1
|
Aghazadeh R, Roshan-Milani S, Derafshpour L, Saboory E. Effects of prenatal methamphetamine exposure on spatial cognition and hippocampal synaptic plasticity in adolescent rats. Int J Dev Neurosci 2022; 82:471-485. [PMID: 35707884 DOI: 10.1002/jdn.10202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Global rise in methamphetamine (MA) abuse during pregnancy has placed a large number of children at risk for the adverse consequences of prenatal methamphetamine exposure (PME). While behavioral and neurocognitive deficits of PME have been extensively studied in humans and adult rodents, far less is known regarding the sex- and dose-dependent effects of PME as well as the underlying mechanisms. Adolescence in nonhuman primates is also a less explored territory. In the present study, PME was inducted by oral treatment to pregnant rats on gestational days 15-19 with either low dose (0.1 mg/ml) or high dose (0.6 mg/ml) of MA. The cognitive effects of PME were then evaluated in two adolescence age-intervals: early adolescent (started on postnatal day [PND] 21) and mid-adolescent (started on PND 33), among male and female rat offspring using Morris water maze (MWM) test. Alterations in hippocampal synaptic plasticity in Schaffer collaterals-CA1 pathway were also measured in vitro. Results of behavioral test showed that PME led to serious deficits of learning and memory abilities in both male and female rat offspring. PME also depressed LTP in most of the PME subgroups. Moreover, 21-day-old rats were more sensitive to PME-induced cognitive impairment in MWM tasks, but not in hippocampal synaptic plasticity, than 33-day-old rats. No sex-dependent effects of PME were found on the cognitive function and synaptic plasticity. These findings confirmed that PME impacted negatively on cognitive performance in prepubertal male and female rats, and the impairment of hippocampal synaptic functions might partly play a significant role in these effects.
Collapse
Affiliation(s)
- Razieh Aghazadeh
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Derafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of addiction studies, School of medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Lee KN, Pellom ST, Oliver E, Chirwa S. Characterization of the guinea pig animal model and subsequent comparison of the behavioral effects of selective dopaminergic drugs and methamphetamine. Synapse 2014; 68:221-33. [PMID: 24436154 DOI: 10.1002/syn.21731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/21/2013] [Indexed: 12/30/2022]
Abstract
Although not commonly used in behavior tests guinea pigs may offer subtle behavior repertoires that better mimic human activity and warrant study. To test this, 31 Hartley guinea pigs (male, 200-250 g) were evaluated in PhenoTyper cages using the video-tracking EthoVision XT 7.0 software. Results showed that guinea pigs spent more time in the hidden zone (small box in corner of cage) than the food/water zone, or arena zone. Guinea pigs exhibited thigmotaxis (a wall following strategy) and were active throughout the light and dark phases. Eating and drinking occurred throughout the light and dark phases. An injection of 0.25 mg/kg SCH23390, the dopamine D1 receptors (D1R) antagonist, produced significant decreases in time spent in the hidden zone. There were insignificant changes in time spent in the hidden zone for guinea pigs treated with 7.5 mg SKF38393 (D1R agonist), 1.0 mg/kg sulpiride (D2R antagonist), and 1.0 or 10.0 mg/kg methamphetamine. Locomotor activity profiles were unchanged after injections of saline, SKF38393, SCH23390, and sulpiride. By contrast, a single injection or repeated administration for 7 days of low-dose methamphetamine induced transient hyperactivity but this declined to baseline levels over the 22-h observation period. Guinea pigs treated with high-dose methamphetamine displayed sustained hyperactivity and travelled significantly greater distances over the circadian cycle. Subsequent 7-day treatment with high-dose methamphetamine induced motor sensitization and significant increases in total distances moved relative to single drug injections or saline controls. These results highlight the versatility and unique features of the guinea pig for studying brain-behavior interactions.
Collapse
Affiliation(s)
- Kiera-Nicole Lee
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, 37208
| | | | | | | |
Collapse
|
3
|
Chesworth R, Brown RM, Kim JH, Lawrence AJ. The metabotropic glutamate 5 receptor modulates extinction and reinstatement of methamphetamine-seeking in mice. PLoS One 2013; 8:e68371. [PMID: 23861896 PMCID: PMC3701637 DOI: 10.1371/journal.pone.0068371] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/29/2013] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.
Collapse
Affiliation(s)
- Rose Chesworth
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Robyn M. Brown
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J. Lawrence
- Behavioural Neuroscience Division, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
4
|
Smith KJ, Butler TR, Prendergast MA. Inhibition of sigma-1 receptor reduces N-methyl-D-aspartate induced neuronal injury in methamphetamine-exposed and -naive hippocampi. Neurosci Lett 2010; 481:144-8. [PMID: 20600592 PMCID: PMC2923551 DOI: 10.1016/j.neulet.2010.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 12/17/2022]
Abstract
Acute and prolonged methamphetamine (METH) exposure has been reported to moderate the function of N-methyl-d-aspartate type glutamate receptors (NMDAr) in the hippocampus. These effects have been found to be associated with enhanced NMDAr-dependent release of Ca(2+) from IP(3)-sensitive intracellular stores. The present studies were designed to extend these findings and examine the role of the endoplasmic membrane (ER) bound orphan receptor, the sigma-1 receptor, in NMDA-induced neuronal injury and METH withdrawal-potentiated NMDA-induced neuronal injury. Organotypic hippocampal slice cultures were exposed to METH (0 or 100microM) for 6 days and withdrawn for 7 days, then exposed to NMDA (0 or 5microM) for 24h. Additional cultures were also exposed to this regimen and were co-incubated with BD1047 (100microM), a specific inhibitor of ER-bound sigma-1 receptors, for the 24h NMDA exposure. Cytotoxicity was assessed by analysis of propidium iodide uptake. These studies demonstrated that protracted METH exposure and withdrawal significantly potentiated the neuronal injury produced by NMDA exposure. Further, co-exposure to BD1047 with NMDA markedly attenuated neuronal injury in METH-naïve and METH-withdrawn organotypic cultures. As a whole, these data demonstrate that prolonged METH exposure, even at non-toxic concentrations, significantly alters glutamate receptor signaling. Inhibition of sigma-1 receptor-dependent Ca(2+) release from the ER entirely prevented NMDA-induced toxicity in METH-naïve cultures and markedly reduced METH-potentiated toxicity. These findings demonstrate the importance of Ca(2+)-induced intracellular Ca(2+) release in excitotoxic insult and suggest that blockade of glutamatergic overactivity may represent a therapeutic target in the treatment of METH withdrawal.
Collapse
Affiliation(s)
- Katherine J Smith
- Department of Psychology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0356, USA.
| | | | | |
Collapse
|
5
|
Swant J, Chirwa S, Stanwood G, Khoshbouei H. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus. PLoS One 2010; 5:e11382. [PMID: 20614033 PMCID: PMC2894864 DOI: 10.1371/journal.pone.0011382] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 06/04/2010] [Indexed: 11/19/2022] Open
Abstract
Methamphetamine (METH) is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy) in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist) did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.
Collapse
Affiliation(s)
- Jarod Swant
- Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sanika Chirwa
- Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gregg Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Habibeh Khoshbouei
- Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
6
|
Smith KJ, Butler TR, Self RL, Braden BB, Prendergast MA. Potentiation of N-methyl-D-aspartate receptor-mediated neuronal injury during methamphetamine withdrawal in vitro requires co-activation of IP3 receptors. Brain Res 2007; 1187:67-73. [PMID: 18021755 DOI: 10.1016/j.brainres.2007.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/03/2007] [Accepted: 10/08/2007] [Indexed: 11/29/2022]
Abstract
Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspartate (NMDA) receptor function. Protracted withdrawal from METH exposure may increase the sensitivity of NMDA receptors to agonist exposure, promoting neuronal excitability. However, the relevance of METH effects on NMDA receptor activity with regard to neuronal viability has not been fully studied. The present studies examined the effects of protracted METH exposure (6 or 7 days; 1.0-100 microM) and withdrawal (1 or 7 days) on NMDA receptor-dependent neurotoxicity, determined with use of the non-vital fluorescent marker propidium iodide, in organotypic slice cultures of male and female rats. Prolonged exposure to METH (100 microM) produced only modest toxicity in the granule cell layer of the dentate gyrus. Withdrawal from METH exposure (1 or 7 days) did not produce overt neuronal injury in any region of slice cultures. Exposure to NMDA (5 microM) produced marked neurotoxicity in the CA1 pyramidal cell layer. Neither co-exposure to METH nor 1 day of METH withdrawal in combination with NMDA exposure altered NMDA-induced neurotoxicity. In contrast, protracted withdrawal from METH exposure (7 days) was associated with a marked (approximately 400%) increase in NMDA-induced neurotoxicity in CA1 region pyramidal cells. This potentiation of neurotoxicity was prevented by co-exposure to the selective NMDA receptor antagonist 5-2-amino-5-phosphonovaleric acid (20 microM) and was markedly attenuated by co-exposure of slices to xestospongin C (1 microM), an antagonist of IP(3) receptors. The results of the present studies suggest that long-term METH withdrawal functionally sensitizes the NMDA receptor to agonist exposure and requires the co-activation of NMDA and IP(3) receptors.
Collapse
Affiliation(s)
- Katherine J Smith
- University of Kentucky, Department of Psychology, B449 Biomedical and Biological Sciences Research Building, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | | | | | | | | |
Collapse
|
7
|
Smith KJ, Self RL, Butler TR, Mullins MM, Ghayoumi L, Holley RC, Littleton JM, Prendergast MA. Methamphetamine exposure antagonizes N-methyl-D-aspartate receptor-mediated neurotoxicity in organotypic hippocampal slice cultures. Brain Res 2007; 1157:74-80. [PMID: 17524372 PMCID: PMC2646903 DOI: 10.1016/j.brainres.2007.04.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/09/2007] [Accepted: 04/13/2007] [Indexed: 11/28/2022]
Abstract
Glutamatergic systems have been increasingly recognized as mediators of methamphetamine's (METH) pharmacological effects though little is known about the means by which METH interacts with glutamate receptors. The present studies examined effects of METH (0.1-100 microM) on [3H]MK-801 binding to membranes prepared from adult rat cortex, hippocampus and cerebellum, as well as the neurotoxicity produced by 24-h exposure to N-methyl-D-aspartate (5-10 microM; NMDA) employing organotypic hippocampal slice cultures of neonatal rat. Co-incubation of [3H]MK-801 with METH (0.1-100 microM) did not reduce dextromethorphan (1 mM)-displaceable ligand binding. Exposure of slice cultures to NMDA for 24-h produced increases in uptake of the non-vital fluorescent marker propidium iodide (PI) of 150-500% above control levels, most notably, in the CA1 region pyramidal cell layer. Co-exposure to METH (>1.0 microM) with NMDA (5 microM) reduced PI uptake by approximately 50% in each subregion, though the CA1 pyramidal cell layer was markedly more sensitive to the protective effects of METH exposure. In contrast, METH exposure did not reduce PI uptake stimulated by 24-h exposure to 10 microM NMDA. Co-exposure to the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (20 microM) prevented toxicity produced by exposure to 5 or 10 microM NMDA. These findings indicate that the pharmacological effects of short-term METH exposure involve inhibition of NMDA receptor-mediated neuronal signaling, not reflective of direct channel inhibition at an MK-801-sensitive site.
Collapse
Affiliation(s)
- Katherine J. Smith
- University of Kentucky, Department of Psychology, B363 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | - Rachel L. Self
- University of Kentucky, Department of Psychology, B363 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | - Tracy R. Butler
- University of Kentucky, Department of Psychology, B363 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | - Michael M. Mullins
- University of Kentucky, Department of Psychology, B363 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | - Layla Ghayoumi
- University of Kentucky, Department of Psychology, B363 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509, USA
| | - Robert C. Holley
- University of Kentucky, Department of Pharmaceutical Sciences, 122 Kentucky Tobacco Research and Development Center, Lexington, KY 40536-0236, USA
| | - John M. Littleton
- University of Kentucky, Department of Pharmaceutical Sciences, 122 Kentucky Tobacco Research and Development Center, Lexington, KY 40536-0236, USA
| | - Mark A. Prendergast
- University of Kentucky, Department of Psychology, B363 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509, USA
- Corresponding author. Fax: +1 859 323 1979. E-mail address: (M.A. Prendergast)
| |
Collapse
|