HP, whereas HSP-70.1 was increased (P < 0.05). In conclusion, deleterious seasonal effects induced at the GV-stage carry-over to subsequent embryonic developmental stages and compromise oocyte developmental competence and quality of developed blastocysts.
Collapse
|
18
|
Differences in developmental competence and gene expression profiles between buffalo (Bubalus bubalis) preimplantation embryos cultured in three different embryo culture media. Cytotechnology 2016; 68:1973-86. [PMID: 27481470 DOI: 10.1007/s10616-016-0010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/16/2016] [Indexed: 01/02/2023] Open
Abstract
The objective of this study was to compare effects of in vitro culture systems on embryonic development and expression patterns of developmentally important genes in preimplantation buffalo embryos. After IVM/IVF presumptive zygotes were cultured in one of three systems: undefined TCM-199, mCR2aa medium supplemented with 10 % FBS and defined PVA-myo-inositol-phosphate-EGF medium. No (P > 0.05) differences at 2-cell, 4-cell and 8-cell to 16- cell stages were observed among the three cultured media used, however, increased (P < 0.05) blastocyst yield, cell number and hatching rate were found in defined medium compared to undefined media. The expression patterns of genes implicated in embryo metabolism (GLUT-1), anti-apoptosis (BCL-2), imprinting (IGF-2R), DNA methylation (DNMT-3A) and maternal recognition of pregnancy (IFNT) were increased (P < 0.05) in hatched blastocysts derived from defined medium compared to undefined media. In conclusion, serum-free, defined medium improved developmental competence of in vitro cultured buffalo embryos. Whether these differences in morphological development and gene expression have long-term effects on buffalo calves born after embryo transfer remains unknown. However, it is possible that early adaptations of the preimplantation embryo to its environment persist during fetal and post-natal development.
Collapse
|
19
|
Synthesis, Crystal Structure, Spectroscopic Properties, and Interaction with Ct-DNA of Zn(II) with 2-Aminoethanethiol Hydrochloride Ligand. Bioinorg Chem Appl 2016; 2016:2691253. [PMID: 26977140 PMCID: PMC4764736 DOI: 10.1155/2016/2691253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/29/2015] [Accepted: 01/14/2016] [Indexed: 11/18/2022] Open
Abstract
The zinc(II) complex (C2H6NS)2Zn·ZnCl2 was synthesized with 2-aminoethanethiol hydrochloride and zinc sulfate heptahydrate as the raw materials in aqueous solution. The composition and structure of the complex were characterized by elemental analysis, infrared spectra, single crystal X-ray diffraction, and thermogravimetry. The crystal structure of the zinc(II) complex belongs to monoclinic system, space group P 21/n, with cell parameters of a = 0.84294(4), b = 0.83920(4), c = 1.65787(8) nm, Z = 2, and D = 2.041 g/cm3. In this paper, the interaction of complex with Ct-DNA was investigated by UV-visible and viscosimetric techniques. Upon addition of the complex, important changes were observed in the characteristic UV-Vis bands (hyperchromism) of calf thymus DNA and some changes in specific viscosity. The experimental results showed that the complex is bound to DNA intercalative (intercalation binding).
Collapse
|
20
|
Mishra A, Reddy IJ, Gupta PSP, Mondal S. l-carnitine Mediated Reduction in Oxidative Stress and Alteration in Transcript Level of Antioxidant Enzymes in Sheep Embryos ProducedIn Vitro. Reprod Domest Anim 2016; 51:311-21. [DOI: 10.1111/rda.12682] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/04/2016] [Indexed: 01/25/2023]
Affiliation(s)
- A Mishra
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - IJ Reddy
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - PSP Gupta
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| | - S Mondal
- Animal Physiology Division; ICAR-National Institute of Animal Nutrition and Physiology; Bangalore India
| |
Collapse
|
21
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Mullani N, Singh MK, Sharma A, Rameshbabu K, Manik RS, Palta P, Singla SK, Chauhan MS. Caspase-9 inhibitor Z-LEHD-FMK enhances the yield of in vitro produced buffalo (Bubalus bubalis) pre-implantation embryos and alters cellular stress response. Res Vet Sci 2015; 104:4-9. [PMID: 26850530 DOI: 10.1016/j.rvsc.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
The present investigation was done to study the effect of caspase-9 inhibitor Z-LEHD-FMK, on in vitro produced buffalo embryos. Z-LEHD-FMK is a cell-permeable, competitive and irreversible inhibitor of enzyme caspase-9, which helps in cell survival. Buffalo ovaries were collected from slaughterhouse and the oocytes were subjected to in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). The culture medium was supplemented with Z-LEHD-FMK at different concentrations i.e. 0 μM (control), 10 μM, 20 μM, 30 μM and 50 μM during IVM and IVC respectively. After day-2 post-insemination, the cleavage rate was significantly higher (74.20 ± 5.87% at P<0.05) in the group treated with 20 μM of Z-LEHD-FMK than at any other concentration. Same trend was observed in the blastocyst production rate which was higher at 20 μM (27.42 ± 2.94% at P<0.05). The blastocysts obtained at day-8 of the culture at different concentrations were subjected to TUNEL assay, to determine the level of apoptosis during the culture medium supplied with 20 μM Z-LEHD-FMK which showed apoptotic index significantly lower (1.88 ± 0.87 at P<0.05). There was a non-significant increase in total cell number in all Z-LEHD-FMK treated blastocysts. The quantitative gene expression of CHOP and HSP10 genes showed significant increase (P<0.05) in the group treated with 50 μM Z-LEHD-FMK, while, HSP40 showed significant increase (P<0.05) at 30 μM and 50 μM Z-LEHD-FMK concentrations. From the afore mentioned results we conclude that, Z-LEHD-FMK at 20 μM increased the cleavage and blastocyst rate of buffalo pre-implantation embryos also affecting the rate of apoptosis and cellular stress at various concentrations.
Collapse
Affiliation(s)
- N Mullani
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - M K Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - A Sharma
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - K Rameshbabu
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - R S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - P Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - S K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - M S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, India.
| |
Collapse
|
23
|
Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update 2015. [PMID: 26207016 DOI: 10.1093/humupd/dmv034] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although laboratory procedures, along with culture media formulations, have improved over the past two decades, the issue remains that human IVF is performed in vitro (literally 'in glass'). METHODS Using PubMed, electronic searches were performed using keywords from a list of chemical and physical factors with no limits placed on time. Examples of keywords include oxygen, ammonium, volatile organics, temperature, pH, oil overlays and incubation volume/embryo density. Available clinical and scientific evidence surrounding physical and chemical factors have been assessed and presented here. RESULTS AND CONCLUSIONS Development of the embryo outside the body means that it is constantly exposed to stresses that it would not experience in vivo. Sources of stress on the human embryo include identified factors such as pH and temperature shifts, exposure to atmospheric (20%) oxygen and the build-up of toxins in the media due to the static nature of culture. However, there are other sources of stress not typically considered, such as the act of pipetting itself, or the release of organic compounds from the very tissue culture ware upon which the embryo develops. Further, when more than one stress is present in the laboratory, there is evidence that negative synergies can result, culminating in significant trauma to the developing embryo. It is evident that embryos are sensitive to both chemical and physical signals within their microenvironment, and that these factors play a significant role in influencing development and events post transfer. From the viewpoint of assisted human reproduction, a major concern with chemical and physical factors lies in their adverse effects on the viability of embryos, and their long-term effects on the fetus, even as a result of a relatively brief exposure. This review presents data on the adverse effects of chemical and physical factors on mammalian embryos and the importance of identifying, and thereby minimizing, them in the practice of human IVF. Hence, optimizing the in vitro environment involves far more than improving culture media formulations.
Collapse
Affiliation(s)
- Petra L Wale
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia Melbourne IVF, Melbourne, Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Sharma A, Agrawal H, Mullani N, Sandhu A, Singh MK, Chauhan MS, Singla SK, Palta P, Manik RS. Supplementation of tauroursodeoxycholic acid during IVC did not enhance in vitro development and quality of buffalo IVF embryos but combated endoplasmic reticulum stress. Theriogenology 2015; 84:200-7. [PMID: 25881988 DOI: 10.1016/j.theriogenology.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/02/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Endoplasmic reticulum (ER) stress, a dysfunction in protein-folding capacity of ER, is involved in many pathologic and physiological responses including embryonic development. This study investigated the effect of supplementation of IVC medium with an ER stress inducer, tunicamycin (TM), and an inhibitor, tauroursodeoxycholic acid (TUDCA), on the developmental competence, apoptosis, and gene expression in buffalo embryos produced by IVF. Treatment of presumed zygotes with TM resulted in a significant (P < 0.01) decrease in the blastocyst rate, whereas TUDCA supplementation did not improve the blastocyst development rate. Further, presence of TUDCA could not ameliorate the adverse effects of TM in terms of the blastocyst rate in combined (TM + TUDCA) treatment. Tunicamycin treatment increased (P < 0.01) the apoptotic index and reduced the total cell number, whereas TUDCA did not affect them significantly. However, TUDCA reduced the extent of TM-mediated apoptosis during combined (TM + TUDCA) treatment. Tunicamycin treatment increased (P < 0.01) and TUDCA treatment decreased (P < 0.01) the expression level of ER chaperones, GRP78 and GRP94. In the combined TM + TUDCA treatment, TUDCA decreased their expression level compared to that in the controls. A similar pattern was observed in the case of proapoptotic gene BAX. We did not find any significant difference in the expression level of BCl-XL, BID, P53, and CASPASE 3 after TM and TUDCA supplementation. In conclusion, our study reported that TM induces ER stress in buffalo embryos produced in vitro resulting in a decrease in the blastocyst rate and an increase in the level of apoptosis and that these actions are mediated by modulating the expression of apoptosis-related genes and ER chaperones. Tauroursodeoxycholic acid did not improve the developmental potential of buffalo embryos; however, it attenuated the TM-induced apoptosis by downregulating BAX and ER chaperones.
Collapse
Affiliation(s)
- Arpna Sharma
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Himanshu Agrawal
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Nowsheen Mullani
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Anjit Sandhu
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Radhay Sham Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
25
|
Saini M, Selokar N, Agrawal H, Singla S, Chauhan M, Manik R, Palta P. Low oxygen tension improves developmental competence and reduces apoptosis in hand-made cloned buffalo (Bubalus bubalis) embryos. Livest Sci 2015. [DOI: 10.1016/j.livsci.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Click RE. A review: alteration of in vitro reproduction processes by thiols -emphasis on 2-mercaptoethanol. J Reprod Dev 2014; 60:399-405. [PMID: 25087867 PMCID: PMC4284312 DOI: 10.1262/jrd.2014-055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/18/2014] [Indexed: 11/20/2022] Open
Abstract
Descriptions of organosulfurs altering biologically relevant cellular functions began some 40 years ago when murine in vitro cell mediated and humoral immune responses were shown to be dramatically enhanced by any of four xenobiotic, sulfhydryl compounds-2-mercaptoethanol (2ME), dithiothreitol (DTT), glutathione, and L-cysteine; the most effective were 2ME and DTT. These findings triggered a plethora of reports defining 2ME benefits for a multitude of immunological processes. This in turn led to investigations on 2ME alterations of (a) immune functions in other species, (b) activities of other cell-types, and (c) in vivo diseases. In addition, these early findings preceded the identification of previously undefined anticarcinogenic chemicals in specific foods as organosulfurs. Taken all together, there is little doubt that organosulfur compounds have enormous benefits for cellular functions and for a multitude of diseases. Issues of importance still to be resolved are (a) clarification of mechanisms that underlie alteration of in vitro and in vivo processes and perhaps more importantly, (b) which if any in vitro alterations are relevant for (i) alteration of in vivo diseases and (ii) identification of other diseases that might therapeutically benefit from organosulfurs. As one means to address these questions, reviews of different processes impacted by thiols could be informative. Therefore, the present review on alterations of in vitro fertilization processes by thiols (mainly 2ME, since cysteamine alterations have been reviewed) was undertaken. Alterations found to occur in medium supplemented with 2ME were enhancement, no effect, or inhibition. Parameters associated with which are discussed as they relate to postulated thiol mechanisms.
Collapse
Affiliation(s)
- Robert E Click
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, USA, Retired
| |
Collapse
|
27
|
Yadav A, Singh KP, Singh MK, Saini N, Palta P, Manik RS, Singla SK, Upadhyay RC, Chauhan MS. Effect of physiologically relevant heat shock on development, apoptosis and expression of some genes in buffalo (Bubalus bubalis) embryos produced in vitro. Reprod Domest Anim 2013; 48:858-65. [PMID: 23581430 DOI: 10.1111/rda.12175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/10/2013] [Indexed: 12/01/2022]
Abstract
For investigating the effects of physiologically relevant heat shock, buffalo oocytes/embryos were cultured at 38.5°C (control) or were exposed to 39.5°C (Group II) or 40.5°C (Group III) for 2 h once every day throughout in vitro maturation (IVM), fertilization (IVF) and culture (IVC). Percentage of oocytes that developed to 8-cell, 16-cell or blastocyst stage was lower (p < 0.05) and the number of apoptotic nuclei was higher (p < 0.05) for Group III > Group II > controls. At both 8-16-cell and blastocyst stages, relative mRNA abundance of stress-related genes HSP 70.1 and HSP 70.2 and pro-apoptotic genes CASPASE-3, BID and BAX was higher (p < 0.05) in Groups III and II than that in controls with the exception of stress-related gene HSF1. Expression level of anti-apoptotic genes BCL-XL and MCL-1 was also higher (p < 0.05) in Groups III and II than that in controls at both 8-16-cell and blastocyst stages. Among the genes related to embryonic development, at 8-16-cell stage, the expression level of GDF9 was higher (p < 0.05) in Group III than that in controls, whereas that of GLUT1, ZAR1 and BMP15 was not significantly different among the three groups. At the blastocyst stage, relative mRNA abundance of GLUT1 and GDF9 was higher (p < 0.05) in Group II than that in controls, whereas that of ZAR-1 and BMP15 was not affected. The results of this study demonstrate that exposure of buffalo oocytes and embryos to elevated temperatures for duration of time that is physiologically relevant severely compromises their developmental competence, increases apoptosis and affects stress-, apoptosis- and development-related genes.
Collapse
Affiliation(s)
- A Yadav
- Embryo Biotechnology Lab, Animal Biotechnology Centre
| | | | | | | | | | | | | | | | | |
Collapse
|