1
|
Molcho J, Albagly D, Levy T, Manor R, Aflalo ED, Alfaro-Montoya J, Sagi A. Regulation of early spermatogenesis in the giant prawn Macrobrachium rosenbergii by a GCL homolog†. Biol Reprod 2024; 110:1000-1011. [PMID: 38408206 PMCID: PMC11094379 DOI: 10.1093/biolre/ioae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
The germ cell-less gene is crucial for gonad development in various organisms. Early interventions in its expression suggested a regulatory role at the mitotic stages of spermatogenesis, and its early knockout resulted in complete sterility in Drosophila. Genomic and transcriptomic data available for the catadromous giant prawn Macrobrachium rosenbergii enabled the identification of a germ cell-less homolog for this species, which we termed MroGCL (mRNA accession number OQ533056). An open reading frame containing 494 amino acids and a typical evolutionarily conserved BTB/POZ domain suggests possible protein-protein interaction functions in keeping with the Drosophila germ cell-less protein. Genomic mapping of MroGCL showed a full length of 120 896 bases. Analysis of the temporal expression of MroGCL showed constant expression in early prawn embryonic and larval stages, but a significant increase 10 days after metamorphosis when crucial sexual differentiation processes occur in prawns. In adult animals, high expression was detected in the gonads compared to the somatic tissues. RNAi-based knock-down experiments showed that both the silenced and control groups reached advanced spermatogenic stages, but that there was a significant decrease in the yield of spermatozoa in about half of the silenced animals. This finding supports our hypothesis that MroGCL is crucial for mitosis during early stage spermatogenesis. In conclusion, this study contributes to the understanding of crustacean gonad development and provides a stepping stone in the development of environmentally valuable sterile crustacean populations.
Collapse
Affiliation(s)
- Jonathan Molcho
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dana Albagly
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Arugot, Israel
| | | | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Lebedeva LA, Yakovlev KV, Kozlov EN, Schedl P, Deshpande G, Shidlovskii YV. Transcriptional quiescence in primordial germ cells. Crit Rev Biochem Mol Biol 2018; 53:579-595. [PMID: 30280955 PMCID: PMC8729227 DOI: 10.1080/10409238.2018.1506733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
Abstract
In most animal species, newly formed primordial germ cells (PGCs) acquire the special characteristics that distinguish them from the surrounding somatic cells. Proper fate specification of the PGCs is coupled with transcriptional quiescence, whether they are segregated by determinative or inductive mechanisms. Inappropriate differentiation of PGCs into somatic cells is thought to be prevented due to repression of RNA polymerase (Pol) II-dependent transcription. In the case of a determinative mode of PGC formation (Drosophila, Caenorhabditis elegans, etc.), there is a broad downregulation of Pol II activity. By contrast, PGCs display only gene-specific repression in organisms that rely on inductive signaling-based mechanism (e.g., mice). In addition to the global block of Pol II activity in PGCs, gene expression can be suppressed in other ways, such as chromatin remodeling and Piwi-mediated RNAi. Here, we discuss the mechanisms responsible for the transcriptionally silent state of PGCs in common experimental animals, such as Drosophila, C. elegans, Danio rerio, Xenopus, and mouse. While a PGC-specific downregulation of transcription is a common feature among these organisms, the diverse nature of underlying mechanisms suggests that this functional trait likely evolved independently on several instances. We discuss the possible biological relevance of these silencing mechanisms vis-a-vis fate determination of PGCs.
Collapse
Affiliation(s)
| | - Konstantin V. Yakovlev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Eugene N. Kozlov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Yulii V. Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Spice EK, Whyard S, Docker MF. Gene expression during ovarian differentiation in parasitic and non-parasitic lampreys: implications for fecundity and life history types. Gen Comp Endocrinol 2014; 208:116-25. [PMID: 25218130 DOI: 10.1016/j.ygcen.2014.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/14/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17β-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor β, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17β hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys.
Collapse
Affiliation(s)
- Erin K Spice
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Steven Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Margaret F Docker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
4
|
Taboada X, Robledo D, Del Palacio L, Rodeiro A, Felip A, Martínez P, Viñas A. Comparative expression analysis in mature gonads, liver and brain of turbot (Scophthalmus maximus) by cDNA-AFLPS. Gene 2011; 492:250-61. [PMID: 22037609 DOI: 10.1016/j.gene.2011.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/08/2011] [Accepted: 10/10/2011] [Indexed: 11/28/2022]
Abstract
Turbot is one of the most important farmed fish in Europe. This species exhibits a considerable sexual dimorphism in growth and sexual maturity that makes the all-female production recommended for turbot farming. Our knowledge about the genetic basis of sex determination and the molecular regulation of gonad differentiation in this species is still limited. Our goal was to identify and compare gene expression and functions between testes and ovaries in adults in order to ascertain the relationship between the genes that could be involved in the gonad differentiation or related to the sex determination system. The identification of differentially expressed sex related genes is an initial step towards understanding the molecular mechanisms of gonad differentiation. For this, we carried out a transcriptome analysis based on cDNA-AFLP technique which allowed us to obtain an initial frame on sex-specific gene expression that will facilitate further analysis especially along the critical gonad differentiating period. With the aim of widening the study on sex-biased gene expression we reproduced the same experiments in two somatic tissues: liver and brain. We have selected the liver because it is the most analyzed one regarding sexual dimorphic gene expression and due to its importance in steroid hormones metabolism and the brain because the functional relationship between brain and gonad is documented. We found slight but important differences between sexes which deserve further investigation.
Collapse
Affiliation(s)
- Xoana Taboada
- Departamento de Genética, Facultad de Biología (CIBUS), Universidad de Santiago de Compostela Avda Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Xu H, Li M, Gui J, Hong Y. Fish germ cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:435-46. [PMID: 20596909 DOI: 10.1007/s11427-010-0058-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 01/15/2023]
Abstract
Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplantation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.
Collapse
Affiliation(s)
- HongYan Xu
- Department of Biological Sciences, National University of Singapore, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
6
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
7
|
Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 2010; 11:37-49. [PMID: 20027186 PMCID: PMC4521894 DOI: 10.1038/nrm2815] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regulated migration of cells is essential for development and tissue homeostasis, and aberrant cell migration can lead to an impaired immune response and the progression of cancer. Primordial germ cells (PGCs), precursors to sperm and eggs, have to migrate across the embryo to reach somatic gonadal precursors, where they carry out their function. Studies of model organisms have revealed that, despite important differences, several features of PGC migration are conserved. PGCs require an intrinsic motility programme and external guidance cues to survive and successfully migrate. Proper guidance involves both attractive and repulsive cues and is mediated by protein and lipid signalling.
Collapse
Affiliation(s)
- Brian E Richardson
- Howard Hughes Medical Institute, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York University, New York, 10016, USA
| | | |
Collapse
|
8
|
Dai L, Ma W, Li J, Xu Y, Li W, Zhao Y, Deng F. Cloning and characterization of a novel oocyte-specific gene zorg in zebrafish. Theriogenology 2008; 71:441-9. [PMID: 18817964 DOI: 10.1016/j.theriogenology.2008.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/10/2008] [Accepted: 07/28/2008] [Indexed: 11/18/2022]
Abstract
Genes specifically expressed in oocytes are important for the development of both germ cells and embryos. Using the digital differential display program from the NCBI, we identified a novel EST sequence (no. DT881820) from zebrafish ovary libraries in the GenBank. The full-length cDNA of this transcript was obtained by performing 3'- and 5'-RACE and was confirmed by PCR and direct sequencing methods. The cDNA clone for this novel gene consisted of 894 base pairs and encoded a protein with 215 amino acids. Since this protein shared no significant homology with any other known proteins, we have named this gene zorg (zebrafish oogenesis related gene). Based on RT-PCR analysis, this gene was specially expressed in the ovary and was abundantly present at the blastula stage. However, the level of expression decreased significantly during the early gastrula periods. Based on whole-mount in situ hybridization studies, zorg transcripts were uniformly distributed in the cleavage stage through to the blastula stage. In addition, during early gastrulation, zorg transcripts appeared in the dorsal region, but became restricted to the primordial germ cells (PGC) in early somitogenesis and remained visible in PGC as they migrated towards the region of the gonad of embryos 24h post-fertilization. In situ hybridization of sectioned ovaries demonstrated that zorg mRNAs appeared in the cytoplasm of stage I and stage II oocytes and localized in the cortex of stage III and stage IV oocytes during oogenesis. We hypothesized that the protein expressed from the zebrafish zorg gene has roles in the formation of the female germ cells and in early embryonic development in zebrafish.
Collapse
Affiliation(s)
- L Dai
- Key Laboratory of MOE for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 3:387-98. [PMID: 18377219 DOI: 10.1089/zeb.2006.3.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|