1
|
Ignacio B, Baeza J, Ruiz B, Romero JP, Yañez P, Ramírez C, Caprile T, Farkas C, Recabal-Beyer A. The medial amygdala's neural circuitry: Insights into social processing and sex differences. Front Neuroendocrinol 2025; 77:101190. [PMID: 40294707 DOI: 10.1016/j.yfrne.2025.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The amygdala, a critical part of the limbic system, is essential for processing social stimuli and regulating stress responses. Among its various neuronal nuclei, the medial amygdala (MeA) remains one of the least studied in humans. The MeA plays a key role in receiving inputs from the olfactory system through pheromones, as well as from crucial areas such as the hypothalamus, hippocampus, and reward system. This allows the MeA to integrate external stimuli with the organism's internal state, finetuning social interactions, endocrine responses, and innate behaviors. Recent advances in neuroscience have highlighted the sex differences of the MeA and how they influence behavior and environmental perception. Understanding these sexspecific variations in brain structures, like the MeA in rodents, is vital for applying this knowledge to humans and could help bridge gaps in our understanding and treatment of mental health disorders, which often differ between sexes in both prevalence and presentation.
Collapse
Affiliation(s)
| | - Janina Baeza
- Faculty of Medicine, Universidad de Concepción, Chile
| | - Bastián Ruiz
- Faculty of Medicine, Universidad de Concepción, Chile
| | | | - Paulina Yañez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Camila Ramírez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Teresa Caprile
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Carlos Farkas
- Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Chile
| | - Antonia Recabal-Beyer
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile.
| |
Collapse
|
2
|
Zhang Z, Xiao T, Hall MR, Crodian JS, Alford AK, Kimbrough A, Shi R. Temporal differential effects of post-injury alcohol consumption in a mouse model of blast-induced traumatic brain injury. Neuroscience 2024; 562:239-251. [PMID: 39369945 PMCID: PMC11769080 DOI: 10.1016/j.neuroscience.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Traumatic brain injury is a prevalent condition that affects millions worldwide with no clear understanding or effective therapeutic management available. Military soldiers have a high risk of exposure to blast-induced traumatic brain injury (bTBI). Furthermore, alcohol drinking is common in this population, and studies have shown that post-TBI alcohol exposure can result in memory loss. Hence, it is possible that alcohol could contribute to the overall pathological outcome of brain trauma. However, such a possibility has not been explored in detail. Here, we combined a mild bTBI (mbTBI) model with the drinking-in-the-dark (DID) paradigm to investigate the pathological synergy between mbTBI and alcohol consumption by examining brain oxidative stress levels and behavioral alterations in mice. The results revealed the anxiolytic and short-term memory improvement effects of post-trauma alcohol drinking examined at an early timepoint post mbTBI. However, extended alcohol drinking for up to three weeks post mbTBI impaired long-term memory and was accompanied by intensified oxidative stress in brain regions associated with memory and anxiety. These findings, as well as those from previous in vitro TBI/alcohol studies, suggest a pathological synergy of physical force and post-impact alcohol exposure. This knowledge could potentially aid in establishing guidelines for TBI victims to avoid further injury to their brains as well as to help maximize their recovery following TBI.
Collapse
Affiliation(s)
- Zaiyang Zhang
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - Mekyna R Hall
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Jennifer S Crodian
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Anna K Alford
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
3
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Social Enhancement of Adult Neurogenesis in Zebrafish is Not Regulated by Cortisol. Neuroscience 2023; 509:51-62. [PMID: 36400322 DOI: 10.1016/j.neuroscience.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
In Mammals adult neurogenesis is influenced by environmental conditions, and the glucocorticoid hormones (GC) play a major role in this regulation. In contrast in fish, the study of the effects of cortisol on the regulation of environmental driven adult neurogenesis has produced conflicting results. While in some species elevated cortisol levels impair cell proliferation, in others, it promotes cell proliferation and differentiation. This lack of consistency may be explained by methodological differences across studies, namely in the stimuli and/or cortisol treatments used. Here, we tested the effects of the social environment on adult neurogenesis, considering a positive and a negative social context, and different durations of cortisol exposure. We hypothesise that there is an interaction between the valence of the social environment and cortisol, such that elevated acute cortisol experienced during social interactions only have a detrimental effect on neurogenesis in negative social contexts. Therefore, fish were exposed to a positive (conspecific shoal) or negative (predator) social experience, and the interaction between the valence of the social context and cortisol exposure (acute and chronic) was tested. Our results indicate that adult neurogenesis is modulated by the social environment, with the number of newly generated cells being dependent on the valence of the social information (positive > negative). These effects were independent of cortisol, either for acute or chronic exposure, highlighting the social environment as a key factor in the modulation of cell proliferation in the adult zebrafish brain, and rejecting a role for cortisol in this modulation.
Collapse
|
5
|
Huang S, Li G, Pan Y, Liu J, Zhao J, Zhang X, Lu W, Wan X, Krebs CJ, Wang Z, Han W, Zhang Z. Population variation alters aggression-associated oxytocin and vasopressin expressions in brains of Brandt's voles in field conditions. Front Zool 2021; 18:56. [PMID: 34717666 PMCID: PMC8557550 DOI: 10.1186/s12983-021-00441-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Density-dependent change in aggressive behavior contributes to the population regulation of many small rodents, but the underlying neurological mechanisms have not been examined in field conditions. We hypothesized that crowding stress and aggression-associated oxytocin (OT) and arginine vasopressin (AVP) in specific regions of the brain may be closely related to aggressive behaviors and population changes of small rodents. We analyzed the association of OT and AVP expression, aggressive behavior, and population density of Brandt’s voles in 24 large semi-natural enclosures (0.48 ha each) in Inner Mongolia grassland. We tested the effects of population density on the OT/AVP system and aggressive behavior by experimentally manipulating populations of Brandt’s voles in the grassland enclosures. High density was positively and significantly associated with more aggressive behavior, and increased expression of mRNA and protein of AVP and its receptor, but decreased expression of mRNA and protein of OT and its receptor in specific brain regions of the voles. Our study suggests that changes in OT/AVP expression are likely a result of the increased psychosocial stress that these voles experience during overcrowding, and thus the OT/AVP system can be used as indicators of density-dependent stressors in Brandt’s voles.
Collapse
Affiliation(s)
- Shuli Huang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongliang Pan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,School of Medicine, Huzhou University, Huzhou, 313000, China
| | - Jing Liu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jidong Zhao
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lu
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinrong Wan
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306-1270, USA
| | - Wenxuan Han
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Marchi-Coelho C, Costa-Ferreira W, Reis-Silva LL, Crestani CC. Angiotensinergic Neurotransmissions in the Medial Amygdala Nucleus Modulate Behavioral Changes in the Forced Swimming Test Evoked by Acute Restraint Stress in Rats. Cells 2021; 10:1217. [PMID: 34067508 PMCID: PMC8156471 DOI: 10.3390/cells10051217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of angiotensin II type 1 (AT1 receptor) and type 2 (AT2 receptor) and MAS receptors present in the medial amygdaloid nucleus (MeA) in behavioral changes in the forced swimming test (FST) evoked by acute restraint stress in male rats. For this, rats received bilateral microinjection of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective MAS receptor antagonist A-779, or vehicle 10 min before a 60 min restraint session. Then, behavior in the FST was evaluated immediately after the restraint (15 min session) and 24 h later (5 min session). The behavior in the FST of a non-stressed group was also evaluated. We observed that acute restraint stress decreased immobility during both sessions of the FST in animals treated with vehicle in the MeA. The decreased immobility during the first session was inhibited by intra-MeA administration of PD123319, whereas the effect during the second session was not identified in animals treated with A-779 into the MeA. Microinjection of PD123319 into the MeA also affected the pattern of active behaviors (i.e., swimming and climbing) during the second session of the FST. Taken together, these results indicate an involvement of angiotensinergic neurotransmissions within the MeA in behavioral changes in the FST evoked by stress.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists/pharmacology
- Angiotensins/metabolism
- Animals
- Behavior, Animal/drug effects
- Corticomedial Nuclear Complex/drug effects
- Corticomedial Nuclear Complex/metabolism
- Corticomedial Nuclear Complex/physiopathology
- Disease Models, Animal
- Male
- Motor Activity/drug effects
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Rats, Wistar
- Reaction Time
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Restraint, Physical
- Signal Transduction
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Swimming
- Time Factors
- Rats
Collapse
Affiliation(s)
- Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Lilian L. Reis-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| | - Carlos C. Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; (C.M.-C.); (W.C.-F.); (L.L.R.-S.)
- Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
7
|
Mouat MA, Jackson KL, Coleman JLJ, Paterson MR, Graham RM, Head GA, Smith NJ. Deletion of Orphan G Protein-Coupled Receptor GPR37L1 in Mice Alters Cardiovascular Homeostasis in a Sex-Specific Manner. Front Pharmacol 2021; 11:600266. [PMID: 33633567 PMCID: PMC7901490 DOI: 10.3389/fphar.2020.600266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
GPR37L1 is a family A orphan G protein-coupled receptor (GPCR) with a putative role in blood pressure regulation and cardioprotection. In mice, genetic ablation of Gpr37l1 causes sex-dependent effects; female mice lacking Gpr37l1 (GPR37L1-/-) have a modest but significant elevation in blood pressure, while male GPR37L1-/- mice are more susceptible to cardiovascular dysfunction following angiotensin II-induced hypertension. Given that this receptor is highly expressed in the brain, we hypothesize that the cardiovascular phenotype of GPR37L1-/- mice is due to changes in autonomic regulation of blood pressure and heart rate. To investigate this, radiotelemetry was employed to characterize baseline cardiovascular variables in GPR37L1-/- mice of both sexes compared to wildtype controls, followed by power spectral analysis to quantify short-term fluctuations in blood pressure and heart rate attributable to alterations in autonomic homeostatic mechanisms. Additionally, pharmacological ganglionic blockade was performed to determine vasomotor tone, and environmental stress tests were used to assess whether cardiovascular reactivity was altered in GPR37L1-/- mice. We observed that mean arterial pressure was significantly lower in female GPR37L1-/- mice compared to wildtype counterparts, but was unchanged in male GPR37L1-/- mice. GPR37L1-/- genotype had a statistically significant positive chronotropic effect on heart rate across both sexes when analyzed by two-way ANOVA. Power spectral analysis of these data revealed a reduction in power in the heart rate spectrum between 0.5 and 3 Hz in female GPR37L1-/- mice during the diurnal active period, which indicates that GPR37L1-/- mice may have impaired cardiac vagal drive. GPR37L1-/- mice of both sexes also exhibited attenuated depressor responses to ganglionic blockade with pentolinium, indicating that GPR37L1 is involved in maintaining sympathetic vasomotor tone. Interestingly, when these mice were subjected to aversive and appetitive behavioral stressors, the female GPR37L1-/- mice exhibited an attenuation of cardiovascular reactivity to aversive, but not appetitive, environmental stimuli. Together, these results suggest that loss of GPR37L1 affects autonomic maintenance of blood pressure, giving rise to sex-specific cardiovascular changes in GPR37L1-/- mice.
Collapse
Affiliation(s)
- Margaret A Mouat
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L J Coleman
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Madeleine R Paterson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Robert M Graham
- St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nicola J Smith
- Molecular Pharmacology Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| |
Collapse
|
8
|
Moreno-Santos B, Marchi-Coelho C, Costa-Ferreira W, Crestani CC. Angiotensinergic receptors in the medial amygdaloid nucleus differently modulate behavioral responses in the elevated plus-maze and forced swimming test in rats. Behav Brain Res 2020; 397:112947. [PMID: 33011187 DOI: 10.1016/j.bbr.2020.112947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
The brain renin-angiotensin system (RAS) has been implicated in anxiety and depression disorders, but the specific brain sites involved are poorly understood. The medial amygdaloid nucleus (MeA) is involved in expression of behavioral responses. However, despite evidence of the presence of all angiotensinergic receptors in this amygdaloid nucleus, regulation of anxiety- and depressive-like behaviors by angiotensinergic neurotransmissions within the MeA has never been reported. Thus, the present study aimed to investigate the role angiotensin II (AT1 and AT2 receptors) and angiotensin-(1-7) (Mas receptor) receptors present within the MeA in behavioral responses in the elevated plus-maze (EPM) and forced swimming test (FST). For this, male Wistar rats had cannula-guide bilaterally implanted into the MeA, and independent sets of animals received bilateral microinjections of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective Mas receptor antagonist A-779 or vehicle into the MeA before the EPM and FST. Treatment of the MeA with either PD123319 or A-779 decreased the EPM open arms exploration, while losartan did not affect behavioral responses in this apparatus. However, intra-MeA microinjection of losartan decreased immobility in the FST. Administration of either PD123319 or A-779 into the MeA did not affect the immobility during the FST, but changed the pattern of the active behaviors swimming and climbing. Altogether, these results indicate the presence of different angiotensinergic mechanisms within the MeA controlling behavioral responses in the FST and EPM.
Collapse
Affiliation(s)
- Beatriz Moreno-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Jackson KL, Head GA, Gueguen C, Stevenson ER, Lim K, Marques FZ. Mechanisms Responsible for Genetic Hypertension in Schlager BPH/2 Mice. Front Physiol 2019; 10:1311. [PMID: 31681017 PMCID: PMC6813185 DOI: 10.3389/fphys.2019.01311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
It has been 45 years since Gunther Schlager used a cross breeding program in mice to develop inbred strains with high, normal, and low blood pressure (BPH/2, BPN/3, and BPL/1 respectively). Thus, it is timely to gather together the studies that have characterized and explored the mechanisms associated with the hypertension to take stock of exactly what is known and what remains to be determined. Growing evidence supports the notion that the mechanism of hypertension in BPH/2 mice is predominantly neurogenic with some of the early studies showing aberrant brain noradrenaline levels in BPH/2 compared with BPN/3. Analysis of the adrenal gland using microarray suggested an association with the activity of the sympathetic nervous system. Indeed, in support of this, there is a larger depressor response to ganglion blockade, which reduced blood pressure in BPH/2 mice to the same level as BPN/3 mice. Greater renal tyrosine hydroxylase staining and greater renal noradrenaline levels in BPH/2 mice suggest sympathetic hyperinnervation of the kidney. Renal denervation markedly reduced the blood pressure in BPH/2 but not BPN/3 mice, confirming the importance of renal sympathetic nervous activity contributing to the hypertension. Further, there is an important contribution to the hypertension from miR-181a and renal renin in this strain. BPH/2 mice also display greater neuronal activity of amygdalo-hypothalamic cardiovascular regulatory regions. Lesions of the medial nucleus of the amygdala reduced the hypertension in BPH/2 mice and abolished the strain difference in the effect of ganglion blockade, suggesting a sympathetic mechanism. Further studies suggest that aberrant GABAergic inhibition may play a role since BPH/2 mice have low GABAA receptor δ, α4 and β2 subunit mRNA expression in the hypothalamus, which are predominantly involved in promoting tonic neuronal inhibition. Allopregnanolone, an allosteric modulator of GABAA receptors, which increase the expression of these subunits in the amygdala and hypothalamus, is shown to reduce the hypertension and sympathetic nervous system contribution in BPH/2 mice. Thus far, evidence suggests that BPH/2 mice have aberrant GABAergic inhibition, which drives neuronal overactivity within amygdalo-hypothalamic brain regions. This overactivity is responsible for the greater sympathetic contribution to the hypertension in BPH/2 mice, thus making this an ideal model of neurogenic hypertension.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Emily R Stevenson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Fogari R, Costa A, Zoppi A, D’Angelo A, Ghiotto N, Battaglia D, Cotta Ramusino M, Perini G, Bosone D. Diazepam as an oral hypnotic increases nocturnal blood pressure in the elderly. Aging Clin Exp Res 2019; 31:463-468. [PMID: 29959667 DOI: 10.1007/s40520-018-0991-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND No study has evaluated the cardiovascular effects of diazepam in elderly subjects that assume diazepam to induce sleep. PURPOSE The present study was carried out in order to evaluate the effects of chronic administration of diazepam as hypnotic drug on blood pressure (BP) and heart rate (HR) in healthy elderly subjects. PATIENTS AND METHODS Healthy, elderly subjects, aged 65-74 years, were treated with diazepam 5 mg or placebo-both administered once a day in the evening-for 4 weeks in two cross-over periods, each separated by a 2-week placebo period, according to a randomized, double-blind, cross-over design. At the end of each study period, clinical as well as 24-h ambulatory BP and HR were evaluated. RESULTS A total of 25 subjects were included in the analysis. At the end of a 4-week diazepam treatment, clinical as well 24-h BP and HR mean values were not significantly affected. Analysis of sub-periods showed that during night-time, systolic BP (SBP) values under diazepam were 7.6% higher than under placebo, with a mean difference of 7.9 mmHg (p < 0.01), diastolic BP (DBP) values were 5.8% higher, with a mean difference of 3.7 mmHg (p < 0.05 vs placebo) and HR values were 6.6% higher with a mean difference of 4.2 b/min (p < 0.05). The HR increase observed with diazepam persisted during the morning hours, whereas during the afternoon and evening hours SBP, DBP and HR values were similar in the two treatment groups. CONCLUSIONS In elderly subjects chronic assumption of diazepam as hypnotic agent produced an increase in BP, in particular SBP, during night-time and of HR during night-time and morning hours. These effects, which probably depend on a diazepam-mediated increase in sympathetic drive and decrease in vagal tone, might be of clinical relevance due to the role of increased BP and HR as independent predictors of cardiovascular morbidity and mortality.
Collapse
|
11
|
Hinton AO, Yang Y, Quick AP, Xu P, Reddy CL, Yan X, Reynolds CL, Tong Q, Zhu L, Xu J, Wehrens XHT, Xu Y, Reddy AK. SRC-1 Regulates Blood Pressure and Aortic Stiffness in Female Mice. PLoS One 2016; 11:e0168644. [PMID: 28006821 PMCID: PMC5179266 DOI: 10.1371/journal.pone.0168644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Framingham Heart Study suggests that dysfunction of steroid receptor coactivator-1 may be involved in the development of hypertension. However, there is no functional evidence linking steroid receptor coactivator-1 to the regulation of blood pressure. We used immunohistochemistry to map the expression of steroid receptor coactivator-1 protein in mouse brain, especially in regions implicated in the regulation of blood pressure. Steroid receptor coactivator-1 protein was found in central amygdala, medial amygdala, supraoptic nucleus, arcuate nucleus, ventromedial, dorsomedial, paraventricular hypothalamus, and nucleus of the solitary tract. To determine the effects of steroid receptor coactivator-1 protein on cardiovascular system we measured blood pressures, blood flow velocities, echocardiographic parameters, and aortic input impedance in female steroid receptor coactivator-1 knockout mice and their wild type littermates. Steroid receptor coactivator-1 knockout mice had higher blood pressures and increased aortic stiffness when compared to female wild type littermates. Additionally, the hearts of steroid receptor coactivator-1 knockout mice seem to consume higher energy as evidenced by increased impedance and higher heart rate pressure product when compared to female wild type littermates. Our results demonstrate that steroid receptor coactivator-1 may be functionally involved in the regulation of blood pressure and aortic stiffness through the regulation of sympathetic activation in various neuronal populations.
Collapse
Affiliation(s)
- Antentor Othrell Hinton
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yongjie Yang
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ann P. Quick
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pingwen Xu
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chitra L. Reddy
- Debakey High School for Health Professions, Houston, Texas, United States of America
| | - Xiaofeng Yan
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Corey L. Reynolds
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Advanced Technology/Core Laboratory, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Liangru Zhu
- Department of Gastroenterology, Union Hospital, Tongji Medical College and Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xander H. T. Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yong Xu
- Pediatrics-Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (AKR); (YX)
| | - Anilkumar K. Reddy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Cardiovascular Research, Department Medicine and DeBakey Heart Center, Baylor College of Medicine, Houston, Texas, United States of America
- Indus Instruments, Webster, Texas, United States of America
- * E-mail: (AKR); (YX)
| |
Collapse
|
12
|
Hinton AO, He Y, Xia Y, Xu P, Yang Y, Saito K, Wang C, Yan X, Shu G, Henderson A, Clegg DJ, Khan SA, Reynolds C, Wu Q, Tong Q, Xu Y. Estrogen Receptor-α in the Medial Amygdala Prevents Stress-Induced Elevations in Blood Pressure in Females. Hypertension 2016; 67:1321-30. [PMID: 27091896 DOI: 10.1161/hypertensionaha.116.07175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in female mice lacking estrogen receptor-α in the brain medial amygdala. Deletion of estrogen receptor-α in medial amygdala neurons also resulted in increased excitability of these neurons, associated with elevated ionotropic glutamate receptor expression. We further demonstrated that selective activation of medial amygdala neurons mimicked effects of stress to increase blood pressure in mice. Together, our results support a model where estrogen acts on estrogen receptor-α expressed by medial amygdala neurons to prevent stress-induced activation of these neurons, and therefore prevents pressor responses to stress.
Collapse
Affiliation(s)
- Antentor Othrell Hinton
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yanlin He
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yan Xia
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Pingwen Xu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yongjie Yang
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Kenji Saito
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Chunmei Wang
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Xiaofeng Yan
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Gang Shu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Alexander Henderson
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Deborah J Clegg
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Sohaib A Khan
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Corey Reynolds
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Qi Wu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Qingchun Tong
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.)
| | - Yong Xu
- From the Department of Pediatrics, Children's Nutrition Research Center (A.O.H., Y.H., Y.X., P.X., Y.Y., K.S., C.W., X.Y., G.S., A.H., Q.W., Y.X.), Advanced Technology/Core Laboratory (C.R.), and Department of Molecular and Cellular Biology (Y.X.), Baylor College of Medicine, One Baylor Plaza, Houston, TX; Department of Biomedical Research, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.J.C.); Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, OH (S.A.K.); and Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (Q.T.).
| |
Collapse
|
13
|
Durand MT, Becari C, Tezini GCSV, Fazan R, Oliveira M, Guatimosim S, Prado VF, Prado MAM, Salgado HC. Autonomic cardiocirculatory control in mice with reduced expression of the vesicular acetylcholine transporter. Am J Physiol Heart Circ Physiol 2015; 309:H655-62. [PMID: 26092977 DOI: 10.1152/ajpheart.00114.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/15/2015] [Indexed: 01/13/2023]
Abstract
In cardiovascular diseases, sympathetic tone has been comprehensively studied, whereas parasympathetic tone has received minor attention. The vesicular ACh transporter (VAChT) knockdown homozygous (VAChT KD(HOM)) mouse is a useful model for examining the cardiocirculatory sympathovagal balance. Therefore, we investigated whether cholinergic dysfunction caused by reduced VAChT expression could adversely impact hemodynamic parameter [arterial pressure (AP) and heart rate (HR)] daily oscillation, baroreflex sensitivity, hemodynamic variability, sympathovagal balance, and cardiovascular reactivity to restraint stress. Wild-type and VAChT KD(HOM) mice were anesthetized for telemetry transmitter implantation, and APs and HRs were recorded 10 days after surgical recovery. Changes in HR elicited by methylatropine and propranolol provided the indexes of sympathovagal tone. Cardiovascular reactivity in response to a restraint test was examined 24 h after continuous recordings of AP and HR. VAChT KD(HOM) mice exhibited reduced parasympathetic and elevated sympathetic tone. Daily oscillations of AP and HR as well as AP variability were similar between groups. Nevertheless, HR variability, patterns with two dissimilar variations from symbolic analysis, and baroreflex sensitivity were reduced in VAChT KD(HOM) mice. The change in mean AP due to restraint stress was greater in VAChT KD(HOM) mice, whereas the tachycardic response was not. These findings demonstrate that the cholinergic dysfunction present in the VAChT KD(HOM) mouse did not adversely impact basal hemodynamic parameters but promoted autonomic imbalance, an attenuation of baroreflex sensitivity, and a greater pressure response to restraint stress. These results provide a framework for understanding how autonomic imbalance impacts cardiovascular function.
Collapse
Affiliation(s)
- Marina T Durand
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Christiane Becari
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geisa C S V Tezini
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mauro Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | - Vania F Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;
| |
Collapse
|
14
|
de Almeida DO, Ferreira HS, Pereira LB, Fregoneze JB. Hypertensive response to stress: the role of histaminergic H1 and H2 receptors in the medial amygdala. Physiol Behav 2015; 144:95-102. [PMID: 25748254 DOI: 10.1016/j.physbeh.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/31/2023]
Abstract
Different brain areas seem to be involved in the cardiovascular responses to stress. The medial amygdala (MeA) has been shown to participate in cardiovascular control, and acute stress activates the MeA to a greater extent than any of the other amygdaloid structures. It has been demonstrated that the brain histaminergic system may be involved in behavioral, autonomic and neuroendocrine responses to stressful situations. The aim of the present study was to investigate the role of the histaminergic receptors H1 and H2 in cardiovascular responses to acute restraint stress. Wistar rats (280-320g) received bilateral injections of cimetidine, mepyramine or saline into the MeA and were submitted to 45min of restraint stress. Mepyramine microinjections at doses of 200, 100 and 50nmol promoted a dose-dependent blockade of the hypertensive response induced by the restraint stress. Cimetidine (200 and 100nmol) promoted a partial blockade of the hypertensive response to stress only at the highest dose administered. Neither drugs altered the typical stress-evoked tachycardiac responses. Furthermore, mepyramine and cimetidine were unable to modify the mean arterial pressure or heart rate of freely moving rats under basal conditions (non-stressed rats). The data suggest that in the MeA the histaminergic H1 receptors appear to be more important than H2 receptors in the hypertensive response to stress. Furthermore, there appears to be no histaminergic tonus in the MeA controlling blood pressure during non-stress conditions.
Collapse
Affiliation(s)
| | - Hilda Silva Ferreira
- Life Sciences Department, Bahia State University, 41195-001 Salvador, Bahia, Brazil
| | - Luana Bomfim Pereira
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil
| | - Josmara Bartolomei Fregoneze
- Department of Physiology, Health Sciences Institute, Federal University of Bahia, 40110-100 Salvador, Bahia, Brazil.
| |
Collapse
|
15
|
Quagliotto E, Casali KR, Dal Lago P, Rasia-Filho AA. Neuropeptides in the posterodorsal medial amygdala modulate central cardiovascular reflex responses in awake male rats. ACTA ACUST UNITED AC 2014; 48:128-39. [PMID: 25424367 PMCID: PMC4321218 DOI: 10.1590/1414-431x20144095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/22/2014] [Indexed: 11/21/2022]
Abstract
The rat posterodorsal medial amygdala (MePD) links emotionally charged sensory stimuli to social behavior, and is part of the supramedullary control of the cardiovascular system. We studied the effects of microinjections of neuroactive peptides markedly found in the MePD, namely oxytocin (OT, 10 ng and 25 pg; n=6/group), somatostatin (SST, 1 and 0.05 μM; n=8 and 5, respectively), and angiotensin II (Ang II, 50 pmol and 50 fmol; n=7/group), on basal cardiovascular activity and on baroreflex- and chemoreflex-mediated responses in awake adult male rats. Power spectral and symbolic analyses were applied to pulse interval and systolic arterial pressure series to identify centrally mediated sympathetic/parasympathetic components in the heart rate variability (HRV) and arterial pressure variability (APV). No microinjected substance affected basal parameters. On the other hand, compared with the control data (saline, 0.3 µL; n=7), OT (10 ng) decreased mean AP (MAP50) after baroreflex stimulation and increased both the mean AP response after chemoreflex activation and the high-frequency component of the HRV. OT (25 pg) increased overall HRV but did not affect any parameter of the symbolic analysis. SST (1 μM) decreased MAP50, and SST (0.05 μM) enhanced the sympathovagal cardiac index. Both doses of SST increased HRV and its low-frequency component. Ang II (50 pmol) increased HRV and reduced the two unlike variations pattern of the symbolic analysis (P<0.05 in all cases). These results demonstrate neuropeptidergic actions in the MePD for both the increase in the range of the cardiovascular reflex responses and the involvement of the central sympathetic and parasympathetic systems on HRV and APV.
Collapse
Affiliation(s)
- E Quagliotto
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - K R Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brasil
| | - P Dal Lago
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - A A Rasia-Filho
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
16
|
Jackson KL, Palma-Rigo K, Nguyen-Huu TP, Davern PJ, Head GA. Major Contribution of the Medial Amygdala to Hypertension in BPH/2J Genetically Hypertensive Mice. Hypertension 2014; 63:811-8. [DOI: 10.1161/hypertensionaha.113.02020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kristy L. Jackson
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Kesia Palma-Rigo
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Thu-Phuc Nguyen-Huu
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Pamela J. Davern
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| | - Geoffrey A. Head
- From the Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (K.L.J., K.P.-R., T.-P.N.-H., P.J.D., G.A.H.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (K.L.J., G.A.H.)
| |
Collapse
|
17
|
Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice. J Hypertens 2014; 32:575-86. [DOI: 10.1097/hjh.0000000000000036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
GABAA receptor dysfunction contributes to high blood pressure and exaggerated response to stress in Schlager genetically hypertensive mice. J Hypertens 2014; 32:352-62. [DOI: 10.1097/hjh.0000000000000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Marques FZ, Morris BJ. Neurogenic hypertension: revelations from genome-wide gene expression profiling. Curr Hypertens Rep 2013; 14:485-91. [PMID: 22639016 DOI: 10.1007/s11906-012-0282-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is now good evidence for a role of the sympathetic nervous system in the etiology of essential hypertension in humans. Although genetic variation is expected to underlie the elevated sympathetic outflow in this complex polygenic condition, only limited information has emerged from classic molecular genetic studies. Recently, progress has been made in understanding neurogenic aspects by determination of global alterations in gene expression in key brain regions of animal models of neurogenic hypertension. Such genome-wide expression studies in the hypothalamus and brainstem support roles for factors such as neuronal nitric oxide synthase, inflammation and reactive oxygen species. A role for non-coding RNAs such as microRNAs, and epigenetic alterations await exploration. Ongoing novel approaches should provide a better understanding of the processes responsible for the increased sympathetic outflow in animal models, as well as essential hypertension in humans. Such information may lead to better therapies for neurogenic hypertension in humans.
Collapse
|
20
|
Warthen DM, Provencio I. The role of intrinsically photosensitive retinal ganglion cells in nonimage-forming responses to light. Eye Brain 2012; 4:43-48. [PMID: 28539780 DOI: 10.2147/eb.s27839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Light exerts many effects on behavior and physiology. These effects can be characterized as either image-forming or nonimage-forming (NIF) visual processes. Image-forming vision refers to the process of detecting objects and organisms in the environment and distinguishing their physical characteristics, such as size, shape, and direction of motion. NIF vision, in contrast, refers to effects of light that are independent of fine spatiotemporal vision. NIF effects are many and varied, ranging from modulation of basal physiology, such as heart rate and body temperature, to changes in higher functions, such as mood and cognitive performance. In mammals, many NIF effects of light are dependent upon the inner retinal photopigment melanopsin and the cells in which melanopsin is expressed, the intrinsically photosensitive retinal ganglion cells (ipRGCs). The ipRGCs project broadly throughout the brain. Many of these projections terminate in areas known to mediate NIF effects, while others terminate in regions whose link to photoreception remains to be established. Additionally, the presence of ipRGC projections to areas of the brain with no known link to photoreception suggests the existence of additional ipRGC-mediated NIF effects. This review summarizes the known NIF effects of light and the role of melanopsin and ipRGCs in driving these effects, with an eye toward stimulating further investigation of the many and varied effects of light on physiology and behavior.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
21
|
Marvar PJ, Harrison DG. Stress-dependent hypertension and the role of T lymphocytes. Exp Physiol 2012; 97:1161-7. [PMID: 22941978 DOI: 10.1113/expphysiol.2011.061507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension is a significant global health burden that is associated with an increased risk of stroke, atherosclerosis and other cardiovascular diseases. Several risk factors, including high dietary salt, obesity, genetics and race, as well as behavioural and psychological factors, contribute to development of this complex disease. Various hypertensive stimuli enhance sympathetic drive and promote autonomic dysfunction leading to elevated blood pressure. As our understanding of the pathogenesis and end-organ damage associated with hypertension increases, mounting evidence also highlights the role of inflammation in this process and, in particular, the role of the adaptive immune system and T cells. This review discusses recent findings regarding the role of the central nervous system, T lymphocytes and the impact of cardiovascular risk factors, such as psychological stress, in hypertension.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.
| | | |
Collapse
|
22
|
Kiriazis H, Jennings NL, Davern P, Lambert G, Su Y, Pang T, Du X, La Greca L, Head GA, Hannan AJ, Du XJ. Neurocardiac dysregulation and neurogenic arrhythmias in a transgenic mouse model of Huntington's disease. J Physiol 2012; 590:5845-60. [PMID: 22890713 DOI: 10.1113/jphysiol.2012.238113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Huntington's disease (HD) is a heritable neurodegenerative disorder, with heart disease implicated as one major cause of death. While the responsible mechanism remains unknown, autonomic nervous system (ANS) dysfunction may play a role. We studied the cardiac phenotype in R6/1 transgenic mice at early (3 months old) and advanced (7 months old) stages of HD. While exhibiting a modest reduction in cardiomyocyte diameter, R6/1 mice had preserved baseline cardiac function. Conscious ECG telemetry revealed the absence of 24-h variation of heart rate (HR), and higher HR levels than wild-type littermates in young but not older R6/1 mice. Older R6/1 mice had increased plasma level of noradrenaline (NA), which was associated with reduced cardiac NA content. R6/1 mice also had unstable R-R intervals that were reversed following atropine treatment, suggesting parasympathetic nervous activation, and developed brady- and tachyarrhythmias, including paroxysmal atrial fibrillation and sudden death. c-Fos immunohistochemistry revealed greater numbers of active neurons in ANS-regulatory regions of R6/1 brains. Collectively, R6/1 mice exhibit profound ANS-cardiac dysfunction involving both sympathetic and parasympathetic limbs, that may be related to altered central autonomic pathways and lead to cardiac arrhythmias and sudden death.
Collapse
Affiliation(s)
- Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Neckel H, Quagliotto E, Casali KR, Montano N, Dal Lago P, Rasia-Filho AA. Glutamate and GABA in the medial amygdala induce selective central sympathetic/parasympathetic cardiovascular responses. Can J Physiol Pharmacol 2012; 90:525-36. [DOI: 10.1139/y2012-024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate and γ-aminobutyric acid (GABA) participate in central cardiovascular control, and are found in the rat posterodorsal medial amygdala (MePD), an area of the forebrain that modulates emotional/social behaviors. Here we tested whether these neurotransmitters in the MePD could change the basal activity, chemoreflex, and baroreflex cardiovascular responses in awake rats. Power spectral analysis and symbolic analysis were used to evaluate these responses. Microinjections of saline, glutamate (2 µg), or GABA (61 ng or 100 µg; n = 5–7 rats per group) did not affect basal parameters or chemoreflex responses. However, baroreflex responses showed marked changes. Glutamate increased power spectral and symbolic sympathetic indexes related to both cardiac and vascular modulations (P < 0.05). In turn, the displacement of the baroreflex half-maximal heart rate (HR) response was associated with a GABA (61 ng) mediated decrease in the upper plateau (P < 0.05). Administration of GABA (61 ng, but not 100 µg) also increased HR variability (P < 0.05), in association with parasympathetic activation. These data add novel evidence that the MePD can promote selective responses in the central regulation of the cardiovascular system, i.e., glutamate in the MePD evoked activation of a central sympathetic reflex adjustment, whereas GABA activated a central parasympathetic one.
Collapse
Affiliation(s)
- Helinton Neckel
- Department of Basic Sciences, Federal University of Health Sciences of Porto Alegre, RS 90050-170, Brazil
- Graduate Course in Neurosciences, Federal University of Rio Grande do Sul, Porto Alegre RS 90050-170, Brazil
| | - Edson Quagliotto
- Department of Basic Sciences, Federal University of Health Sciences of Porto Alegre, RS 90050-170, Brazil
- Graduate Course in Neurosciences, Federal University of Rio Grande do Sul, Porto Alegre RS 90050-170, Brazil
| | - Karina R. Casali
- Institute of Cardiology of Rio Grande do Sul, Porto Alegre, RS 90620-000, Brazil
| | - Nicola Montano
- Department of Clinical Sciences, Internal Medicine II, L. Sacco Hospital, University of Milan, 20157 Milan, Italy
| | - Pedro Dal Lago
- Department of Physical Therapy, Federal University of Health Sciences of Porto Alegre, RS 90050-170, Brazil
| | - Alberto A. Rasia-Filho
- Department of Basic Sciences, Federal University of Health Sciences of Porto Alegre, RS 90050-170, Brazil
- Graduate Course in Neurosciences, Federal University of Rio Grande do Sul, Porto Alegre RS 90050-170, Brazil
| |
Collapse
|
24
|
Renin-angiotensin and sympathetic nervous system contribution to high blood pressure in Schlager mice. J Hypertens 2012; 29:2156-66. [PMID: 21941207 DOI: 10.1097/hjh.0b013e32834bbb6b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Schlager hypertensive (BPH/2J) mice have been suggested to have high blood pressure (BP) due to an overactive sympathetic nervous system (SNS), but the contribution of the renin-angiotensin system (RAS) is unclear. In the present study, we examined the cardiovascular effects of chronically blocking the RAS in BPH/2J mice. METHODS Schlager normotensive (BPN/3J, n = 6) and BPH/2J mice (n = 8) received the angiotensin AT 1A-receptor antagonist losartan (150 mg/kg per day) in drinking water for 2 weeks. Pre-implanted telemetry devices were used to record mean arterial pressure (MAP), heart rate (HR) and locomotor activity. RESULTS MAP was reduced by losartan treatment in BPN/3J (-23 mmHg, P < 0.01) and in BPH/2J mice (-25 mmHg, P < 0.001), whereas HR was increased. Losartan had little effect on initial pressor responses to feeding or to stress, but did attenuate the sustained pressor response to cage-switch stress. During the active period, the hypotension to sympathetic blockade with pentolinium was greater in BPH/2J than BPN/3J (suggesting neurogenic hypertension), but was not affected by losartan. During the inactive period, a greater depressor response to pentolinium was observed in losartan-treated animals. CONCLUSION The hypotensive actions of losartan suggest that although the RAS provides an important contribution to BP, it contributes little, if at all, to the hypertension-induced or the greater stress-induced pressor responses in Schlager mice. The effects of pentolinium suggest that the SNS is mainly responsible for hypertension in BPH/2J mice. However, the RAS inhibits sympathetic vasomotor tone during inactivity and prolongs sympathetic activation during periods of adverse stress, indicating an important sympatho-modulatory role.
Collapse
|
25
|
Rane P, King J. Exploring aversion in an animal model of pre-motor stage Parkinson's disease. Neuroscience 2011; 181:189-95. [DOI: 10.1016/j.neuroscience.2011.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
26
|
Burke SL, Lambert E, Head GA. New Approaches to Quantifying Sympathetic Nerve Activity. Curr Hypertens Rep 2011; 13:249-57. [DOI: 10.1007/s11906-011-0196-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Machado BH. Introduction. Clin Exp Pharmacol Physiol 2011; 38:113-4. [DOI: 10.1111/j.1440-1681.2010.05475.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Davern P, Jackson K, Nguyen-Huu T, La Greca L, Head G. Cardiovascular reactivity and neuronal activation to stress in Schlager genetically hypertensive mice. Neuroscience 2010; 170:551-8. [DOI: 10.1016/j.neuroscience.2010.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 11/17/2022]
|