1
|
Ikegami I, Mitsuhashi Koike Y, Hayashi H, Hirokawa S, Ando S, Ishihara T, Onodera O. The analysis of schizophrenia-like psychosis in dentatorubral-pallidoluysian atrophy. Front Neurol 2025; 16:1564856. [PMID: 40271115 PMCID: PMC12014459 DOI: 10.3389/fneur.2025.1564856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Background Dentatorubral-pallidoluysian atrophy (DRPLA) is a progressive neurodegenerative disorder caused by expanded CAG repeats in the ATN1 gene, characterized by cerebellar ataxia, seizures, tremors, and myoclonus. Although approximately 10% of patients with DRPLA reportedly develop schizophrenia-like psychosis (SLP), the distinct association between the clinical course of DRPLA and SLP remains unclear. This study aimed to elucidate the clinical features of SLP in patients with DRPLA. Methods We reviewed 22 cases of pathologically or genetically confirmed DRPLA with SLP, including 21 from the literature and one from our institution. Patient data, including clinical features, treatment information, and disease course, were extracted and analyzed. Results The age of onset was categorized as juvenile (n = 6), early adult (n = 8), and late adult (n = 8). Initially, 10 patients presented with motor symptoms, with six exhibiting psychiatric symptoms and six with both motor and psychiatric symptoms simultaneously. Furthermore, three patients were initially diagnosed with schizophrenia, while four experienced progressive worsening of psychiatric symptoms. The number of CAG repeats ranged from 57 to 76 (mean, 66.0) in the 10 patients with a genetic diagnosis. Summarily, 12 patients received psychotropic medications, with nine showing improvement in delusions and hallucinations. Conclusion SLP can manifest across all DRPLA forms (juvenile-, early adult-, and late adult-onset) and may precede or follow motor symptoms. The clinical course and efficacy of psychotropic medications in patients with DRPLA and SLP suggest a shared pathogenesis between DRPLA and schizophrenia.
Collapse
Affiliation(s)
- Ichiko Ikegami
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Mitsuhashi Koike
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideki Hayashi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sachiko Hirokawa
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomohiko Ishihara
- Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Becerra-Hernández LV, González-Acosta CA, Buriticá-Ramírez E. Post-traumatic epilepsy: Insights from human cortical contused tissue. Epilepsy Behav 2025; 164:110252. [PMID: 39826185 DOI: 10.1016/j.yebeh.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Traumatic brain injury is a significant risk factor for the development of post-traumatic epilepsy (PTE), posing a major clinical challenge. This review discusses the critical role of GABAergic interneurons and reactive astrogliosis in the pathophysiology of post-traumatic epilepsy, integrating findings from our research group within the traumatic brain injury context with recent literature to highlight the impact of excitation-inhibition imbalance. We analyzed alterations in interneuron populations, specifically subtypes expressing the calcium-binding proteins parvalbumin, calretinin, and calbindin, and their association with an increased risk of epileptogenesis after TBI. Furthermore, we detail the role of reactive astrogliosis, elucidating how dysregulated astrocytic functions, including impaired glutamate homeostasis and aberrant calcium signaling, contribute to an environment conducive to seizure activity. Increased expression of glial fibrillary acidic protein and crystallin alpha-B in reactive astrocytes identified in contused human tissue suggests their involvement in exacerbating epileptogenic circuits. Our findings emphasize the intricate interactions between GABAergic interneurons and astrocytes, underscoring the need for a comprehensive understanding of the mechanisms underlying post-traumatic epilepsy. By bridging our group's data with existing evidence, this review establishes a foundation for future studies aimed at validating systemic biomarkers and developing targeted therapies to prevent or mitigate epilepsy progression following TBI. These insights are essential for addressing the complexities of drug-resistant epilepsy in affected patients.
Collapse
Affiliation(s)
- Lina V Becerra-Hernández
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia; Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana, Cali, Colombia.
| | - Carlos A González-Acosta
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia; Clínica Imbanaco, QuirónSalud, Cali, Colombia.
| | | |
Collapse
|
3
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
4
|
O’Brien JT, Jalilvand SP, Suji NA, Jupelly RK, Phensy A, Mwirigi JM, Elahi H, Price TJ, Kroener S. Elevations in the Mitochondrial Matrix Protein Cyclophilin D Correlate With Reduced Parvalbumin Expression in the Prefrontal Cortex of Patients With Schizophrenia. Schizophr Bull 2024; 50:1197-1207. [PMID: 38412332 PMCID: PMC11349014 DOI: 10.1093/schbul/sbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive deficits in schizophrenia are linked to dysfunctions of the dorsolateral prefrontal cortex (DLPFC), including alterations in parvalbumin (PV)-expressing interneurons (PVIs). Redox dysregulation and oxidative stress may represent convergence points in the pathology of schizophrenia, causing dysfunction of GABAergic interneurons and loss of PV. Here, we show that the mitochondrial matrix protein cyclophilin D (CypD), a critical initiator of the mitochondrial permeability transition pore (mPTP) and modulator of the intracellular redox state, is altered in PVIs in schizophrenia. STUDY DESIGN Western blotting was used to measure CypD protein levels in postmortem DLPFC specimens of schizophrenic patients (n = 27) and matched comparison subjects with no known history of psychiatric or neurological disorders (n = 26). In a subset of this cohort, multilabel immunofluorescent confocal microscopy with unbiased stereological sampling methods were used to quantify (1) numbers of PVI across the cortical mantle (20 unaffected comparison, 14 schizophrenia) and (2) PV and CypD protein levels from PVIs in the cortical layers 2-4 (23 unaffected comparison, 18 schizophrenia). STUDY RESULTS In schizophrenic patients, the overall number of PVIs in the DLPFC was not significantly altered, but in individual PVIs of layers 2-4 PV protein levels decreased along a superficial-to-deep gradient when compared to unaffected comparison subjects. These laminar-specific PVI alterations were reciprocally linked to significant CypD elevations both in PVIs and total DLPFC gray matter. CONCLUSIONS Our findings support previously reported PVI anomalies in schizophrenia and suggest that CypD-mediated mPTP formation could be a potential contributor to PVI dysfunction in schizophrenia.
Collapse
Affiliation(s)
- John T O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sophia P Jalilvand
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha A Suji
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Rohan K Jupelly
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Juliet M Mwirigi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Hajira Elahi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
5
|
Rodrigues D, Santa C, Manadas B, Monteiro P. Chronic Stress Alters Synaptic Inhibition/Excitation Balance of Pyramidal Neurons But Not PV Interneurons in the Infralimbic and Prelimbic Cortices of C57BL/6J Mice. eNeuro 2024; 11:ENEURO.0053-24.2024. [PMID: 39147579 DOI: 10.1523/eneuro.0053-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
The medial prefrontal cortex (mPFC) plays a pivotal role in regulating working memory, executive function, and self-regulatory behaviors. Dysfunction in the mPFC circuits is a characteristic feature of several neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Chronic stress (CS) is widely recognized as a major triggering factor for the onset of these disorders. Although evidence suggests synaptic dysfunction in mPFC circuits following CS exposure, it remains unclear how different neuronal populations in the infralimbic (IL) and prelimbic (PL) cortices are affected in terms of synaptic inhibition/excitation balance (I/E ratio). Here, using neuroproteomic analysis and whole-cell patch-clamp recordings in pyramidal neurons (PNs) and parvalbumin (PV) interneurons within the PL and IL cortices, we examined the synaptic changes after 21 d of chronic unpredictable stress, in male mice. Our results reveal distinct impacts of CS on PL and IL PNs, resulting in an increased I/E ratio in both subregions but through different mechanisms: CS increases inhibitory synaptic drive in the PL while decreasing excitatory synaptic drive in the IL. Notably, the I/E ratio and excitatory and inhibitory synaptic drive of PV interneurons remained unaffected in both PL and IL circuits following CS exposure. These findings offer novel mechanistic insights into the influence of CS on mPFC circuits and support the hypothesis of stress-induced mPFC hypofunction.
Collapse
Affiliation(s)
- Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Biomedizinisches Centrum München (BMC), Ludwig-Maximilians-Universität München, Munich 82152, Bayern, Germany
| | - Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-517, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- RISE-Health, Health Research Network, Porto 4200-319, Portugal
| |
Collapse
|
6
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
7
|
Olkhova EA, Smith LA, Dennis BH, Ng YS, LeBeau FEN, Gorman GS. Delineating mechanisms underlying parvalbumin neuron impairment in different neurological and neurodegenerative disorders: the emerging role of mitochondrial dysfunction. Biochem Soc Trans 2024; 52:553-565. [PMID: 38563502 PMCID: PMC11088917 DOI: 10.1042/bst20230191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.
Collapse
Affiliation(s)
- Elizaveta A. Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Laura A. Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Bethany H. Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Fiona E. N. LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
8
|
Carceller H, Gramuntell Y, Klimczak P, Nacher J. Perineuronal Nets: Subtle Structures with Large Implications. Neuroscientist 2023; 29:569-590. [PMID: 35872660 DOI: 10.1177/10738584221106346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Perineuronal nets (PNNs) are specialized structures of the extracellular matrix that surround the soma and proximal dendrites of certain neurons in the central nervous system, particularly parvalbumin-expressing interneurons. Their appearance overlaps the maturation of neuronal circuits and the closure of critical periods in different regions of the brain, setting their connectivity and abruptly reducing their plasticity. As a consequence, the digestion of PNNs, as well as the removal or manipulation of their components, leads to a boost in this plasticity and can play a key role in the functional recovery from different insults and in the etiopathology of certain neurologic and psychiatric disorders. Here we review the structure, composition, and distribution of PNNs and their variation throughout the evolutive scale. We also discuss methodological approaches to study these structures. The function of PNNs during neurodevelopment and adulthood is discussed, as well as the influence of intrinsic and extrinsic factors on these specialized regions of the extracellular matrix. Finally, we review current data on alterations in PNNs described in diseases of the central nervous system (CNS), focusing on psychiatric disorders. Together, all the data available point to the PNNs as a promising target to understand the physiology and pathologic conditions of the CNS.
Collapse
Affiliation(s)
- Héctor Carceller
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
- CIBERSAM, Spanish National Network for Research in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
9
|
Chamberlin LA, Yang SS, McEachern EP, Lucas JTM, McLeod Ii OW, Rolland CA, Mack NR, Ferguson BR, Gao WJ. Pharmacogenetic activation of parvalbumin interneurons in the prefrontal cortex rescues cognitive deficits induced by adolescent MK801 administration. Neuropsychopharmacology 2023; 48:1267-1276. [PMID: 37041206 PMCID: PMC10353985 DOI: 10.1038/s41386-023-01576-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/13/2023]
Abstract
The cognitive symptoms of schizophrenia (SZ) present a significant clinical burden. They are treatment resistant and are the primary predictor of functional outcomes. Although the neural mechanisms underlying these deficits remain unclear, pathological GABAergic signaling likely plays an essential role. Perturbations with parvalbumin (PV)-expressing fast-spiking (FS) interneurons in the prefrontal cortex (PFC) are consistently found in post-mortem studies of patients with SZ, as well as in animal models. Our studies have shown decreased prefrontal synaptic inhibition and PV immunostaining, along with working memory and cognitive flexibility deficits in the MK801 model. To test the hypothesized association between PV cell perturbations and impaired cognition in SZ, we activated prefrontal PV cells by using an excitatory DREADD viral vector with a PV promoter to rescue the cognitive deficits induced by adolescent MK801 administration in female rats. We found that targeted pharmacogenetic upregulation of prefrontal PV interneuron activity can restore E/I balance and improve cognition in the MK801 model. Our findings support the hypothesis that the reduced PV cell activity levels disrupt GABA transmission, resulting in the disinhibition of excitatory pyramidal cells. This disinhibition leads to an elevated prefrontal excitation/inhibition (E/I) balance that could be causal for cognitive impairments. Our study provides novel insights into the causal role of PV cells in cognitive function and has clinical implications for understanding the pathophysiology and management of SZ.
Collapse
Affiliation(s)
- Linda A Chamberlin
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- MD/PhD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sha-Sha Yang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
- Institute for Translational Brain Research, Department of Neurology, Fudan University, Shanghai, 200032, China
| | - Erin P McEachern
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joshua T M Lucas
- MD program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Owen W McLeod Ii
- Interdisciplinary Health Sciences Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Claire A Rolland
- Interdisciplinary Health Sciences Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nancy R Mack
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brielle R Ferguson
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
- 2 Blackfan circle, Cetern for Life Science, Boston, MA, 02115, USA.
| | - Wen-Jun Gao
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Fish KN, Rocco BR, Wilson JD, Lewis DA. Laminar-Specific Alterations in Calbindin-Positive Boutons in the Prefrontal Cortex of Subjects With Schizophrenia. Biol Psychiatry 2023; 94:142-152. [PMID: 36868891 PMCID: PMC10247897 DOI: 10.1016/j.biopsych.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive deficits in schizophrenia are associated with altered GABA (gamma-aminobutyric acid) neurotransmission in the prefrontal cortex (PFC). GABA neurotransmission requires GABA synthesis by 2 isoforms of glutamic acid decarboxylase (GAD65 and GAD67) and packaging by the vesicular GABA transporter (vGAT). Current postmortem findings suggest that GAD67 messenger RNA is lower in a subset of the calbindin-expressing (CB+) class of GABA neurons in schizophrenia. Hence, we assessed if CB+ GABA neuron boutons are affected in schizophrenia. METHODS For 20 matched pairs of subjects with schizophrenia and unaffected comparison subjects, PFC tissue sections were immunolabeled for vGAT, CB, GAD67, and GAD65. The density of CB+ GABA boutons and levels of the 4 proteins per bouton were quantified. RESULTS Some CB+ GABA boutons contained both GAD65 and GAD67 (GAD65+/GAD67+), whereas others contained only GAD65 (GAD65+) or GAD67 (GAD67+). In schizophrenia, vGAT+/CB+/GAD65+/GAD67+ bouton density was not altered, vGAT+/CB+/GAD65+ bouton density was 86% higher in layers 2/superficial 3 (L2/3s), and vGAT+/CB+/GAD67+ bouton density was 36% lower in L5-6. Bouton GAD levels were differentially altered across bouton types and layers. In schizophrenia, the sum of GAD65 and GAD67 levels in vGAT+/CB+/GAD65+/GAD67+ boutons was 36% lower in L6, GAD65 levels were 51% higher in vGAT+/CB+/GAD65+ boutons in L2, and GAD67 levels in vGAT+/CB+/GAD67+ boutons were 30% to 46% lower in L2/3s-6. CONCLUSIONS These findings indicate that schizophrenia-associated alterations in the strength of inhibition from CB+ GABA neurons in the PFC differ across cortical layers and bouton classes, suggesting complex contributions to PFC dysfunction and cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Brad R Rocco
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James D Wilson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Zhang S, Hu S, Dong W, Huang S, Jiao Z, Hu Z, Dai S, Yi Y, Gong X, Li K, Wang H, Xu D. Prenatal dexamethasone exposure induces anxiety- and depressive-like behavior of male offspring rats through intrauterine programming of the activation of NRG1-ErbB4 signaling in hippocampal PV interneurons. Cell Biol Toxicol 2023; 39:657-678. [PMID: 34189720 DOI: 10.1007/s10565-021-09621-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Dexamethasone is a commonly used synthetic glucocorticoid in the clinic. As a compound that can cross the placental barrier to promote fetal lung maturation, dexamethasone is extensively used in pregnant women at risk of premature delivery. However, the use of glucocorticoids during pregnancy increases the risk of neurodevelopmental disorders. In the present study, we observed anxiety- and depressive-like behavior changes and hyperexcitability of hippocampal neurons in adult rat offspring with previous prenatal dexamethasone exposure (PDE); the observed changes were related to in utero damage of parvalbumin interneurons. A programmed change in neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ErbB4) signaling was the key to the damage of parvalbumin interneurons in the hippocampus of PDE offspring. Anxiety- and depressive-like behavior, NRG1-ErbB4 signaling activation, and damage of parvalbumin interneurons in PDE offspring were aggravated after chronic stress. The intervention of NRG1-ErbB4 signaling contributed to the improvement in dexamethasone-mediated injury to parvalbumin interneurons. These results suggested that PDE might cause anxiety- and depressive-like behavior changes in male rat offspring through the programmed activation of NRG1-ErbB4 signaling, resulting in damage to parvalbumin interneurons and hyperactivity of the hippocampus. Intrauterine programming of neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ERBB4) overactivation by dexamethasone mediates anxiety- and depressive-like behavior in male rat offspring.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Songqiang Huang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhexiao Jiao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zewen Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Shiyun Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yiwen Yi
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Dan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
12
|
Wartchow KM, Scaini G, Quevedo J. Glial-Neuronal Interaction in Synapses: A Possible Mechanism of the Pathophysiology of Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:191-208. [PMID: 36949311 DOI: 10.1007/978-981-19-7376-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.
Collapse
Affiliation(s)
- Krista M Wartchow
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
13
|
Xia D, Zhang X, Deng D, Ma X, Masri S, Wang J, Bao S, Hu S, Zhou Q. Long-Term Enhancement of NMDA Receptor Function in Inhibitory Neurons Preferentially Modulates Potassium Channels and Cell Adhesion Molecules. Front Pharmacol 2022; 12:796179. [PMID: 35058780 PMCID: PMC8764260 DOI: 10.3389/fphar.2021.796179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Effectively enhancing the activity of inhibitory neurons has great therapeutic potentials since their reduced function/activity has significant contributions to pathology in various brain diseases. We showed previously that NMDAR positive allosteric modulator GNE-8324 and M-8324 selectively increase NMDAR activity on the inhibitory neurons and elevates their activity in vitro and in vivo. Here we examined the impact of long-term administering M-8324 on the functions and transcriptional profiling of parvalbumin-containing neurons in two representative brain regions, primary auditory cortex (Au1) and prelimbic prefrontal cortex (PrL-PFC). We found small changes in key electrophysiological parameters and RNA levels of neurotransmitter receptors, Na+ and Ca2+ channels. In contrast, large differences in cell adhesion molecules and K+ channels were found between Au1 and PrL-PFC in drug-naïve mice, and differences in cell adhesion molecules became much smaller after M-8324 treatment. There was also minor impact of M-8324 on cell cycle and apoptosis, suggesting a fine safety profile.
Collapse
Affiliation(s)
- Dan Xia
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinyang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Di Deng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China.,International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Samer Masri
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Jianzheng Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shaowen Bao
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
14
|
Poleksic J, Aksic M, Kapor S, Aleksic D, Stojkovic T, Radovic M, Djulejic V, Markovic B, Stamatakis A. Effects of Maternal Deprivation on the Prefrontal Cortex of Male Rats: Cellular, Neurochemical, and Behavioral Outcomes. Front Behav Neurosci 2021; 15:666547. [PMID: 34819843 PMCID: PMC8606589 DOI: 10.3389/fnbeh.2021.666547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Stressful events experienced during early life are associated with increased vulnerability of developing psychopathology in adulthood. In the present study, we exposed 9-day-old Wistar rats to 24 h maternal deprivation (MD) with the aim to investigate the impact of early life stress (ELS) on morphological, biochemical, and functional aspects of the prefrontal cortex (PFC), a brain region particularly sensitive to stress. We found that in the superficial medial orbital cortex (MO), young adult male rats had reduced density of GAD67 and CCK immunopositive cells, while the rostral part of the ventral lateral orbital cortex (roVLO) showed a decrease in the density of GAD67 immunopositive cells in both superficial and deep layers. In addition, the superficial rostral part of area 1 of the cingulate cortex (roCg1) and deep prelimbic cortex (PrL) was also affected by MD indicated by the reduction in PV immunopositive cellular density. Furthermore, MD induced upregulation of brain-derived neurotrophic factor (BDNF), while it did not affect the overall expression of Iba1 in neonatal or young adult PFC as measured by Western blot, however, microglial activation in young adult MD rats was detected immunohistochemically in deep layers of MO and infralimbic cortex (IL). Interestingly, when young adult male rats were subjected to a behavioral flexibility test in a T-maze, MD rats showed a subtle impairment in T-maze reversal learning indicating a mildly affected PFC function. Taken together, our findings demonstrated that MD reduced the density of interneurons and induced microglial activation, in particular, PFC areas at young adulthood, and could alter synaptic plasticity accompanied by PFC dysfunction.
Collapse
Affiliation(s)
- Joko Poleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Aksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dubravka Aleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tihomir Stojkovic
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Radovic
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vuk Djulejic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Markovic
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, School of Health Sciences, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
16
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
17
|
Liu H, Xu L, Fu J, Su Q, Liu N, Xu J, Tang J, Li W, Zhao F, Ding H, Liu F, Qin W, Yu C. Prefrontal Granule Cell-Related Genes and Schizophrenia. Cereb Cortex 2021; 31:2268-2277. [PMID: 33270830 DOI: 10.1093/cercor/bhaa360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Although both the granular layer of the prefrontal cortex (PFC) and schizophrenia are unique in primates, especially humans, their linkage is unclear. Here, we tested whether schizophrenia is associated with expression profiles of the granule cell (GC)-related genes in the human PFC. We identified 14 candidate GC-related genes with gradually increased expression levels along the gradient of the agranular, dysgranular, light-granular, and granular prefrontal regions based on the densely sampled gene expression data of 6 postmortem human brains, and with more than 10-fold expression in neurons than other cell types based on the single-cell RNA-sequencing data of the human PFC. These GC-related genes were functionally associated with synaptic transmission and cell development and differentiation. The identified 14 GC-related genes were significantly enriched for schizophrenia, but not for depression and bipolar disorder. The expression levels of the 4 stable schizophrenia- and GC-related genes were spatially correlated with gray matter volume differences in the PFC between patients with schizophrenia and healthy controls. This study provides a set of candidate genes for the human prefrontal GCs and links expression profiles of the GC-related genes to the prefrontal structural impairments in schizophrenia.
Collapse
Affiliation(s)
- Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lixue Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Fangshi Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Ding
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Klein PC, Ettinger U, Schirner M, Ritter P, Rujescu D, Falkai P, Koutsouleris N, Kambeitz-Ilankovic L, Kambeitz J. Brain Network Simulations Indicate Effects of Neuregulin-1 Genotype on Excitation-Inhibition Balance in Cortical Dynamics. Cereb Cortex 2021; 31:2013-2025. [PMID: 33279967 DOI: 10.1093/cercor/bhaa339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 11/14/2022] Open
Abstract
Neuregulin-1 (NRG1) represents an important factor for multiple processes including neurodevelopment, brain functioning or cognitive functions. Evidence from animal research suggests an effect of NRG1 on the excitation-inhibition (E/I) balance in cortical circuits. However, direct evidence for the importance of NRG1 in E/I balance in humans is still lacking. In this work, we demonstrate the application of computational, biophysical network models to advance our understanding of the interaction between cortical activity observed in neuroimaging and the underlying neurobiology. We employed a biophysical neuronal model to simulate large-scale brain dynamics and to investigate the role of polymorphisms in the NRG1 gene (rs35753505, rs3924999) in n = 96 healthy adults. Our results show that G/G-carriers (rs3924999) exhibit a significant difference in global coupling (P = 0.048) and multiple parameters determining E/I-balance such as excitatory synaptic coupling (P = 0.047), local excitatory recurrence (P = 0.032) and inhibitory synaptic coupling (P = 0.028). This indicates that NRG1 may be related to excitatory recurrence or excitatory synaptic coupling potentially resulting in altered E/I-balance. Moreover, we suggest that computational modeling is a suitable tool to investigate specific biological mechanisms in health and disease.
Collapse
Affiliation(s)
- Pedro Costa Klein
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Bonn, 53111, Germany
| | - Michael Schirner
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, 10117, Germany.,Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin 10115, Germany
| | - Petra Ritter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, 10117, Germany.,Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin 10115, Germany
| | - Dan Rujescu
- University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University, Halle-Wittenberg, 06112, Germany
| | - Peter Falkai
- Department of Psychiatry, Ludwig Maximilians Universität München, 80336, Germany
| | | | - Lana Kambeitz-Ilankovic
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany.,Department of Psychiatry, Ludwig Maximilians Universität München, 80336, Germany
| | - Joseph Kambeitz
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany
| |
Collapse
|
19
|
Marques TR, Ashok AH, Angelescu I, Borgan F, Myers J, Lingford-Hughes A, Nutt DJ, Veronese M, Turkheimer FE, Howes OD. GABA-A receptor differences in schizophrenia: a positron emission tomography study using [ 11C]Ro154513. Mol Psychiatry 2021; 26:2616-2625. [PMID: 32296127 PMCID: PMC8440185 DOI: 10.1038/s41380-020-0711-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 01/28/2023]
Abstract
A loss of GABA signaling is a prevailing hypothesis for the pathogenesis of schizophrenia. Preclinical studies indicate that blockade of the α5 subtype of the GABA receptor (α5-GABAARs) leads to behavioral phenotypes associated with schizophrenia, and postmortem evidence indicates lower hippocampal α5-GABAARs protein and mRNA levels in schizophrenia. However, it is unclear if α5-GABAARs are altered in vivo or related to symptoms. We investigated α5-GABAARs availability in antipsychotic-free schizophrenia patients and antipsychotic-medicated schizophrenia patients using [11C]Ro15-4513 PET imaging in a cross-sectional, case-control study design. Thirty-one schizophrenia patients (n = 10 antipsychotic free) and twenty-nine matched healthy controls underwent a [11C]Ro15-4513 PET scan and MRI. The α5 subtype GABA-A receptor availability was indexed using [11C]Ro15-4513 PET imaging. Dynamic PET data were analyzed using the two-tissue compartment model with an arterial plasma input function and total volume of distribution (VT) as the outcome measure. Symptom severity was assessed using the PANSS scale. There was significantly lower [11C]Ro15-4513 VT in the hippocampus of antipsychotic-free patients, but not in medicated patients (p = 0.64), relative to healthy controls (p < 0.05; effect size = 1.4). There was also a significant positive correlation between [11C]Ro15-4513 VT and total PANSS score in antipsychotic-free patients (r = 0.72; p = 0.044). The results suggest that antipsychotic-free patients with schizophrenia have lower α5-GABAARs levels in the hippocampus, consistent with the hypothesis that GABA hypofunction underlies the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK. .,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Abhishekh H. Ashok
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ilinca Angelescu
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Faith Borgan
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jim Myers
- grid.7445.20000 0001 2113 8111Faculty of Medicine, Imperial College London, London, UK
| | - Anne Lingford-Hughes
- grid.7445.20000 0001 2113 8111Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - David J. Nutt
- grid.7445.20000 0001 2113 8111Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| | - Mattia Veronese
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Federico E. Turkheimer
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Oliver D. Howes
- grid.14105.310000000122478951Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
20
|
Harrison PJ, Colbourne L, Harrison CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry 2020; 25:1787-1808. [PMID: 30127470 PMCID: PMC6292507 DOI: 10.1038/s41380-018-0213-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Various neuropathological findings have been reported in bipolar disorder (BD). However, it is unclear which findings are well established. To address this gap, we carried out a systematic review of the literature. We searched over 5000 publications, identifying 103 data papers, of which 81 were eligible for inclusion. Our main findings can be summarised as follows. First, most studies have relied on a limited number of brain collections, and have used relatively small sample sizes (averaging 12 BD cases and 15 controls). Second, surprisingly few studies have attempted to replicate closely a previous one, precluding substantial meta-analyses, such that the latter were all limited to two studies each, and comprising 16-36 BD cases and 16-74 controls. As such, no neuropathological findings can be considered to have been established beyond reasonable doubt. Nevertheless, there are several replicated positive findings in BD, including decreased cortical thickness and glial density in subgenual anterior cingulate cortex, reduced neuronal density in some amygdalar nuclei, and decreased calbindin-positive neuron density in prefrontal cortex. Many other positive findings have also been reported, but with limited or contradictory evidence. As an important negative result, it can be concluded that gliosis is not a feature of BD; neither is there neuropathological evidence for an inflammatory process.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Lucy Colbourne
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Charlotte H Harrison
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
21
|
RET-independent signaling by GDNF ligands and GFRα receptors. Cell Tissue Res 2020; 382:71-82. [PMID: 32737575 PMCID: PMC7529620 DOI: 10.1007/s00441-020-03261-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
The discovery in the late 1990s of the partnership between the RET receptor tyrosine kinase and the GFRα family of GPI-anchored co-receptors as mediators of the effects of GDNF family ligands galvanized the field of neurotrophic factors, firmly establishing a new molecular framework besides the ubiquitous neurotrophins. Soon after, however, it was realized that many neurons and brain areas expressed GFRα receptors without expressing RET. These observations led to the formulation of two new concepts in GDNF family signaling, namely, the non-cell-autonomous functions of GFRα molecules, so-called trans signaling, as well as cell-autonomous functions mediated by signaling receptors distinct from RET, which became known as RET-independent signaling. To date, the best studied RET-independent signaling pathway for GDNF family ligands involves the neural cell adhesion molecule NCAM and its association with GFRα co-receptors. Among the many functions attributed to this signaling system are neuronal migration, neurite outgrowth, dendrite branching, spine formation, and synaptogenesis. This review summarizes our current understanding of this and other mechanisms of RET-independent signaling by GDNF family ligands and GFRα receptors, as well as their physiological importance.
Collapse
|
22
|
Kaushik R, Lipachev N, Matuszko G, Kochneva A, Dvoeglazova A, Becker A, Paveliev M, Dityatev A. Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia. Eur J Neurosci 2020; 53:3988-4004. [PMID: 32510674 DOI: 10.1111/ejn.14853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Perineuronal nets (PNNs) represent a highly condensed specialized form of brain extracellular matrix (ECM) enwrapping mostly parvalbumin-positive interneurons in the brain in a mesh-like fashion. PNNs not only regulate the onset and completion of the critical period during postnatal brain development, control cell excitability, and synaptic transmission but are also implicated in several brain disorders including schizophrenia. Holes in the perineuronal nets, harboring the synaptic contacts, along with hole-surrounding ECM barrier can be viewed as PNN compartmentalization units that might determine the properties of synapses and heterosynaptic communication. In this study, we developed a novel open-source script for Fiji (ImageJ) to semi-automatically quantify structural alterations of PNNs such as the number of PNN units, area, mean intensity of PNN marker expression in 2D and 3D, shape parameters of PNN units in the ketamine-treated Sprague-Dawley rat model of schizophrenia using high-resolution confocal microscopic images. We discovered that the mean intensity of ECM within PNN units is inversely correlated with the area and the perimeter of the PNN holes. The intensity, size, and shape of PNN units proved to be three major principal factors to describe their variability. Ketamine-treated rats had more numerous but smaller and less circular PNN units than control rats. These parameters allowed to correctly classify individual PNNs as derived from control or ketamine-treated groups with ≈85% reliability. Thus, the proposed multidimensional analysis of PNN units provided a robust and comprehensive morphometric fingerprinting of fine ECM structure abnormalities in the experimental model of schizophrenia.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Nikita Lipachev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anastasia Kochneva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anastasia Dvoeglazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mikhail Paveliev
- Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
Ladagu AD, Olopade FE, Folarin OR, Elufioye TO, Wallach JV, Dybek MB, Olopade JO, Adejare A. Novel NMDA-receptor antagonists ameliorate vanadium neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1729-1738. [PMID: 32388602 DOI: 10.1007/s00210-020-01882-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Various NMDA-receptor antagonists have been investigated for their therapeutic potential in Alzheimer's disease with memantine shown to be safe and with relative efficacy. There is, however, need to develop novel drugs to counter tolerance and with better efficacy in ameliorating neurodegeneration. We have shown neurodegeneration in different models of vanadium-exposed mice. This study was designed to evaluate and ascertain the potency of three novel NMDA-receptor antagonists (Compounds A, B and C) to ameliorate neurodegeneration in vanadium-exposed mice. One-month-old mice (n = 6) received sterile water (control) and another group (n = 6) was treated with vanadium (3 mg/kg sodium metavanadate) intraperitoneally for 1 month. Three other groups (n = 6) received vanadium and compounds A, B and C (4.35 mg/kg, 30 mg/kg and 100 mg/kg, respectively) simultaneously for the same period. Assessment of pathologies and neurodegeneration in different brain regions was done to test the ameliorative effects of the 3 antagonists using different immunohistochemical markers. Vanadium exposure resulted in reduced calbindin expression and pyknosis of Purkinje cells, cell loss and destruction of apical dendrites with greater percentage of cytoplasmic vacuolations, morphological alterations characterized by cell clustering and multiple layering patterns in the Purkinje cell layer. In addition, the observed degeneration included demyelination, increased GFAP-immunoreactive cells and microgliosis. Simultaneous administration of the compounds to vanadium-exposed mice resulted in the preservation of cellular integrity in the same anatomical regions and restoration of the cells' vitality with reduced astroglial and microglial activation.
Collapse
Affiliation(s)
- A D Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Oyo, Nigeria
| | - F E Olopade
- Department of Anatomy, University of Ibadan, Oyo, Nigeria
| | - O R Folarin
- Department of Veterinary Anatomy, University of Ibadan, Oyo, Nigeria
| | - T O Elufioye
- Department of Pharmacognosy, University of Ibadan, Oyo, Nigeria
| | - J V Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - M B Dybek
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - J O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Oyo, Nigeria.
| | - A Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
24
|
Yi Y, Song Y, Lu Y. Parvalbumin Interneuron Activation-Dependent Adult Hippocampal Neurogenesis Is Required for Treadmill Running to Reverse Schizophrenia-Like Phenotypes. Front Cell Dev Biol 2020; 8:24. [PMID: 32117963 PMCID: PMC7010605 DOI: 10.3389/fcell.2020.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Physical exercise can alleviate some of the schizophrenia symptoms in patients, the mechanisms, however, are still unclear. To investigate whether the GABAergic interneuron involved in the therapeutic effect of treadmill running on schizophrenia, the parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus (DG) was specifically activated or abolished and the effects were evaluated. In the MK801-induced schizophrenia-like animal model, we found:(1) Treadmill running rescued the schizophrenia-related behavioral phenotypes, promoted the adult hippocampal neurogenesis, and increased the dendrite number and complexity of newborn neurons. (2) Treadmill running increased the number of PV-positive interneurons in the DG; genetic ablation of these interneurons reduced adult neurogenesis and abolished the effect of treadmill running on the schizophrenia-related behaviors. Consistently, chemogenetic activation of these interneurons improved neurogenesis and alleviated the schizophrenia-related behaviors. These results suggest a pivotal role of PV-positive interneuron-mediated adult neurogenesis in exercise. (3) However, schizophrenia-related behavioral phenotypes and adult neurogenesis in the DG could still be reversed by exercise after specifically knocking out the schizophrenia-related gene ErbB4 in PV interneurons, as a means to reduce their GABA release. These results suggest that activation of PV interneurons in the DG is sufficient for treadmill running to reverse schizophrenia-like phenotypes.
Collapse
Affiliation(s)
- Yandong Yi
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanlong Song
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm (Vienna) 2019; 126:1637-1651. [PMID: 31529297 PMCID: PMC6856257 DOI: 10.1007/s00702-019-02080-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/08/2019] [Indexed: 02/05/2023]
Abstract
Parvalbumin interneurons are fast-spiking GABAergic neurons that provide inhibitory control of cortical and subcortical circuits and are thought to be a key locus of the pathophysiology underlying schizophrenia. In view of the contradictory results regarding the nature of parvalbumin post-mortem findings in schizophrenia, we conducted a quantitative meta-analysis of the data on parvalbumin cell density and parvalbumin mRNA levels in pre-frontal regions in the brains of patients with schizophrenia (n = 274) compared with healthy controls (n = 275). The results suggest that parvalbumin interneurons are reduced in density in the frontal cortex of patients with schizophrenia (Hedges’ g = − 0.27; p = 0.03) and there is a non-significant reduction in parvalbumin mRNA levels (g = − 0.44; p = 0.12). However, certain methodological issues need to be considered in interpreting such results and are discussed in more detail. A meta-regression was conducted for post-mortem interval and year of publication as covariates which were both non-significant, except in the mRNA meta-analysis where post-mortem interval was found to be significant. Overall our findings provide tentative support for the hypothesis that the GABAergic system is deficient in schizophrenia and that parvalbumin-containing interneurons offer a potential target for treatment. However, further well-controlled studies that examine multiple regions and layers are warranted to determine whether parvalbumin alterations are region or layer specific and to test the robustness of the findings further.
Collapse
|
26
|
Gigase FAJ, Snijders GJLJ, Boks MP, de Witte LD. Neurons and glial cells in bipolar disorder: A systematic review of postmortem brain studies of cell number and size. Neurosci Biobehav Rev 2019; 103:150-162. [PMID: 31163205 DOI: 10.1016/j.neubiorev.2019.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a complex neurobiological disease. It is likely that both neurons and glial cells are affected in BD, yet how these cell types are changed at the structural and functional level is still largely unknown. In this review we provide an overview of postmortem studies analyzing structural cellular changes in BD, including the density, number and size of neurons and glia. We categorize the results per cell-type and validate outcome measures per brain region. Despite variations by brain region, outcome measure and methodology, several patterns could be identified. Total neuron, total glia, and cell subtypes astrocyte, microglia and oligodendrocyte presence appears unchanged in the BD brain. Interneuron density may be decreased across various cortical areas, yet findings of interneuron subpopulations show discrepancies. This structural review brings to light issues in validation and replication. Future research should therefore prioritize the validation of existing studies in order to increasingly refine the conceptual models of BD.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG Utrecht, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
27
|
Maćkowiak M, Latusz J, Głowacka U, Bator E, Bilecki W. Adolescent social isolation affects parvalbumin expression in the medial prefrontal cortex in the MAM-E17 model of schizophrenia. Metab Brain Dis 2019; 34:341-352. [PMID: 30519836 DOI: 10.1007/s11011-018-0359-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Altered parvalbumin (PV) expression is observed in the prefrontal cortex of subjects with schizophrenia. Environmental context, particularly during adolescence, might regulate PV expression. In the present study, we investigated the effect of adolescent social isolation (SI) on PV expression in the medial prefrontal cortex in a neurodevelopmental model (MAM-E17) of schizophrenia. SI exposure occurred from postnatal day 30 to 40, followed by resocialization until late adolescence or early adulthood. PV mRNA and protein levels, as well as the number of PV cells, were analysed at these ages. Moreover, epigenetic regulation of PV expression by histone methylation was examined by measuring the total and PV gene-bound H3K4me3 levels. MAM only decreased levels of the PV mRNA and protein in adulthood. Decreases in total H3K4me3 levels and its level at the PV gene were also observed at this age. In contrast, in late adolescence, SI induced a decrease in the expression of the PV mRNA in the MAM group that was related to the reduction in total and PV gene-bound H3K4me3 levels. However, at this age, SI increased the levels of the PV protein in both the control and MAM groups. In adulthood, SI did not affect PV mRNA or H3K4me3 levels but decreased levels of the PV protein in both groups. Both MAM and SI failed to change the number of PV cells at any age. The results indicate that adolescent SI accelerated epigenetic impairments of PV expression in MAM-E17 rats; however, subsequent resocialization abolished this dysfunction, but failed to prevent alterations in PV protein.
Collapse
Affiliation(s)
- Marzena Maćkowiak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland.
| | - Joachim Latusz
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| | - Urszula Głowacka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| | - Ewelina Bator
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| | - Wiktor Bilecki
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
28
|
Chung DW, Chung Y, Bazmi HH, Lewis DA. Altered ErbB4 splicing and cortical parvalbumin interneuron dysfunction in schizophrenia and mood disorders. Neuropsychopharmacology 2018; 43:2478-2486. [PMID: 30120408 PMCID: PMC6180093 DOI: 10.1038/s41386-018-0169-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
Working memory requires the activity of parvalbumin (PV) interneurons in the dorsolateral prefrontal cortex (DLPFC). Impaired working memory and lower PV expression in the DLPFC are reported in schizophrenia and to a lesser degree in mood disorders. We previously proposed that activity-dependent PV expression is lower in schizophrenia due to a shift in the splicing of erb-b2 receptor tyrosine kinase 4 (ErbB4) transcripts from major to inactive minor variants that reduces excitatory drive to PV interneurons. Here, we tested the hypothesis that the degree of major-to-minor shift in ErbB4 splicing predicts the level of PV expression across schizophrenia and mood disorders. Levels of ErbB4 splice variants and PV mRNA were quantified by PCR in the DLPFC from 40 matched tetrads (N = 160 subjects) of schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), and unaffected comparison subjects. Relative to unaffected comparison subjects, the magnitude of increases in minor variant levels and decreases in major variant levels was greatest in schizophrenia, intermediate in BD, and least in MDD. The same rank order was present for the magnitude of increases in the composite splicing score, which reflects the degree of major-to-minor shift across all ErbB4 splice loci, and for the magnitude of deficient PV expression. Finally, the composite splicing score negatively predicted PV expression across all subject groups. Together, these findings demonstrate a shared relationship between ErbB4 splicing and PV expression and suggest that scaling of the major-to-minor shift in ErbB4 splicing may influence the severity of deficient PV interneuron activity across diagnoses.
Collapse
Affiliation(s)
- Daniel W Chung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Youjin Chung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY, 14260, USA
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
29
|
Kalemaki K, Konstantoudaki X, Tivodar S, Sidiropoulou K, Karagogeos D. Mice With Decreased Number of Interneurons Exhibit Aberrant Spontaneous and Oscillatory Activity in the Cortex. Front Neural Circuits 2018; 12:96. [PMID: 30429776 PMCID: PMC6220423 DOI: 10.3389/fncir.2018.00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
GABAergic (γ-aminobutyric acid) neurons are inhibitory neurons and protect neural tissue from excessive excitation. Cortical GABAergic neurons play a pivotal role for the generation of synchronized cortical network oscillations. Imbalance between excitatory and inhibitory mechanisms underlies many neuropsychiatric disorders and is correlated with abnormalities in oscillatory activity, especially in the gamma frequency range (30–80 Hz). We investigated the functional changes in cortical network activity in response to developmentally reduced inhibition in the adult mouse barrel cortex (BC). We used a mouse model that displays ∼50% fewer cortical interneurons due to the loss of Rac1 protein from Nkx2.1/Cre-expressing cells [Rac1 conditional knockout (cKO) mice], to examine how this developmental loss of cortical interneurons may affect basal synaptic transmission, synaptic plasticity, spontaneous activity, and neuronal oscillations in the adult BC. The decrease in the number of interneurons increased basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks in the Rac1 cKO mouse cortex, decreased long-term potentiation (LTP) in response to tetanic stimulation but did not alter the pair-pulse ratio (PPR). Furthermore, under spontaneous recording conditions, Rac1 cKO brain slices exhibit enhanced sensitivity and susceptibility to emergent spontaneous activity. We also find that this developmental decrease in the number of cortical interneurons results in local neuronal networks with alterations in neuronal oscillations, exhibiting decreased power in low frequencies (delta, theta, alpha) and gamma frequency range (30–80 Hz) with an extra aberrant peak in high gamma frequency range (80–150 Hz). Therefore, our data show that disruption in GABAergic inhibition alters synaptic properties and plasticity, while it additionally disrupts the cortical neuronal synchronization in the adult BC.
Collapse
Affiliation(s)
- Katerina Kalemaki
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | | | - Simona Tivodar
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Voutes University Campus, Heraklion, Greece
| | - Domna Karagogeos
- School of Medicine, University of Crete, Voutes University Campus, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
30
|
Impaired Organization of GABAergic Neurons Following Prenatal Hypoxia. Neuroscience 2018; 384:300-313. [DOI: 10.1016/j.neuroscience.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
|
31
|
Acute and chronic escitalopram alter EEG gamma oscillations differently: relevance to therapeutic effects. Eur J Pharm Sci 2018; 121:347-355. [DOI: 10.1016/j.ejps.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/24/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
|
32
|
Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, Gazal S, Loh PR, Lareau C, Shoresh N, Genovese G, Saunders A, Macosko E, Pollack S, Perry JRB, Buenrostro JD, Bernstein BE, Raychaudhuri S, McCarroll S, Neale BM, Price AL. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet 2018; 50:621-629. [PMID: 29632380 PMCID: PMC5896795 DOI: 10.1038/s41588-018-0081-4] [Citation(s) in RCA: 632] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression in a given tissue. We applied our approach to gene expression data from several sources together with GWAS summary statistics for 48 diseases and traits (average N = 169,331) and found significant tissue-specific enrichments (false discovery rate (FDR) < 5%) for 34 traits. In our analysis of multiple tissues, we detected a broad range of enrichments that recapitulated known biology. In our brain-specific analysis, significant enrichments included an enrichment of inhibitory over excitatory neurons for bipolar disorder, and excitatory over inhibitory neurons for schizophrenia and body mass index. Our results demonstrate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signals.
Collapse
Affiliation(s)
- Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Yakir A Reshef
- Department of Computer Science, Harvard University, Cambridge, MA, USA
| | - Verneri Anttila
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Gusev
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Byrnes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gazal
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Caleb Lareau
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Evan Macosko
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Samuela Pollack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - John R B Perry
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Partners Center for Personalized Genetic Medicine, Boston, MA, USA
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Steven McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Neale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
33
|
Selten M, van Bokhoven H, Nadif Kasri N. Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Res 2018; 7:23. [PMID: 29375819 PMCID: PMC5760969 DOI: 10.12688/f1000research.12155.1] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Neuronal networks consist of different types of neurons that all play their own role in order to maintain proper network function. The two main types of neurons segregate in excitatory and inhibitory neurons, which together regulate the flow of information through the network. It has been proposed that changes in the relative strength in these two opposing forces underlie the symptoms observed in psychiatric disorders, including autism and schizophrenia. Here, we review the role of alterations to the function of the inhibitory system as a cause of psychiatric disorders. First, we explore both patient and post-mortem evidence of inhibitory deficiency. We then discuss the function of different interneuron subtypes in the network and focus on the central role of a specific class of inhibitory neurons, parvalbumin-positive interneurons. Finally, we discuss genes known to be affected in different disorders and the effects that mutations in these genes have on the inhibitory system in cortex and hippocampus. We conclude that alterations to the inhibitory system are consistently identified in animal models of psychiatric disorders and, more specifically, that mutations affecting the function of parvalbumin-positive interneurons seem to play a central role in the symptoms observed in these disorders.
Collapse
Affiliation(s)
- Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics & Department of Cognitive Neuroscience, Radboudumc, Geert Grooteplein 10, Box 9101, 6500 HB Nijmegen, Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
34
|
Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O'Donnell P, Puhl M, Cuenod M, Do KQ. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 2017; 22:936-943. [PMID: 28322275 PMCID: PMC5491690 DOI: 10.1038/mp.2017.47] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
Abstract
Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress.
Collapse
Affiliation(s)
- P Steullet
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| | - J-H Cabungcal
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| | - J Coyle
- Laboratory for Psychiatric and Molecular Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - M Didriksen
- Synaptic transmission H. Lundbeck A/S, Valby, Denmark
| | - K Gill
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - A A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - T K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA USA
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - A-S LaMantia
- George Washington Institute for Neuroscience, The George Washington University, Washington, DC, USA
| | - L Lindemann
- F. Hoffmann-La Roche, Roche Pharmaceutical and Early Development, Neuroscience, Opthalmology & Rare Disease (NORD) DTA, Discovery Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - T M Maynard
- George Washington Institute for Neuroscience, The George Washington University, Washington, DC, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - H Morishita
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA USA
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Neuroscience, and Ophthalmology, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - P O'Donnell
- Neuroscience and Pain Research Unit, BioTherapeutics Research and Development, Pfizer, Cambridge, MA, USA
| | - M Puhl
- Laboratory for Psychiatric and Molecular Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - M Cuenod
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| | - K Q Do
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| |
Collapse
|
35
|
Extracellular matrix alterations in the ketamine model of schizophrenia. Neuroscience 2017; 350:13-22. [DOI: 10.1016/j.neuroscience.2017.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
|
36
|
Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors — Relevance for disorders of the central nervous system. Neurobiol Dis 2017; 97:80-89. [DOI: 10.1016/j.nbd.2016.01.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 01/15/2023] Open
|
37
|
Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, Ruderfer DM, Oh EC, Topol A, Shah HR, Klei LL, Kramer R, Pinto D, Gümüş ZH, Cicek AE, Dang KK, Browne A, Lu C, Xie L, Readhead B, Stahl EA, Xiao J, Parvizi M, Hamamsy T, Fullard JF, Wang YC, Mahajan MC, Derry JMJ, Dudley JT, Hemby SE, Logsdon BA, Talbot K, Raj T, Bennett DA, De Jager PL, Zhu J, Zhang B, Sullivan PF, Chess A, Purcell SM, Shinobu LA, Mangravite LM, Toyoshiba H, Gur RE, Hahn CG, Lewis DA, Haroutunian V, Peters MA, Lipska BK, Buxbaum JD, Schadt EE, Hirai K, Roeder K, Brennand KJ, Katsanis N, Domenici E, Devlin B, Sklar P. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 2016; 19:1442-1453. [PMID: 27668389 PMCID: PMC5083142 DOI: 10.1038/nn.4399] [Citation(s) in RCA: 777] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
Abstract
Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
Collapse
Affiliation(s)
- Menachem Fromer
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Panos Roussos
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Psychiatry, JJ Peters Virginia Medical Center, Bronx, New York, USA
| | | | - Jessica S Johnson
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David H Kavanagh
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Douglas M Ruderfer
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edwin C Oh
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
- Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Aaron Topol
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hardik R Shah
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lambertus L Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robin Kramer
- Human Brain Collection Core, National Institutes of Health, NIMH, Bethesda, Maryland, USA
| | - Dalila Pinto
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zeynep H Gümüş
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - A Ercument Cicek
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kristen K Dang
- Systems Biology, Sage Bionetworks, Seattle, Washington, USA
| | - Andrew Browne
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cong Lu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lu Xie
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Ben Readhead
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eli A Stahl
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jianqiu Xiao
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Mahsa Parvizi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Tymor Hamamsy
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Fullard
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ying-Chih Wang
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Milind C Mahajan
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Joel T Dudley
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott E Hemby
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | | | - Konrad Talbot
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Towfique Raj
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip L De Jager
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jun Zhu
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bin Zhang
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Chess
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shaun M Purcell
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leslie A Shinobu
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | | | - Hiroyoshi Toyoshiba
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Raquel E Gur
- Neuropsychiatry Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chang-Gyu Hahn
- Neuropsychiatric Signaling Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vahram Haroutunian
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Psychiatry, JJ Peters Virginia Medical Center, Bronx, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mette A Peters
- Systems Biology, Sage Bionetworks, Seattle, Washington, USA
| | - Barbara K Lipska
- Human Brain Collection Core, National Institutes of Health, NIMH, Bethesda, Maryland, USA
| | - Joseph D Buxbaum
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric E Schadt
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Keisuke Hirai
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kathryn Roeder
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kristen J Brennand
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
- Department of Cell Biology and Pediatrics, Duke University, Durham, North Carolina, USA
| | - Enrico Domenici
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela Sklar
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
38
|
Selten MM, Meyer F, Ba W, Vallès A, Maas DA, Negwer M, Eijsink VD, van Vugt RWM, van Hulten JA, van Bakel NHM, Roosen J, van der Linden RJ, Schubert D, Verheij MMM, Kasri NN, Martens GJM. Increased GABA B receptor signaling in a rat model for schizophrenia. Sci Rep 2016; 6:34240. [PMID: 27687783 PMCID: PMC5043235 DOI: 10.1038/srep34240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/05/2016] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a complex disorder that affects cognitive function and has been linked, both in patients and animal models, to dysfunction of the GABAergic system. However, the pathophysiological consequences of this dysfunction are not well understood. Here, we examined the GABAergic system in an animal model displaying schizophrenia-relevant features, the apomorphine-susceptible (APO-SUS) rat and its phenotypic counterpart, the apomorphine-unsusceptible (APO-UNSUS) rat at postnatal day 20-22. We found changes in the expression of the GABA-synthesizing enzyme GAD67 specifically in the prelimbic- but not the infralimbic region of the medial prefrontal cortex (mPFC), indicative of reduced inhibitory function in this region in APO-SUS rats. While we did not observe changes in basal synaptic transmission onto LII/III pyramidal cells in the mPFC of APO-SUS compared to APO-UNSUS rats, we report reduced paired-pulse ratios at longer inter-stimulus intervals. The GABAB receptor antagonist CGP 55845 abolished this reduction, indicating that the decreased paired-pulse ratio was caused by increased GABAB signaling. Consistently, we find an increased expression of the GABAB1 receptor subunit in APO-SUS rats. Our data provide physiological evidence for increased presynaptic GABAB signaling in the mPFC of APO-SUS rats, further supporting an important role for the GABAergic system in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Martijn M. Selten
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Francisca Meyer
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Wei Ba
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Astrid Vallès
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Dorien A. Maas
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Moritz Negwer
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Vivian D. Eijsink
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Ruben W. M. van Vugt
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Josephus A. van Hulten
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Nick H. M. van Bakel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Joey Roosen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Robert J. van der Linden
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Gerard J. M. Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
39
|
Effects of neonatal stress on gamma oscillations in hippocampus. Sci Rep 2016; 6:29007. [PMID: 27363787 PMCID: PMC4929501 DOI: 10.1038/srep29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic early life stress increases adult risk for depression, bipolar disorder and schizophrenia, illnesses characterized by aberrant functions of cognition and memory. We asked whether chronic early life stress disrupts maturation of gamma oscillations, on which these functions depend. Lifelong impairment of the stress response results from separation of rat pups from the dam for three hours per day during a critical period of hippocampal development (PNDs 2–14). Parvalbumin-expressing interneurons, including the basket cell network which is fundamental to gamma oscillations, are reduced in number in post mortem studies of bipolar disorder and schizophrenia, and in chronically-stressed adult rats. To determine effects of chronic early life stress on gamma oscillations, we separated pups from dams once each day on PNDs 2–14 and recorded in vitro at PNDs 15–21. In control pups, separated for 15 minutes per day, gamma power had highly significant correlations with both age (p = 0.0022) and weight (p = 0.0024); gamma in pups separated for 180 minutes per day was not correlated with either factor. ANCOVA indicated significant differences between the groups in both measures. These findings indicate that chronic early life stress can disrupt maturation of the gamma oscillation network.
Collapse
|
40
|
Harris EP, Abel JM, Tejada LD, Rissman EF. Calbindin Knockout Alters Sex-Specific Regulation of Behavior and Gene Expression in Amygdala and Prefrontal Cortex. Endocrinology 2016; 157:1967-79. [PMID: 27010449 PMCID: PMC4870870 DOI: 10.1210/en.2016-1055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calbindin-D(28K) (Calb1), a high-affinity calcium buffer/sensor, shows abundant expression in neurons and has been associated with a number of neurobehavioral diseases, many of which are sexually dimorphic in incidence. Behavioral and physiological end points are affected by experimental manipulations of calbindin levels, including disruption of spatial learning, hippocampal long-term potentiation, and circadian rhythms. In this study, we investigated novel aspects of calbindin function on social behavior, anxiety-like behavior, and fear conditioning in adult mice of both sexes by comparing wild-type to littermate Calb1 KO mice. Because Calb1 mRNA and protein are sexually dimorphic in some areas of the brain, we hypothesized that sex differences in behavioral responses of these behaviors would be eliminated or revealed in Calb1 KO mice. We also examined gene expression in the amygdala and prefrontal cortex, two areas of the brain intimately connected with limbic system control of the behaviors tested, in response to sex and genotype. Our results demonstrate that fear memory and social behavior are altered in male knockout mice, and Calb1 KO mice of both sexes show less anxiety. Moreover, gene expression studies of the amygdala and prefrontal cortex revealed several significant genotype and sex effects in genes related to brain-derived neurotrophic factor signaling, hormone receptors, histone deacetylases, and γ-aminobutyric acid signaling. Our findings are the first to directly link calbindin with affective and social behaviors in rodents; moreover, the results suggest that sex differences in calbindin protein influence behavior.
Collapse
Affiliation(s)
- Erin P Harris
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Jean M Abel
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Lucia D Tejada
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Emilie F Rissman
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
41
|
Schiavone S, Neri M, Mhillaj E, Morgese MG, Cantatore S, Bove M, Riezzo I, Tucci P, Pomara C, Turillazzi E, Cuomo V, Trabace L. The NADPH oxidase NOX2 as a novel biomarker for suicidality: evidence from human post mortem brain samples. Transl Psychiatry 2016; 6:e813. [PMID: 27187235 PMCID: PMC5070044 DOI: 10.1038/tp.2016.76] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/26/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022] Open
Abstract
Recent evidence points towards a role of oxidative stress in suicidality. However, few studies were carried out on the sources of reactive oxygen species (ROS) in subjects with suicidal behaviour. We have previously demonstrated that the NADPH oxidase NOX2-derived oxidative stress has a major role in the development of neuropathological alterations observed in an animal model of psychosis. Here, we investigated the possible increase in NOX2 in post mortem brain samples of subjects who died by asphyctic suicide (AS) compared with controls (CTRL) and subjects who died by non-suicidal asphyxia (NSA). We found that NOX2 expression was significantly higher in the cortex of AS subjects than in the other two experimental groups. NOX2 immunostaining was mainly detected in GABAergic neurons, with a minor presence of NOX2-positive-stained cells in glutamatergic and dopaminergic neurons, as well as astrocytes and microglia. A sustained increase in the expression of 8-hydroxy-2'-deoxyguanosine, an indirect marker of oxidative stress, was also detected in the cortex of AS subjects, compared with CTRL and NSA subjects. A significant elevation in cortical interleukin-6 immunoreactivity in AS subjects suggested an involvement of cytokine-associated molecular pathways in NOX2 elevations. Our results suggest that the increase in NOX2-derived oxidative stress in the brain might be involved in the neuropathological pathways leading to suicidal behaviour. These results may open innovative insights in the identification of new pathogenetic and necroscopic biomarkers, predictive for suicidality and potentially useful for suicide prevention.
Collapse
Affiliation(s)
- S Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy,Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy. E-mail:
| | - M Neri
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Mhillaj
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - M G Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - S Cantatore
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - M Bove
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - I Riezzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - P Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - C Pomara
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - E Turillazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - V Cuomo
- Department of Physiology and Pharmacology, 'Sapienza' University of Rome, Rome, Italy
| | - L Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
42
|
Jadi MP, Behrens MM, Sejnowski TJ. Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia. Biol Psychiatry 2016; 79:716-726. [PMID: 26281716 PMCID: PMC4720598 DOI: 10.1016/j.biopsych.2015.07.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction in parvalbumin-expressing (PV+) inhibitory neurons (INs) may contribute to symptoms in patients with schizophrenia (SZ). This hypothesis was inspired by studies in humans involving NMDAR antagonists that trigger SZ symptoms. Animal models of SZ using neuropharmacology and genetic knockouts have successfully replicated some of the key observations in human subjects involving alteration of gamma band oscillations (GBO) observed in electroencephalography and magnetoencephalography signals. However, it remains to be seen if NMDAR hypofunction in PV+ neurons is fundamental to the phenotype observed in these models. In this review, we discuss some of the key computational models of GBO and their predictions in the context of NMDAR hypofunction in INs. While PV+ INs have been the main focus of SZ studies in animal models, we also discuss the implications of NMDAR hypofunction in other types of INs using computational models for GBO modulation in the visual cortex.
Collapse
Affiliation(s)
- Monika P Jadi
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California; Division of Biological Sciences, University of California at San Diego, La Jolla, California.
| | - M Margarita Behrens
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California; Division of Biological Sciences, University of California at San Diego, La Jolla, California
| |
Collapse
|
43
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
44
|
Bergman HM, Lundin E, Andersson M, Lanekoff I. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization. Analyst 2016; 141:3686-95. [DOI: 10.1039/c5an02620b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nano-DESI mass spectrometry imaging enables quantitative imaging of small-molecule neurotransmitters which are essential to the function of the nervous system.
Collapse
Affiliation(s)
| | - Erik Lundin
- Department of Chemistry-BMC
- Uppsala University
- Uppsala
- Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences
- Uppsala University
- Uppsala
- Sweden
| | | |
Collapse
|
45
|
Benes FM. Building models for postmortem abnormalities in hippocampus of schizophrenics. Schizophr Res 2015; 167:73-83. [PMID: 25749020 DOI: 10.1016/j.schres.2015.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/17/2023]
Abstract
Postmortem studies have suggested that there is abnormal GABAergic activity in the hippocampus in schizophrenia (SZ). In micro-dissected human hippocampal slices, a loss of interneurons and a compensatory upregulation of GABAA receptor binding activity on interneurons, but not PNs, has suggested that disinhibitory GABA-to-GABA connections are abnormal in stratum oriens (SO) of CA3/2, but not CA1, in schizophrenia. Abnormal expression changes in the expression of kainate receptor (KAR) subunits 5, 6 and 7, as well as an inwardly-rectifying hyperpolarization-activated cationic channel (Ih3; HCN3) may play important roles in regulating GABA cell activity at the SO CA3/2 locus. The exclusive neurons at this site are GABAergic interneurons; these cells also receive direct projections from the basolateral amygdala (BLA). When the BLA is stimulated by stereotaxic infusion of picrotoxin in rats, KARs influence axodendritic and presynaptic inhibitory mechanisms that regulate both inhibitory and disinhibitory interneurons in the SO-CA3/2 locus. The rat model described here was specifically developed to extend our understanding of these and other postmortem findings and has suggested that GABAergic abnormalities and possible disturbances in oscillatory rhythms may be related to a dysfunction of disinhibitory interneurons at the SO-CA3/2 site of schizophrenics.
Collapse
Affiliation(s)
- Francine M Benes
- Program in Structural and Molecular Neuroscience and Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Barinka F, Maglóczky Z, Zecevic N. Editorial: At the top of the interneuronal pyramid-calretinin expressing cortical interneurons. Front Neuroanat 2015; 9:108. [PMID: 26321921 PMCID: PMC4536377 DOI: 10.3389/fnana.2015.00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 11/24/2022] Open
Affiliation(s)
- Filip Barinka
- Department of Neurology, University of Regensburg Regensburg, Germany
| | - Zsófia Maglóczky
- Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
47
|
Li J, Liu B, Chen C, Cui Y, Shang L, Zhang Y, Wang C, Zhang X, He Q, Zhang W, Bi W, Jiang T. RAB2A Polymorphism impacts prefrontal morphology, functional connectivity, and working memory. Hum Brain Mapp 2015; 36:4372-82. [PMID: 26249043 DOI: 10.1002/hbm.22924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/29/2015] [Accepted: 07/16/2015] [Indexed: 01/25/2023] Open
Abstract
Calbindin-containing γ-aminobutyric acid (GABA)ergic interneurons in the prefrontal cortex (PFC) have been found to play an important role in working memory (WM) and their malfunctions have been linked to psychiatric disorders. A recent genome-wide association and expression-SNP study indicated that the RAB2A gene was associated with the density of prefrontal calbindin-positive neurons, suggesting this gene may have a broader influence on prefrontal structure and function. Using multimodal MRI and behavioral tasks, the current study investigated the effect of RAB2A on prefrontal morphology, resting-state functional connectivity, and WM performance in a large sample of healthy Han Chinese subjects. Results showed that the RAB2A AGCAAA haplotype was associated with improved WM accuracy, increased cortical thickness in the left inferior frontal gyrus, and decreased functional connectivity between the left inferior frontal gyrus and the left dorsolateral PFC. Our findings provide consistent evidence supporting the effect of RAB2A on the structure and function of the PFC and related cognitive functions. These results should provide new insights into the neural mechanisms underlying the GABAergic genes' role in WM as well as its dysfunction.
Collapse
Affiliation(s)
- Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, California
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liqing Shang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaolong Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Wen Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wenwei Bi
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
48
|
Freire MAM, Faber J, Lemos NAM, Santos JR, Cavalcanti PF, Lima RH, Morya E. Distribution and Morphology of Calcium-Binding Proteins Immunoreactive Neurons following Chronic Tungsten Multielectrode Implants. PLoS One 2015; 10:e0130354. [PMID: 26098896 PMCID: PMC4476592 DOI: 10.1371/journal.pone.0130354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
The development of therapeutic approaches to improve the life quality of people suffering from different types of body paralysis is a current major medical challenge. Brain-machine interface (BMI) can potentially help reestablishing lost sensory and motor functions, allowing patients to use their own brain activity to restore sensorimotor control of paralyzed body parts. Chronic implants of multielectrodes, employed to record neural activity directly from the brain parenchyma, constitute the fundamental component of a BMI. However, before this technique may be effectively available to human clinical trials, it is essential to characterize its long-term impact on the nervous tissue in animal models. In the present study we evaluated how chronic implanted tungsten microelectrode arrays impact the distribution and morphology of interneurons reactive to calcium-binding proteins calbindin (CB), calretinin (CR) and parvalbumin (PV) across the rat’s motor cortex. Our results revealed that chronic microelectrode arrays were well tolerated by the nervous tissue, with recordings remaining viable for up to 6 months after implantation. Furthermore, neither the morphology nor the distribution of inhibitory neurons were broadly impacted. Moreover, restricted microglial activation was observed on the implanted sites. On the whole, our results confirm and expand the notion that tungsten multielectrodes can be deemed as a feasible candidate to future human BMI studies.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Edmond and Lily Safra International Institute of Neurosciences (ELS-IIN), Santos Dumont Institute, Macaiba, RN, Brazil
| | - Jean Faber
- Laboratory of Neuroengineering, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil
| | - Nelson Alessandretti M. Lemos
- Edmond and Lily Safra International Institute of Neurosciences (ELS-IIN), Santos Dumont Institute, Macaiba, RN, Brazil
| | - Jose Ronaldo Santos
- Laboratory of Neuroscience, Department of Biosciences, Federal University of Sergipe (UFS), Itabaiana, SE, Brazil
| | - Pedro França Cavalcanti
- Edmond and Lily Safra International Institute of Neurosciences (ELS-IIN), Santos Dumont Institute, Macaiba, RN, Brazil
| | - Ramon Hypolito Lima
- Memory Studies Laboratory, Department of Physiology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neurosciences (ELS-IIN), Santos Dumont Institute, Macaiba, RN, Brazil
- Associação Alberto Santos Dumont para Apoio a Pesquisa, Sirio-Libanes Hospital, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
49
|
Wang S, Ren H, Xu J, Yu Y, Han S, Qiao H, Cheng S, Xu C, An S, Ju B, Yu C, Wang C, Wang T, Yang Z, Taylor EW, Zhao L. Diminished serum repetin levels in patients with schizophrenia and bipolar disorder. Sci Rep 2015; 5:7977. [PMID: 25613293 PMCID: PMC4303898 DOI: 10.1038/srep07977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022] Open
Abstract
Repetin (RPTN) protein is a member of S100 family and is known to be expressed in the normal epidermis. Here we show that RPTN is ubiquitously expressed in both mouse and human brain, with relatively high levels in choroid plexus, hippocampus and prefrontal cortex. To investigate the expression of RPTN in neuropsychiatric disorders, we determined serum levels of RPTN in patients with schizophrenia (n = 88) or bipolar disorder (n = 34) and in chronic psychostimulant users (n = 91). We also studied its expression in a mouse model of chronic unpredictable mild stress (CUMS). The results showed that serum RPTN levels were significantly diminished in patients with schizophrenia and bipolar disorder or in psychostimulant users, compared with healthy subjects (n = 115) or age-matched controls (n = 92) (p < 0.0001). In CUMS mice, RPTN expression in hippocampus and prefrontal cortex was reduced with progression of the CUMS procedure; the serum RPTN level remained unchanged. Since CUMS is a model for depression and methamphetamine (METH) abuse induced psychosis recapitulates many of the psychotic symptoms of schizophrenia, the results from this study may imply that RPTN plays a potential role in emotional and cognitive processing; its decrease in serum may indicate its involvement in the pathogenesis of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Huixun Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Xu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Yu
- Department of Clinical Chemistry, Xi'an mental health center, Xi'an 710061, China
| | - Shuiping Han
- Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Qiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shaoli Cheng
- Center for Experimental Morphology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shucheng An
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Bomiao Ju
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chengyuan Yu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Chanyuan Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenjun Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Ethan Will Taylor
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Lijun Zhao
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
50
|
Hoftman GD, Volk DW, Bazmi HH, Li S, Sampson AR, Lewis DA. Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance. Schizophr Bull 2015; 41:180-91. [PMID: 24361861 PMCID: PMC4266281 DOI: 10.1093/schbul/sbt178] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Schizophrenia is a neurodevelopmental disorder with altered expression of GABA-related genes in the prefrontal cortex (PFC). However, whether these gene expression abnormalities reflect disturbances in postnatal developmental processes before clinical onset or arise as a consequence of clinical illness remains unclear. METHODS Expression levels for 7 GABA-related transcripts (vesicular GABA transporter [vGAT], GABA membrane transporter [GAT1], GABAA receptor subunit α1 [GABRA1] [novel in human and monkey cohorts], glutamic acid decarboxylase 67 [GAD67], parvalbumin, calretinin, and somatostatin [previously reported in human cohort, but not in monkey cohort]) were quantified in the PFC from 42 matched pairs of schizophrenia and comparison subjects and from 49 rhesus monkeys ranging in age from 1 week postnatal to adulthood. RESULTS Levels of vGAT and GABRA1, but not of GAT1, messenger RNAs (mRNAs) were lower in the PFC of the schizophrenia subjects. As previously reported, levels of GAD67, parvalbumin, and somatostatin, but not of calretinin, mRNAs were also lower in these subjects. Neither illness duration nor age accounted for the levels of the transcripts with altered expression in schizophrenia. In monkey PFC, developmental changes in expression levels of many of these transcripts were in the opposite direction of the changes observed in schizophrenia. For example, mRNA levels for vGAT, GABRA1, GAD67, and parvalbumin all increased with age. CONCLUSIONS Together with published reports, these findings support the interpretation that the altered expression of GABA-related transcripts in schizophrenia reflects a blunting of normal postnatal development changes, but they cannot exclude a decline during the early stages of clinical illness.
Collapse
Affiliation(s)
- Gil D. Hoftman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA;,Department of Neuroscience, Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA
| | - David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - H. Holly Bazmi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Siyu Li
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA
| | - Allan R. Sampson
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA;,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA,*To whom correspondence should be addressed; University of Pittsburgh, 3811 O’Hara Street, Biomedical Science Tower W1654, Pittsburgh, PA 15213-2593, US; tel: +412-383-8548, fax: +412-624-9910,
| |
Collapse
|