1
|
Li K, Ji X, Tian S, Li J, Tian Y, Ma X, Li H, Zhang H, Chen CT, Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res 2025; 400:17-34. [PMID: 39918765 DOI: 10.1007/s00441-025-03953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
Airway smooth muscle (ASM) dysfunction is a key factor in the narrowing of airways in asthma patients, characterized by excessive secretion of inflammatory factors, increased mass, and amplified contractile responses. These pathological features are instrumental in the propagation of airway inflammation, structural remodeling, and the escalation of airway hyperresponsiveness (AHR), which are also principal factors underlying the limitations of current therapeutic strategies. In asthmatic ASM, an imbalance between oxidant production and antioxidant defenses culminates in oxidative stress, which is involved in the excessive secretion of inflammatory factors, increased mass, and amplified contractile responses of ASM, and is a critical etiological factor implicated in the dysregulation of ASM function. The molecular pathways through which oxidative stress exerts its effects on ASM in asthma are multifaceted, with the Nrf2/HO-1, MAPK, and PI3K/Akt pathways being particularly noteworthy. These characteristic pathways play a potential role by connecting with different upstream and downstream signaling molecules and are involved in the amplification of ASM inflammatory responses, increased mass, and AHR. This review provides a comprehensive synthesis of the phenotypic expression of ASM dysfunction in asthma, the interplay between oxidants and antioxidants, and the evidence base and molecular underpinnings linking oxidative stress to ASM dysfunction. Given the profound implications of ASM dysfunction on the airflow limitation in asthma and the seminal role of oxidative stress in this process, a deeper exploration of these mechanisms is essential for unraveling the pathogenesis of asthma and may offer novel perspectives for its prophylaxis and management.
Collapse
Affiliation(s)
- Kangxia Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiang Ji
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Shan Tian
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Jian Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Yizhu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoqing Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Huanping Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Hong Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Cai-Tao Chen
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Rojo-Tolosa S, Sánchez-Martínez JA, Caballero-Vázquez A, Pineda-Lancheros LE, González-Gutiérrez MV, Pérez-Ramírez C, Jiménez-Morales A, Morales-García C. SingleNucleotide Polymorphisms as Biomarkers of Mepolizumab and Benralizumab Treatment Response in Severe Eosinophilic Asthma. Int J Mol Sci 2024; 25:8139. [PMID: 39125709 PMCID: PMC11311889 DOI: 10.3390/ijms25158139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The most promising treatment options for severe uncontrolled asthma (SUA) have emerged in recent years with the development of monoclonal antibodies for blocking selective targets responsible for the underlying inflammation, such as mepolizumab and benralizumab. However, there is variability in treatment response that is not fully controlled. The variability of the response to mepolizumab and benralizumab could be influenced by single-nucleotide polymorphisms (SNPs), and it would be useful to detect these and use them as predictive biomarkers of response. We conducted a retrospective observational cohort study of 72 Caucasian patients recruited from a tertiary hospital with severe uncontrolled eosinophilic asthma treated with mepolizumab and benralizumab. Polymorphisms in the IL5 (rs4143832, rs17690122), RAD50 (rs11739623, rs4705959), IL1RL1 (rs1420101, rs17026974, rs1921622), GATA2 (rs4857855), IKZF2 (rs12619285), FCGR2A (rs1801274), FCGR2B (rs3219018, rs1050501), FCGR3A (rs10127939, rs396991), FCER1A (rs2251746, rs2427837), FCER1B (rs1441586, rs573790, rs569108), and ZNF415 (rs1054485) genes were analyzed by real-time polymerase chain reaction (PCR) using Taqman probes. The response was analyzed after 12 months of treatment. In patients under mepolizumab treatment, a treatment response defined as a reduction in exacerbations was associated with ZNF415 rs1054485-T (p = 0.042; OR = 5.33; 95% CI = 1.06-30.02), treatment response defined as a reduction in oral corticosteroids use was associated with the number of exacerbations in the previous year (p = 0.029; OR = 3.89; 95% CI = 1.24-14.92), and treatment response defined as improvement in lung function was associated with the age at the beginning of biological therapy (p = 0.002; OR = 1.10; 95% CI = 1.04-1.18), FCER1B rs569108-AA (p < 0.001; OR = 171.06; 95% CI = 12.94-6264.11), and FCER1A rs2427837-A (p = 0.021; OR = 8.61; 95% CI = 1.71-76.62). On the other hand, in patients under benralizumab treatment, treatment response, defined as a reduction in exacerbations, was associated with ZNF415 rs1054485-T (p = 0.073; OR = 1.3 × 108; 95% CI = 1.8 × 10-19-NA), FCER1B rs569108-AA (p = 0.050; OR = 11.51; 95% CI = 1.19-269.78), allergies (p = 0.045; OR = 4.02; 95% CI = 1.05-16.74), and sex (p = 0.028; OR = 4.78; 95% CI = 1.22-20.63); and treatment response defined as improvement in lung function was associated with polyposis (p = 0.027; OR = 9.16; 95% CI = 1.58-91.4), IKZF2 rs12619285-AA (p = 0.019; OR = 9.1; 95% CI = 1.7-75.78), IL5 rs4143832-T (p = 0.017; OR = 11.1; 95% CI = 1.9-112.17), and FCER1B rs1441586-C (p = 0.045; OR = 7.81; 95% CI = 1.16-73.45). The results of this study show the potential influence of the studied polymorphisms on the response to mepolizumab and benralizumab and the clinical benefit that could be obtained by defining predictive biomarkers of treatment response.
Collapse
Affiliation(s)
- Susana Rojo-Tolosa
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - José Antonio Sánchez-Martínez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Alberto Caballero-Vázquez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Laura Elena Pineda-Lancheros
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
- Department of Pharmacy, Faculty of Sciences, National University of Colombia, Bogota Campus, Cra. 30 No. 45-03, Bogotá 11001, Colombia
| | - María Victoria González-Gutiérrez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Concepción Morales-García
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| |
Collapse
|
3
|
Cerván-Martín M, González-Muñoz S, Guzmán-Jiménez A, Higueras-Serrano I, Castilla JA, Garrido N, Luján S, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Bossini-Castillo L, Carmona FD. Changes in environmental exposures over decades may influence the genetic architecture of severe spermatogenic failure. Hum Reprod 2024; 39:612-622. [PMID: 38305414 DOI: 10.1093/humrep/deae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
STUDY QUESTION Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Inmaculada Higueras-Serrano
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service, Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
- ToxOmics-Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Center for Predictive and Preventive Genetics, Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
Greenwood CS, Wynosky-Dolfi MA, Beal AM, Booty LM. Gasdermins assemble; recent developments in bacteriology and pharmacology. Front Immunol 2023; 14:1173519. [PMID: 37266429 PMCID: PMC10230072 DOI: 10.3389/fimmu.2023.1173519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
The discovery of gasdermin D (GSDMD) as the terminal executioner of pyroptosis provided a large piece of the cell death puzzle, whilst simultaneously and firmly putting the gasdermin family into the limelight. In its purest form, GSDMD provides a connection between the innate alarm systems to an explosive, inflammatory form of cell death to jolt the local environment into immunological action. However, the gasdermin field has moved rapidly and significantly since the original seminal work and novel functions and mechanisms have been recently uncovered, particularly in response to infection. Gasdermins regulate and are regulated by mechanisms such as autophagy, metabolism and NETosis in fighting pathogen and protecting host. Importantly, activators and interactors of the other gasdermins, not just GSDMD, have been recently elucidated and have opened new avenues for gasdermin-based discovery. Key to this is the development of potent and specific tool molecules, so far a challenge for the field. Here we will cover some of these recently discovered areas in relation to bacterial infection before providing an overview of the pharmacological landscape and the challenges associated with targeting gasdermins.
Collapse
Affiliation(s)
- Claudine S. Greenwood
- Chemical Biology, GSK, Stevenage, United Kingdom
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | | | - Allison M. Beal
- Immunology Research Unit, GSK, Philadelphia, PA, United States
| | - Lee M. Booty
- Immunology Network, GSK, Stevenage, United Kingdom
| |
Collapse
|
5
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
6
|
Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022; 11:cells11172764. [PMID: 36078171 PMCID: PMC9454904 DOI: 10.3390/cells11172764] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous lung disease with variable phenotypes (clinical presentations) and distinctive endotypes (mechanisms). Over the last decade, considerable efforts have been made to dissect the cellular and molecular mechanisms of asthma. Aberrant T helper type 2 (Th2) inflammation is the most important pathological process for asthma, which is mediated by Th2 cytokines, such as interleukin (IL)-5, IL-4, and IL-13. Approximately 50% of mild-to-moderate asthma and a large portion of severe asthma is induced by Th2-dependent inflammation. Th2-low asthma can be mediated by non-Th2 cytokines, including IL-17 and tumor necrosis factor-α. There is emerging evidence to demonstrate that inflammation-independent processes also contribute to asthma pathogenesis. Protein kinases, adapter protein, microRNAs, ORMDL3, and gasdermin B are newly identified molecules that drive asthma progression, independent of inflammation. Eosinophils, IgE, fractional exhaled nitric oxide, and periostin are practical biomarkers for Th2-high asthma. Sputum neutrophils are easily used to diagnose Th2-low asthma. Despite progress, more studies are needed to delineate complex endotypes of asthma and to identify new and practical biomarkers for better diagnosis, classification, and treatment.
Collapse
|
7
|
Upregulated Expression of IL2RB Causes Disorder of Immune Microenvironment in Patients with Kawasaki Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2114699. [PMID: 35924269 PMCID: PMC9343205 DOI: 10.1155/2022/2114699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Aims. The clinical diagnosis of Kawasaki disease (KD) is not easy because of many atypical manifestations. This study is aimed at finding potential diagnostic markers and therapeutic targets for KD and analysing their correlation with immune cell infiltrations. Methods. First, we downloaded the KD dataset from the Gene Expression Omnibus (GEO) database and used R software to identify differentially expressed genes (DEGs) and perform functional correlation analysis. Then, CIBERSORT algorithm was used to evaluate immune cell infiltrations in samples. Coexpression analysis between DEGs and infiltrating immune cells was performed to screen the main infiltrating immune cells. Subsequently, the least absolute shrinkage and selection operator (LASSO) logistic regression analysis was used to screen the core genes related to KD. Finally, correlation analysis between the core genes and the main infiltrating immune cells was performed. Results. 327 DEGs were screened out in this study. Among them, 72 shared genes were the category of genes most likely to be disease-causing for they did not change before and after treatment. After analysis, it was found that expression level of IL2RB in KD tissues was significantly upregulated, the number of resting CD4+ memory T cells was decreased, and the decrease was significantly negatively correlated with the upregulated expression of IL2RB. Therefore, it was speculated that the upregulated expression of IL2RB disrupted Th1/Th2 cell differentiation balance, which led to a decrease of resting CD4+ memory T cells and finally caused disorder of immune microenvironment in patients with KD. Conclusions. Upregulated expression of IL2RB leads to disorder of immune microenvironment in patients with KD and eventually causes the occurrence and development of KD. Therefore, IL2RB may serve as a diagnostic marker and potential therapeutic target for KD.
Collapse
|
8
|
Mostafaei S, Borna H, Emamvirdizadeh A, Arabfard M, Ahmadi A, Salimian J, Salesi M, Azimzadeh Jamalkandi S. Causal Path of COPD Progression-Associated Genes in Different Biological Samples. COPD 2022; 19:290-299. [PMID: 35696265 DOI: 10.1080/15412555.2022.2081541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease with pulmonary and extra-pulmonary complications. Due to the disease's systemic nature, many investigations investigated the genetic alterations in various biological samples. We aimed to infer causal genes in COPD's pathogenesis in different biological samples using elastic-net logistic regression and the Structural Equation Model. Samples of small airway epithelial cells, bronchoalveolar lavage macrophages, lung tissue biopsy, sputum, and blood samples were selected (135, 70, 235, 143, and 226 samples, respectively). Elastic-net Logistic Regression analysis was implemented to identify the most important genes involved in COPD progression. Thirty-three candidate genes were identified as essential factors in the pathogenesis of COPD and regulation of lung function. Recognized candidate genes in small airway epithelial (SAE) cells have the highest area under the ROC curve (AUC = 97%, SD = 3.9%). Our analysis indicates that macrophages and epithelial cells are more influential in COPD progression at the transcriptome level.
Collapse
Affiliation(s)
- Shayan Mostafaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Biostatistics, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hojat Borna
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmood Salesi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Isik Z, Leblebici A, Demir Karaman E, Karaca C, Ellidokuz H, Koc A, Ellidokuz EB, Basbinar Y. In silico identification of novel biomarkers for key players in transition from normal colon tissue to adenomatous polyps. PLoS One 2022; 17:e0267973. [PMID: 35486660 PMCID: PMC9053805 DOI: 10.1371/journal.pone.0267973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Adenomatous polyps of the colon are the most common neoplastic polyps. Although most of adenomatous polyps do not show malign transformation, majority of colorectal carcinomas originate from neoplastic polyps. Therefore, understanding of this transformation process would help in both preventive therapies and evaluation of malignancy risks. This study uncovers alterations in gene expressions as potential biomarkers that are revealed by integration of several network-based approaches. In silico analysis performed on a unified microarray cohort, which is covering 150 normal colon and adenomatous polyp samples. Significant gene modules were obtained by a weighted gene co-expression network analysis. Gene modules with similar profiles were mapped to a colon tissue specific functional interaction network. Several clustering algorithms run on the colon-specific network and the most significant sub-modules between the clusters were identified. The biomarkers were selected by filtering differentially expressed genes which also involve in significant biological processes and pathways. Biomarkers were also validated on two independent datasets based on their differential gene expressions. To the best of our knowledge, such a cascaded network analysis pipeline was implemented for the first time on a large collection of normal colon and polyp samples. We identified significant increases in TLR4 and MSX1 expressions as well as decrease in chemokine profiles with mostly pro-tumoral activities. These biomarkers might appear as both preventive targets and biomarkers for risk evaluation. As a result, this research proposes novel molecular markers that might be alternative to endoscopic approaches for diagnosis of adenomatous polyps.
Collapse
Affiliation(s)
- Zerrin Isik
- Faculty of Engineering, Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey
| | - Asım Leblebici
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Demir Karaman
- Department of Computer Engineering, Institute of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Caner Karaca
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Hulya Ellidokuz
- Department of Preventive Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Altug Koc
- Gentan Genetic Medical Genetics Diagnosis Center, Izmir, Turkey
| | - Ender Berat Ellidokuz
- Faculty of Medicine, Department of Gastroenterology, Dokuz Eylul University, Izmir, Turkey
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
10
|
Portelli MA, Rakkar K, Hu S, Guo Y, Adcock IM, Sayers I. Translational Analysis of Moderate to Severe Asthma GWAS Signals Into Candidate Causal Genes and Their Functional, Tissue-Dependent and Disease-Related Associations. FRONTIERS IN ALLERGY 2022; 2:738741. [PMID: 35386986 PMCID: PMC8974692 DOI: 10.3389/falgy.2021.738741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Asthma affects more than 300 million people globally and is both under diagnosed and under treated. The most recent and largest genome-wide association study investigating moderate to severe asthma to date was carried out in 2019 and identified 25 independent signals. However, as new and in-depth downstream databases become available, the translational analysis of these signals into target genes and pathways is timely. In this study, unique (U-BIOPRED) and publicly available datasets (HaploReg, Open Target Genetics and GTEx) were investigated for the 25 GWAS signals to identify 37 candidate causal genes. Additional traits associated with these signals were identified through PheWAS using the UK Biobank resource, with asthma and eosinophilic traits amongst the strongest associated. Gene expression omnibus dataset examination identified 13 candidate genes with altered expression profiles in the airways and blood of asthmatic subjects, including MUC5AC and STAT6. Gene expression analysis through publicly available datasets highlighted lung tissue cell specific expression, with both MUC5AC and SLC22A4 genes showing enriched expression in ciliated cells. Gene enrichment pathway and interaction analysis highlighted the dominance of the HLA-DQA1/A2/B1/B2 gene cluster across many immunological diseases including asthma, type I diabetes, and rheumatoid arthritis. Interaction and prediction analyses found IL33 and IL18R1 to be key co-localization partners for other genes, predicted that CD274 forms co-expression relationships with 13 other genes, including the HLA-DQA1/A2/B1/B2 gene cluster and that MUC5AC and IL37 are co-expressed. Drug interaction analysis revealed that 11 of the candidate genes have an interaction with available therapeutics. This study provides significant insight into these GWAS signals in the context of cell expression, function, and disease relationship with the view of informing future research and drug development efforts for moderate-severe asthma.
Collapse
Affiliation(s)
- Michael A Portelli
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kamini Rakkar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sile Hu
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Data Science Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- The National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian Sayers
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Wang R, Wang Y, Liao G, Chen B, Panettieri RA, Penn RB, Tang DD. Abi1 mediates airway smooth muscle cell proliferation and airway remodeling via Jak2/STAT3 signaling. iScience 2022; 25:103833. [PMID: 35198891 PMCID: PMC8851273 DOI: 10.1016/j.isci.2022.103833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex pulmonary disorder with multiple pathological mechanisms. A key pathological feature of chronic asthma is airway remodeling, which is largely attributed to airway smooth muscle (ASM) hyperplasia that contributes to thickening of the airway wall and further drives asthma pathology. The cellular processes that mediate ASM cell proliferation are not completely elucidated. Using multiple approaches, we demonstrate that the adapter protein Abi1 (Abelson interactor 1) is upregulated in ∼50% of ASM cell cultures derived from patients with asthma. Loss-of-function studies demonstrate that Abi1 regulates the activation of Jak2 (Janus kinase 2) and STAT3 (signal transducers and activators of transcription 3) as well as the proliferation of both nonasthmatic and asthmatic human ASM cell cultures. These findings identify Abi1 as a molecular switch that activates Jak2 kinase and STAT3 in ASM cells and demonstrate that a dysfunctional Abi1-associated pathway contributes to the progression of asthma.
Collapse
Affiliation(s)
- Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Bohao Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Reynold A. Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ 08901, USA
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
12
|
Thymic stromal lymphopoietin and alarmins as possible therapeutical targets for asthma. Curr Opin Allergy Clin Immunol 2021; 21:590-596. [PMID: 34608100 PMCID: PMC9722372 DOI: 10.1097/aci.0000000000000793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Overview of epithelial cytokines, particularly thymic stromal lymphopoietin (TSLP), released by the airway epithelium and the effects of their inhibition on the outcomes of patients with asthma. RECENT FINDINGS The epithelial cytokines are early mediators at the top of the inflammatory cascade and are attractive therapeutic targets to prevent exacerbations and improve lung function in patients with type 2 and nontype 2 asthma. SUMMARY Clinical trials demonstrated that tezepelumab, an anti-TSLP monoclonal antibody, is a promising alternative treatment for asthma that is effective also in nontype 2 asthma. The PATHWAY and NAVIGATOR trials have assessed its effects in improving outcomes on broad clinically diverse populations. The identification of biomarkers will help to predict potential responders and help in asthma treatment personalization.
Collapse
|
13
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Camoretti-Mercado B, Lockey RF. Airway smooth muscle pathophysiology in asthma. J Allergy Clin Immunol 2021; 147:1983-1995. [PMID: 34092351 DOI: 10.1016/j.jaci.2021.03.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
The airway smooth muscle (ASM) cell plays a central role in the pathogenesis of asthma and constitutes an important target for treatment. These cells control muscle tone and thus regulate the opening of the airway lumen and air passage. Evidence indicates that ASM cells participate in the airway hyperresponsiveness as well as the inflammatory and remodeling processes observed in asthmatic subjects. Therapeutic approaches require a comprehensive understanding of the structure and function of the ASM in both the normal and disease states. This review updates current knowledge about ASM and its effects on airway narrowing, remodeling, and inflammation in asthma.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla.
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fla
| |
Collapse
|
15
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
16
|
Next Generation Exome Sequencing of Pediatric Asthma Identifies Rare and Novel Variants in Candidate Genes. DISEASE MARKERS 2021; 2021:8884229. [PMID: 33628342 PMCID: PMC7888305 DOI: 10.1155/2021/8884229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Multiple genes have been implicated to have a role in asthma predisposition by association studies. Pediatric patients often manifest a more extensive form of this disease and a particularly severe disease course. It is likely that genetic predisposition could play a more substantial role in this group. This study is aimed at identifying the spectrum of rare and novel variation in known pediatric asthma susceptibility genes using whole exome sequencing analysis in nine individual cases of childhood onset allergic asthma. DNA samples from the nine children with a history of bronchial asthma diagnosis underwent whole exome sequencing on Ion Proton. For each patient, the entire complement of rare variation within strongly associated candidate genes was catalogued. The analysis showed 21 variants in the subjects, 13 had been previously identified, and 8 were novel. Also, among of which, nineteen were nonsynonymous and 2 were nonsense. With regard to the novel variants, the 2 nonsynonymous variants in the PRKG1 gene (PRKG1: p.C519W and PRKG1: p.G520W) were presented in 4 cases, and a nonsynonymous variant in the MAVS gene (MAVS: p.A45V) was identified in 3 cases. The variants we found in this study will enrich the variant spectrum and build up the database in the Saudi population. Novel eight variants were identified in the study which provides more evidence in the genetic susceptibility in asthma among Saudi children, providing a genetic screening map for the molecular genetic determinants of allergic disease in Saudi children, with the goal of reducing the impact of chronic diseases on the health and the economy. We believe that the advanced specified statistical filtration/annotation programs used in this study succeeded to release such results in a preliminary study, exploring the genetic map of that disease in Saudi children.
Collapse
|
17
|
Dong Z, Ma Y, Zhou H, Shi L, Ye G, Yang L, Liu P, Zhou L. Integrated genomics analysis highlights important SNPs and genes implicated in moderate-to-severe asthma based on GWAS and eQTL datasets. BMC Pulm Med 2020; 20:270. [PMID: 33066754 PMCID: PMC7568423 DOI: 10.1186/s12890-020-01303-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Severe asthma is a chronic disease contributing to disproportionate disease morbidity and mortality. From the year of 2007, many genome-wide association studies (GWAS) have documented a large number of asthma-associated genetic variants and related genes. Nevertheless, the molecular mechanism of these identified variants involved in asthma or severe asthma risk remains largely unknown. Methods In the current study, we systematically integrated 3 independent expression quantitative trait loci (eQTL) data (N = 1977) and a large-scale GWAS summary data of moderate-to-severe asthma (N = 30,810) by using the Sherlock Bayesian analysis to identify whether expression-related variants contribute risk to severe asthma. Furthermore, we performed various bioinformatics analyses, including pathway enrichment analysis, PPI network enrichment analysis, in silico permutation analysis, DEG analysis and co-expression analysis, to prioritize important genes associated with severe asthma. Results In the discovery stage, we identified 1129 significant genes associated with moderate-to-severe asthma by using the Sherlock Bayesian analysis. Two hundred twenty-eight genes were prominently replicated by using MAGMA gene-based analysis. These 228 replicated genes were enriched in 17 biological pathways including antigen processing and presentation (Corrected P = 4.30 × 10− 6), type I diabetes mellitus (Corrected P = 7.09 × 10− 5), and asthma (Corrected P = 1.72 × 10− 3). With the use of a series of bioinformatics analyses, we highlighted 11 important genes such as GNGT2, TLR6, and TTC19 as authentic risk genes associated with moderate-to-severe/severe asthma. With respect to GNGT2, there were 3 eSNPs of rs17637472 (PeQTL = 2.98 × 10− 8 and PGWAS = 3.40 × 10− 8), rs11265180 (PeQTL = 6.0 × 10− 6 and PGWAS = 1.99 × 10− 3), and rs1867087 (PeQTL = 1.0 × 10− 4 and PGWAS = 1.84 × 10− 5) identified. In addition, GNGT2 is significantly expressed in severe asthma compared with mild-moderate asthma (P = 0.045), and Gngt2 shows significantly distinct expression patterns between vehicle and various glucocorticoids (Anova P = 1.55 × 10− 6). Conclusions Our current study provides multiple lines of evidence to support that these 11 identified genes as important candidates implicated in the pathogenesis of severe asthma.
Collapse
Affiliation(s)
- Zhouzhou Dong
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Yunlong Ma
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Linhui Shi
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Gongjie Ye
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Lei Yang
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Panpan Liu
- Critical Care Unit, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China
| | - Li Zhou
- Department of Immunology and Rheumatology, Ningbo Medical Center Lihuili Hospital, Taipei Medical University Ningbo Medical Center, Ningbo, Zhejiang, 315100, P.R. China.
| |
Collapse
|
18
|
Trueb B, Zhuang L, Villiger PM. A Novel Mutation in the IL6R Gene Identified in a Family with Asthma Patients. Genet Test Mol Biomarkers 2020; 24:658-664. [PMID: 32907400 DOI: 10.1089/gtmb.2020.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Allergic diseases, including asthma, atopic dermatitis, allergic rhinitis, and food allergies, are caused by both environmental and genetic factors. The allergic condition, where genetic factors make up the largest proportion (up to 95%), is asthma. Aim: To identify polymorphisms and mutations in potentially disease-causing genes in a family affected with allergic asthma. Methods: Whole exome sequencing of the index patient was performed via next-generation sequencing. Variants in known allergy-associated susceptibility genes were identified by comparison with the reference genome GRChr37. Results: Seven common polymorphisms and three rare mutations were identified in the allergy-susceptibility genes of the index patient. Only four of these variants co-segregated with a second patient in the same family. These variants occurred in the TENS1, NPSR1, RAD50, and IL6R genes. Discussion: The variants observed in TENS1 and NPSR1 are relatively common (minor allele frequency, MAF ∼0.4), whereas the mutation in RAD50 is rare (MAF 0.0035). The mutation identified in IL6R (S409P) has never been found before. IL6R encodes an important receptor of the inflammatory system. The mutation occurs in the intracellular domain within a tyrosine-based motif, which is required for sorting of the IL6R protein to the basolateral side of polarized cells. It is likely that this rare mutation contributes-together with the other variants-to the predisposition to asthma and other allergic diseases.
Collapse
Affiliation(s)
- Beat Trueb
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Rheumatology, University Hospital, Bern, Switzerland
| | - Lei Zhuang
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Rheumatology, University Hospital, Bern, Switzerland
| | - Peter M Villiger
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Rheumatology, University Hospital, Bern, Switzerland
| |
Collapse
|
19
|
Ma X, Wang P, Xu G, Yu F, Ma Y. Integrative genomics analysis of various omics data and networks identify risk genes and variants vulnerable to childhood-onset asthma. BMC Med Genomics 2020; 13:123. [PMID: 32867763 PMCID: PMC7457797 DOI: 10.1186/s12920-020-00768-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Childhood-onset asthma is highly affected by genetic components. In recent years, many genome-wide association studies (GWAS) have reported a large group of genetic variants and susceptible genes associated with asthma-related phenotypes including childhood-onset asthma. However, the regulatory mechanisms of these genetic variants for childhood-onset asthma susceptibility remain largely unknown. METHODS In the current investigation, we conducted a two-stage designed Sherlock-based integrative genomics analysis to explore the cis- and/or trans-regulatory effects of genome-wide SNPs on gene expression as well as childhood-onset asthma risk through incorporating a large-scale GWAS data (N = 314,633) and two independent expression quantitative trait loci (eQTL) datasets (N = 1890). Furthermore, we applied various bioinformatics analyses, including MAGMA gene-based analysis, pathway enrichment analysis, drug/disease-based enrichment analysis, computer-based permutation analysis, PPI network analysis, gene co-expression analysis and differential gene expression analysis, to prioritize susceptible genes associated with childhood-onset asthma. RESULTS Based on comprehensive genomics analyses, we found 31 genes with multiple eSNPs to be convincing candidates for childhood-onset asthma risk; such as, PSMB9 (cis-rs4148882 and cis-rs2071534) and TAP2 (cis-rs9267798, cis-rs4148882, cis-rs241456, and trans-10,447,456). These 31 genes were functionally interacted with each other in our PPI network analysis. Our pathway enrichment analysis showed that numerous KEGG pathways including antigen processing and presentation, type I diabetes mellitus, and asthma were significantly enriched to involve in childhood-onset asthma risk. The co-expression patterns among 31 genes were remarkably altered according to asthma status, and 25 of 31 genes (25/31 = 80.65%) showed significantly or suggestively differential expression between asthma group and control group. CONCLUSIONS We provide strong evidence to highlight 31 candidate genes for childhood-onset asthma risk, and offer a new insight into the genetic pathogenesis of childhood-onset asthma.
Collapse
Affiliation(s)
- Xiuqing Ma
- Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, 100853 China
| | - Peilan Wang
- Outpatient Department, Chinese PLA General Hospital, Beijing, 100853 China
| | - Guobing Xu
- Department of Cardiovascular Medicine, Zhongxiang People’s Hospital, Zhongxiang, 431900 Hubei Province China
| | - Fang Yu
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yunlong Ma
- Institute of Biomedical Big Data, School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027 P. R. China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
McQuaid SL, Loughran ST, Power PA, Maguire P, Szczygiel A, Johnson PA. Low-dose IL-2 induces CD56 bright NK regulation of T cells via NKp44 and NKp46. Clin Exp Immunol 2020; 200:228-241. [PMID: 31989589 PMCID: PMC7232012 DOI: 10.1111/cei.13422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Low-dose interleukin (IL)-2 has shown clinical benefits in patients with autoimmune and inflammatory diseases. Both regulatory T cells (Tregs ) and natural killer (NK) cells are increased in response to low-dose IL-2 immunotherapy. The role of regulatory T cells in autoimmune diseases has been extensively studied; however, NK cells have not been as thoroughly explored. It has not been well reported whether the increase in NK cells is purely an epiphenomenon or carries actual benefits for patients with autoimmune diseases. We demonstrate that low-dose IL-2 expands the primary human CD56bright NK cells resulting in a contact-dependent cell cycle arrest of effector T cells (Teffs ) via retention of the cycle inhibitor p21. We further show that NK cells respond via IL-2R-β, which has been shown to be significant for immunity by regulating T cell expansion. Moreover, we demonstrate that blocking NK receptors NKp44 and NKp46 but not NKp30 could abrogate the regulation of proliferation associated with low-dose IL-2. The increase in NK cells was also accompanied by an increase in Treg cells, which is dependent on the presence of CD56bright NK cells. These results not only heighten the importance of NK cells in low-dose IL-2 therapy but also identify key human NK targets, which may provide further insights into the therapeutic mechanisms of low-dose IL-2 in autoimmunity.
Collapse
Affiliation(s)
- S. L. McQuaid
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- Mason Technology LtdDublinIreland
| | - S. T. Loughran
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- Department of Applied ScienceDundalk Institute of TechnologyDundalkIreland
| | - P. A. Power
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- Technological University DublinDublinIreland
| | - P. Maguire
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
- School of BiotechnologyDublin City UniversityDublinIreland
| | - A. Szczygiel
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
| | - P. A. Johnson
- Viral Immunology LaboratorySchool of Nursing, Psychotherapy and Community HealthDublin City UniversityDublinIreland
| |
Collapse
|
21
|
Carpaij OA, Burgess JK, Kerstjens HAM, Nawijn MC, van den Berge M. A review on the pathophysiology of asthma remission. Pharmacol Ther 2019; 201:8-24. [PMID: 31075356 DOI: 10.1016/j.pharmthera.2019.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic respiratory condition, which is highly prevalent worldwide. Although no cure is currently available, it is well recognized that some asthma patients can spontaneously enter remission of the disease later in life. Asthma remission is characterized by absence of symptoms and lack of asthma-medication use. Subjects in asthma remission can be divided into two groups: those in clinical remission and those in complete remission. In clinical asthma remission, subjects still have a degree of lung functional impairment or bronchial hyperresponsiveness, while in complete asthma remission, these features are no longer present. Over longer periods, the latter group is less likely to relapse. This remission group is of great scientific interest due to the higher potential to find biomarkers or biological pathways that elicit or are associated with asthma remission. Despite the fact that the definition of asthma remission varies between studies, some factors are reproducibly observed to be associated with remitted asthma. Among these are lower levels of inflammatory markers, which are lowest in complete remission. Additionally, in both groups some degree of airway remodeling is present. Still, the pathological disease state of asthma remission has been poorly investigated. Future research should focus on at least two aspects: further characterisation of the small airways and airway walls in order to determine histologically true remission, and more thorough biological pathway analyses to explore triggers that elicit this phenomenon. Ultimately, this will result in pharmacological targets that provide the potential to steer the course of asthma towards remission.
Collapse
Affiliation(s)
- Orestes A Carpaij
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands.
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Huib A M Kerstjens
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| |
Collapse
|
22
|
Causal relationships between adiposity and childhood asthma: bi-directional Mendelian Randomization analysis. Int J Obes (Lond) 2018; 43:73-81. [PMID: 30026589 DOI: 10.1038/s41366-018-0160-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/03/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity and asthma are common chronic diseases and have been reported to be mutually causative. We investigated the causal direction of the relationship between adiposity and asthma using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. SUBJECTS/METHODS We used data from the Taiwan Children Health Study with 24 body mass index (BMI)-single-nucleotide polymorphisms (SNPs, combined into a weighted allelic score) and 16 asthma-SNPs (combined into two weighted allelic scores, separately for asthma inflammatory and antioxidative genes) to yield genetic IVs for adiposity and asthma, respectively. RESULTS The weighted allele score for BMI was strongly associated with adiposity (p = 2 × 10-16) and active asthma (p = 0.03). The two-stage least square regression risk ratio (RR) for the effect of BMI on asthma was 1.04 (95% confidence interval: 1.00-1.07, p = 0.03). Although the weighted asthma genetic scores were significantly associated with asthma (p = 8.4 × 10-3), no association was seen for genetically instrumented asthma with BMI using MR. Central obesity was the most accurate predictor of asthma. Adiposity showed higher causal effects on asthma in boys and children with non-atopic asthma. Sensitivity analysis for MR revealed no directional genetic pleiotropy effects. The causal effect RRs of BMI on asthma were 1.04, 1.08, and 1.03 for inverse-variance weighted, MR-Egger regression (slope), and weighted median methods, respectively, all in accordance with the MR estimates. CONCLUSIONS High adiposity may lead to asthma, whereas the effects of asthma on adiposity accumulation are likely to be small.
Collapse
|
23
|
Liu Z, Li J, Wang K, Tan Q, Tan W, Guo G. Association Between TGF-β1 Polymorphisms and Asthma Susceptibility Among the Chinese: A Meta-Analysis. Genet Test Mol Biomarkers 2018; 22:433-442. [PMID: 29958018 DOI: 10.1089/gtmb.2017.0238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Asthma is the most common chronic pulmonary disease in China and is characterized by airway inflammation and episodic airflow obstruction. The aim of this meta-analysis was to evaluate the relation of two transforming growth factor-β1 (TGF-β1) polymorphisms with asthma risk in Chinese population. METHODS PubMed, Springer, EMBASE, MEDLINE, CNKI (China National Knowledge Infrastructure), and Wanfang databases were used to search and retrieve relevant eligible case-control studies published through December 2017. The odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the effect. RESULTS A total of 2040 asthma patients and 1952 controls from 12 studies were analyzed. Two polymorphic sites of TGF-β1 gene were identified: -509C/T and +869T/C. We found that the -509C/T polymorphism was associated with increased asthma risk under the heterozygous model (CT vs. CC: OR = 1.40, 95% CI = 1.03-1.90, p = 0.03) and the dominant model (TT+CT vs. CC: OR = 1.41, 95% CI = 1.05-1.90, p = 0.02). Subgroup analyses by age suggested that -509C/T variant was associated with childhood asthma. Analysis of disease severity indicated that this variant was associated with both mild-to-moderate asthma and severe asthma. However, the +869T/C polymorphism was not associated with asthma susceptibility in subgroup analysis by age or disease severity. CONCLUSIONS This study demonstrated that the -509C/T polymorphism of the TGF-β1 gene might be a risk factor for asthma in the Chinese population, especially in Chinese children. Further large-scale case-control studies are still required.
Collapse
Affiliation(s)
- Zhenyu Liu
- 1 School of Basic Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, China
| | - Junjuan Li
- 2 Department of Respiratory Medicine, Weifang People's Hospital , Weifang, Shandong, China
| | - Kun Wang
- 2 Department of Respiratory Medicine, Weifang People's Hospital , Weifang, Shandong, China
| | - Qiang Tan
- 2 Department of Respiratory Medicine, Weifang People's Hospital , Weifang, Shandong, China
| | - Wei Tan
- 2 Department of Respiratory Medicine, Weifang People's Hospital , Weifang, Shandong, China
| | - Guifang Guo
- 2 Department of Respiratory Medicine, Weifang People's Hospital , Weifang, Shandong, China
| |
Collapse
|
24
|
Vonk JM, Nieuwenhuis MAE, Dijk FN, Boudier A, Siroux V, Bouzigon E, Probst-Hensch N, Imboden M, Keidel D, Sin D, Bossé Y, Hao K, van den Berge M, Faiz A, Koppelman GH, Postma DS. Novel genes and insights in complete asthma remission: A genome-wide association study on clinical and complete asthma remission. Clin Exp Allergy 2018; 48:1286-1296. [PMID: 29786918 DOI: 10.1111/cea.13181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Asthma is a chronic respiratory disease without a cure, although there exists spontaneous remission. Genome-wide association (GWA) studies have pinpointed genes associated with asthma development, but did not investigate asthma remission. OBJECTIVE We performed a GWA study to develop insights in asthma remission. METHODS Clinical remission (ClinR) was defined by the absence of asthma treatment and wheezing in the last year and asthma attacks in the last 3 years and complete remission (ComR) similarly but additionally with normal lung function and absence of bronchial hyperresponsiveness (BHR). A GWA study on both ClinR and ComR was performed in 790 asthmatics with initial doctor diagnosis of asthma and BHR and long-term follow-up. We assessed replication of the 25 top single nucleotide polymorphisms (SNPs) in 2 independent cohorts (total n = 456), followed by expression quantitative loci (eQTL) analyses of the 4 replicated SNPs in lung tissue and epithelium. RESULTS Of the 790 asthmatics, 178 (23%) had ClinR and 55 ComR (7%) after median follow-up of 15.5 (range 3.3-47.8) years. In ClinR, 1 of the 25 SNPs, rs2740102, replicated in a meta-analysis of the replication cohorts, which was an eQTL for POLI in lung tissue. In ComR, 3 SNPs replicated in a meta-analysis of the replication cohorts. The top-hit, rs6581895, almost reached genome-wide significance (P-value 4.68 × 10-7 ) and was an eQTL for FRS2 and CCT in lung tissue. Rs1420101 was a cis-eQTL in lung tissue for IL1RL1 and IL18R1 and a trans-eQTL for IL13. CONCLUSIONS AND CLINICAL RELEVANCE By defining a strict remission phenotype, we identified 3 SNPs to be associated with complete asthma remission, where 2 SNPs have plausible biological relevance in FRS2, CCT, IL1RL1, IL18R1 and IL13.
Collapse
Affiliation(s)
- J M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - M A E Nieuwenhuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - F N Dijk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - A Boudier
- INSERM, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - V Siroux
- INSERM, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France.,Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Univ. Grenoble Alpes, Grenoble, France.,CHU de Grenoble, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - E Bouzigon
- UMR-946, Inserm, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - N Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - M Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - D Keidel
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - D Sin
- St Paul's Hospital, The University of British Columbia James Hogg Research Laboratory, Vancouver, BC, Canada.,Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Y Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | - K Hao
- Merck Research Laboratories, Boston, MA, USA
| | - M van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - A Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - G H Koppelman
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - D S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| |
Collapse
|
25
|
Maazi H, Banie H, Aleman Muench GR, Patel N, Wang B, Sankaranarayanan I, Bhargava V, Sato T, Lewis G, Cesaroni M, Karras J, Das A, Soroosh P, Akbari O. Activated plasmacytoid dendritic cells regulate type 2 innate lymphoid cell-mediated airway hyperreactivity. J Allergy Clin Immunol 2017; 141:893-905.e6. [PMID: 28579374 DOI: 10.1016/j.jaci.2017.04.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Allergic asthma is a prevalent inflammatory disease of the airways caused by dysregulated immune balance in the lungs with incompletely understood pathogenesis. The recently identified type 2 innate lymphoid cells (ILC2s) play significant roles in the pathogenesis of asthma. Although ILC2-activating factors have been identified, the mechanisms that suppress ILC2s remain largely unknown. Plasmacytoid dendritic cells (pDCs) are important in antiviral immunity and in maintaining tolerance to inert antigens. OBJECTIVE We sought to address the role of pDCs in regulating ILC2 function and ILC2-mediated airway hyperreactivity (AHR) and lung inflammation. METHODS We used several murine models, including BDCA-2-diphtheria toxin receptor (DTR) transgenic and IFN-α receptor 1-deficient mice, as well as purified primary ILC2s, to reach our objective. We extended and validated our findings to human ILC2s. RESULTS We show that activation of pDCs through Toll-like receptor 7/8 suppresses ILC2-mediated AHR and airway inflammation and that depletion of pDCs reverses this suppression. We further show that pDCs suppress cytokine production and the proliferation rate while increasing the apoptosis rate of ILC2s through IFN-α production. Transcriptomic analysis of both human and murine ILC2s confirms the activation of regulatory pathways in ILC2s by IFN-α. CONCLUSION Activation of pDCs alleviates AHR and airway inflammation by suppressing ILC2 function and survival. Our findings reveal a novel regulatory pathway in ILC2-mediated pulmonary inflammation with important clinical implications.
Collapse
Affiliation(s)
- Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | | | | | - Nisheel Patel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Bowen Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Ishwarya Sankaranarayanan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Philadelphia, Pa
| | - Takahiro Sato
- Janssen Research and Development, Spring House, Philadelphia, Pa
| | - Gavin Lewis
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif; Janssen Research and Development, San Diego, Calif
| | - Matteo Cesaroni
- Janssen Research and Development, Spring House, Philadelphia, Pa
| | - James Karras
- Janssen Research and Development, San Diego, Calif
| | - Anuk Das
- Janssen Research and Development, Spring House, Philadelphia, Pa
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
26
|
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics 2017; 9:539-571. [PMID: 28322581 DOI: 10.2217/epi-2016-0162] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL).,John Paul II Hospital, Krakow, Poland
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co KG, Planegg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
27
|
Queiroz GA, Costa RS, Alcantara-Neves NM, Nunes de Oliveira Costa G, Barreto ML, Carneiro VL, Figueiredo CA. IL33 and IL1RL1 variants are associated with asthma and atopy in a Brazilian population. Int J Immunogenet 2017; 44:51-61. [PMID: 28266165 DOI: 10.1111/iji.12306] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/05/2016] [Accepted: 01/14/2017] [Indexed: 01/01/2023]
Abstract
Atopic asthma is a chronic inflammatory disease in airways resulting from genetic and environmental factors, characterized by production of the Th2 cytokines interleukin-4 (IL-4), interleukin-5 (IL-5) and interleukin-13 (IL-13). Interleukin-33 (IL-33) appears to be a potent inducer of Th2 immune response. This occurs when IL-33 binds and activates its receptor, the membrane ST2 (ST2L) in mast cells, dendritic cells, basophils, eosinophils, innate lymphoids and Th2 cells, leading to the release of these cytokines and intensifying allergic inflammation. Polymorphisms in the IL33 and IL1RL1 can act as protective or risk factors for asthma and/or allergy in humans. No study was conducted to replicate such findings in a European and African descendent mixed population. DNA was extracted from peripheral blood from 1223 subjects, and the samples were genotyped using Illumina 2.5 Human Omni Beadchip. We tested for possible associations between SNPs in the IL33 and ST2 with asthma and allergy markers such as specific IgE (sIgE), IL-5 and IL-13 production and skin prick test (SPT). Logistics regressions were performed using PLINK software 1.07. The analyses were adjusted for sex, age, helminth infection and ancestry markers. The G allele of IL33 SNP rs12551256 was negatively associated with asthma (OR 0.71, 95% CI: 0.53-0.94, P = 0.017). In contrast, the A allele of IL1RL1 rs1041973 was positively associated with IL-5 production (OR 1.36, 95% CI: 1.09-1.84, P = 0.044), sIgE levels (OR 1.40, 95% CI: 1.07-1.84, P = 0.013) and positive SPT (OR 1.48, 95% CI: 1.08-2.03, P = 0.014), for Blomia tropicalis mite. The same allele, in atopic subjects, was associated with decreased production of soluble ST2 (sST2) (P < 0.05). Moreover, expression quantitative trait loci (eQTL) analysis suggests that rs1041973 and rs873022 regulate the expression of IL1RL1 gene. This latest SNP, rs873022, the T allele, was also associated with a lower production of sST2 in plasma of Brazilians. The genetic risk score for rs1041973 and rs16924161 demonstrated a higher risk for SPT positivity against B. tropicalis, the greater the number of risk alleles for both SNPs. Our findings demonstrate a robust association of genetic variants in IL1RL1 and IL33 SNPs with allergy markers and asthma.
Collapse
Affiliation(s)
- G A Queiroz
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - R S Costa
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - N M Alcantara-Neves
- Laboratory of Allergy and Acarology, Federal University of Bahia, Salvador, Brazil
| | - G Nunes de Oliveira Costa
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - M L Barreto
- Department of Epidemiology, Oswaldo Cruz Fundation, Salvador, Brazil
| | - V L Carneiro
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - C A Figueiredo
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
28
|
Song DJ. Rhinovirus and childhood asthma: an update. KOREAN JOURNAL OF PEDIATRICS 2016; 59:432-439. [PMID: 27895690 PMCID: PMC5118502 DOI: 10.3345/kjp.2016.59.11.432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/26/2023]
Abstract
Asthma is recognized as a complex disease resulting from interactions between multiple genetic and environmental factors. Accumulating evidence suggests that respiratory viral infections in early life constitute a major environmental risk factor for the development of childhood asthma. Respiratory viral infections have also been recognized as the most common cause of asthma exacerbation. The advent of molecular diagnostics to detect respiratory viruses has provided new insights into the role of human rhinovirus (HRV) infections in the pathogenesis of asthma. However, it is still unclear whether HRV infections cause asthma or if wheezing with HRV infection is simply a predictor of childhood asthma. Recent clinical and experimental studies have identified plausible pathways by which HRV infection could cause asthma, particularly in a susceptible host, and exacerbate disease. Airway epithelial cells, the primary site of infection and replication of HRV, play a key role in these processes. Details regarding the role of genetic factors, including ORMDL3, are beginning to emerge. This review discusses recent clinical and experimental evidence for the role of HRV infection in the development and exacerbation of childhood asthma and the potential underlying mechanisms that have been proposed.
Collapse
Affiliation(s)
- Dae Jin Song
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea.; Environmental Health Center for Childhood Asthma, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
29
|
Yao YS, Chang WW, He LP, Jin YL, Li CP. An updated meta-analysis of transforming growth factor-β1 gene: Three well-characterized polymorphisms with asthma. Hum Immunol 2016; 77:1291-1299. [PMID: 27717847 DOI: 10.1016/j.humimm.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
The association between TGF-β1 polymorphisms and asthma risk has been widely reported, but results were controversial. We performed this meta-analysis based on the Preferred Reporting Items for Systematic Reviews and meta-analyses statement (PRISMA). Electronic database of Pub Med, Web of Science, CBM, and CNKI were searched for eligible articles published up to September, 2013. The effect summary odds ratio (OR) and 95% confidence intervals were obtained. Finally, a total of 20 articles were identified, 17 studies with 3694 cases and 5613 controls for C-509T polymorphism, 7 studies with 1109 cases and 1098 controls for T869C polymorphism and 5 studies with 849 cases and 829 controls for G915C polymorphism. For C-509T, significant associations with asthma were found in Asians (TT+TC vs. CC: P=0.004, OR=1.43, 95%CI=1.12-1.81, Pheterogeneity=0.001) and in Caucasians (P=0.05, OR=1.16, 95%CI=1.00-1.34, Pheterogeneity=0.36). With respect to T869C, a small significant association was observed in overall analysis of allele contrasts(C vs. T: OR=1.14, 95%CI: 1.01-1.29, P=0.03) and homozygote comparison (CC vs. TT: OR=1.29, 95%CI: 1.00-1.65, P=0.05), but no significant risks were found among Caucasian population and Asian population. For G915C polymorphism, no significant association with asthma risk was demonstrated in overall analysis and subgroup analyses according to ethnicity for all genetic models. This meta-analysis suggested that TGF-β1 C-509T and T869C polymorphisms may be risk factors for asthma.
Collapse
Affiliation(s)
- Ying-Shui Yao
- Laboratory of Environment and Health, School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China; School of Public Health, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Wei-Wei Chang
- School of Public Health, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Lian-Ping He
- School of Public Health, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Yue-Long Jin
- School of Public Health, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Chao-Pin Li
- Laboratory of Environment and Health, School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, Anhui, China; Department of Medical Parasitology, Wannan Medical College, 241002 Wuhu, Anhui, China.
| |
Collapse
|
30
|
Zhang Q, Fu XL, Qian FH, Cao Q, Mao ZD, Bai JL, Du Q, Shi Y. Polymorphisms in Toll-like receptor 3 are associated with asthma-related phenotypes in the Chinese Han patients. Int J Immunogenet 2016; 43:383-390. [PMID: 27682462 DOI: 10.1111/iji.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
Abstract
Toll-like receptor (TLR) 3 mediates antivirus immunity and is involved in asthma exacerbation and development. However, the genetic association between TLR3 and asthma remains unclear. This study aimed to evaluate the effects of polymorphisms within TLR3 on asthma risk and asthma-related phenotypes in the Chinese Han population. A total number of 462 unrelated adult patients with asthma and 398 healthy volunteers were enrolled in this study. The genotypes of tagging single nucleotide polymorphisms (SNPs) in TLR3 gene were determined using multiplex SNaPshot SNP genotyping assays. Case-control and case-only studies were used to assess any links with asthma and asthma-related phenotypes. The results showed that the genetic variants in TLR3 were associated with asthma-related phenotypes, including eosinophil counts, serum immunoglobulin E levels and lung function. However, there was no obvious association between the TLR3 SNPs and asthma susceptibility or asthma severity. TLR3 polymorphisms may play a considerable role in the pathogenesis of asthma. It will help in better understanding the pathogenesis of asthma and development of more effective strategies for the prevention, prediction and treatment of asthma.
Collapse
Affiliation(s)
- Q Zhang
- Department of Respiratory Medicine, Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China.,Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - X L Fu
- Health Science Center, Jiangsu University, Zhenjiang, China
| | - F H Qian
- Department of Respiratory Medicine, Affiliated Jiangbing Hospital, Jiangsu University, Zhenjiang, China
| | - Q Cao
- Department of Respiratory Medicine, Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Z D Mao
- Department of Respiratory Medicine, Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - J L Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Q Du
- Department of Respiratory Medicine, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Y Shi
- Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| |
Collapse
|
31
|
Moheimani F, Hsu ACY, Reid AT, Williams T, Kicic A, Stick SM, Hansbro PM, Wark PAB, Knight DA. The genetic and epigenetic landscapes of the epithelium in asthma. Respir Res 2016; 17:119. [PMID: 27658857 PMCID: PMC5034566 DOI: 10.1186/s12931-016-0434-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/17/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Alan C-Y Hsu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Teresa Williams
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Identification of Susceptibility Genes of Adult Asthma in French Canadian Women. Can Respir J 2016; 2016:3564341. [PMID: 27445529 PMCID: PMC4904514 DOI: 10.1155/2016/3564341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/05/2015] [Indexed: 11/18/2022] Open
Abstract
Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study was performed in 240 allergic asthmatic and 120 allergic nonasthmatic women. The top associated SNPs were selected for individual genotyping in an extended cohort of 349 asthmatic and 261 nonasthmatic women. The functional impact of asthma-associated SNPs was investigated in a lung expression quantitative trait loci (eQTL) mapping study (n = 1035). Twenty-one of the 38 SNPs tested by individual genotyping showed P values lower than 0.05 for association with asthma. Cis-eQTL analyses supported the functional contribution of rs17801353 associated with C3AR1 (P = 7.90E - 10). The asthma risk allele for rs17801353 is associated with higher mRNA expression levels of C3AR1 in lung tissue. In silico functional characterization of the asthma-associated SNPs also supported the contribution of C3AR1 and additional genes including SYNE1, LINGO2, and IFNG-AS1. This pooling-based GWAS in French Canadian adult women followed by lung eQTL mapping suggested C3AR1 as a functional locus associated with asthma. Additional susceptibility genes were suggested in this homogenous subgroup of asthma patients.
Collapse
|
33
|
White MJ, Risse-Adams O, Goddard P, Contreras MG, Adams J, Hu D, Eng C, Oh SS, Davis A, Meade K, Brigino-Buenaventura E, LeNoir MA, Bibbins-Domingo K, Pino-Yanes M, Burchard EG. Novel genetic risk factors for asthma in African American children: Precision Medicine and the SAGE II Study. Immunogenetics 2016; 68:391-400. [PMID: 27142222 DOI: 10.1007/s00251-016-0914-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023]
Abstract
Asthma, an inflammatory disorder of the airways, is the most common chronic disease of children worldwide. There are significant racial/ethnic disparities in asthma prevalence, morbidity, and mortality among US children. This trend is mirrored in obesity, which may share genetic and environmental risk factors with asthma. The majority of asthma biomedical research has been performed in populations of European decent. We sought to identify genetic risk factors for asthma in African American children. We also assessed the generalizability of genetic variants associated with asthma in European and Asian populations to African American children. Our study population consisted of 1227 (812 asthma cases, 415 controls) African American children with genome-wide single nucleotide polymorphism (SNP) data. Logistic regression was used to identify associations between SNP genotype and asthma status. We identified a novel variant in the PTCHD3 gene that is significantly associated with asthma (rs660498, p = 2.2 × 10(-7)) independent of obesity status. Approximately 5 % of previously reported asthma genetic associations identified in European populations replicated in African Americans. Our identification of novel variants associated with asthma in African American children, coupled with our inability to replicate the majority of findings reported in European Americans, underscores the necessity for including diverse populations in biomedical studies of asthma.
Collapse
Affiliation(s)
- Marquitta J White
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA.
| | - O Risse-Adams
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
- Lowell Science Research Program, Lowell High School, San Francisco, CA, USA
| | - P Goddard
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
| | - M G Contreras
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
- SF BUILD, San Francisco State University, San Francisco, CA, USA
| | - J Adams
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
| | - D Hu
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
| | - C Eng
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
| | - S S Oh
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
| | - A Davis
- Children's Hospital and Research Center Oakland, Oakland, CA, USA
| | - K Meade
- Children's Hospital and Research Center Oakland, Oakland, CA, USA
| | - E Brigino-Buenaventura
- Department of Allergy and Immunology, Kaiser Permanente Vallejo Medical Center, Vallejo, CA, USA
| | | | - K Bibbins-Domingo
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
| | - M Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - E G Burchard
- Department of Medicine, University of California, San Francisco, UCSF Box 2911, San Francisco, CA, 94143-2911, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Ghosh S, Das PJ, McQueen CM, Gerber V, Swiderski CE, Lavoie JP, Chowdhary BP, Raudsepp T. Analysis of genomic copy number variation in equine recurrent airway obstruction (heaves). Anim Genet 2016; 47:334-44. [PMID: 26932307 DOI: 10.1111/age.12426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Abstract
We explored the involvement of genomic copy number variants (CNVs) in susceptibility to recurrent airway obstruction (RAO), or heaves-an asthmalike inflammatory disease in horses. Analysis of 16 RAO-susceptible (cases) and six RAO-resistant (control) horses on a custom-made whole-genome 400K equine tiling array identified 245 CNV regions (CNVRs), 197 previously known and 48 new, distributed on all horse autosomes and the X chromosome. Among the new CNVRs, 30 were exclusively found in RAO cases and were further analyzed by quantitative PCR, including additional cases and controls. Suggestive association (P = 0.03; corrected P = 0.06) was found between RAO and a loss on chromosome 5 involving NME7, a gene necessary for ciliary functions in lungs and involved in primary ciliary dyskinesia in humans. The CNVR could be a potential marker for RAO susceptibility but needs further study in additional RAO cohorts. Other CNVRs were not associated with RAO, although several involved genes of interest, such as SPI2/SERPINA1 from the serpin gene family, which are associated with chronic obstructive pulmonary disease and asthma in humans. The SPI2/SERPINA1 CNVR showed striking variation among horses, but it was not significantly different between RAO cases and controls. The findings provide baseline information on the relationship between CNVs and RAO susceptibility. Discovery of new CNVs and the use of a larger population of RAO-affected and control horses are needed to shed more light on their significance in modulating this complex and heterogeneous disease.
Collapse
Affiliation(s)
- S Ghosh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - P J Das
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,National Research Centre on Yak (ICAR), Dirang, Arunachal Pradesh, 790101, India
| | - C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - V Gerber
- Department of Veterinary Medicine, University of Bern, Bern, Switzerland
| | - C E Swiderski
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - J-P Lavoie
- Department of Clinical Sciences, University of Montreal, Montreal, QC, J2S 7C6, Canada
| | - B P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,New Research Complex, Qatar University, Doha, 2713, Qatar
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
35
|
Zihlif M, Obeidat NM, Zihlif N, Mahafza T, Froukh T, Ghanim MT, Beano H, Al-Akhras FM, Naffa R. Association Between Gasdermin A and Gasdermin B Polymorphisms and Susceptibility to Adult and Childhood Asthma Among Jordanians. Genet Test Mol Biomarkers 2016; 20:143-8. [PMID: 26886240 DOI: 10.1089/gtmb.2015.0174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Gasdermin A (GSDMA) and gasdermin B (GSDMB) have been associated with childhood, and to a lesser extent with adult, asthma in many populations. AIMS In this study, we investigated the association between GSDMA and GSDMB variants and the incidence of adult and childhood asthma among Jordanians. METHODS Subjects were divided into two groups: adults and children. Within the adult group there were 129 asthma patients and 111 healthy controls. In the pediatric group there were 98 asthma patients and 112 healthy children. Gasdermin A (GSDMA) (rs7212938, T/G) and Gasdermin B (rs7216389, T/C) polymorphisms were genotyped using the PCR-RFLP method. Three analysis models were applied to the genotype data: co-dominant, dominant and recessive. RESULTS An association between the GSDMB T/C single nucleotide polymorphism (SNP) genotype and the incidence of childhood asthma was found (< 0.05). GSDMB T/C SNP in children also showed a very high tendency toward significance with p = 0.0532 in the single locus analysis. In adults, no significant differences in the allelic frequencies of any of the SNPs analyzed were found between the case and control populations. At the haplotype level, GC haplotype was found to be associated with the risk of asthma in children while none of the tested haplotypes were found to be associated with asthma risk in adults. CONCLUSIONS The findings of this study confirm the previously reported association between the GSDMB gene and the risk of childhood asthma.
Collapse
Affiliation(s)
- Malek Zihlif
- 1 Department of Pharmacology, Faculty of Medicine, The University of Jordan , Amman, Jordan
| | - Nathir M Obeidat
- 2 Department of Internal Medicine, University of Jordan Hospital, The University of Jordan , Amman, Jordan
| | - Nadwa Zihlif
- 3 Department of Pediatric, Jordan Hospital , Amman, Jordan
| | - Tareq Mahafza
- 4 Department of Special Surgery, University of Jordan Hospital, The University of Jordan , Amman, Jordan
| | - Tawfiq Froukh
- 5 Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University , Amman, Jordan
| | - Marcel T Ghanim
- 6 Faculty of Medicine, The University of Jordan , Amman, Jordan
| | - Hamza Beano
- 6 Faculty of Medicine, The University of Jordan , Amman, Jordan
| | - Fatima M Al-Akhras
- 7 Department of Physiology and Biochemistry, Faculty of Medicine, The University of Jordan , Amman, Jordan
| | - Randa Naffa
- 7 Department of Physiology and Biochemistry, Faculty of Medicine, The University of Jordan , Amman, Jordan
| |
Collapse
|
36
|
Toncheva AA, Potaczek DP, Schedel M, Gersting SW, Michel S, Krajnov N, Gaertner VD, Klingbeil JM, Illig T, Franke A, Winkler C, Hohlfeld JM, Vogelberg C, von Berg A, Bufe A, Heinzmann A, Laub O, Rietschel E, Simma B, Genuneit J, Muntau AC, Kabesch M. Childhood asthma is associated with mutations and gene expression differences of ORMDL genes that can interact. Allergy 2015; 70:1288-99. [PMID: 26011647 DOI: 10.1111/all.12652] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genomewide association studies identified ORMDL3 as a plausible asthma candidate gene. ORMDL proteins regulate sphingolipid metabolism and ceramide homeostasis and participate in lymphocyte activation and eosinophil recruitment. Strong sequence homology between the three ORMDL genes and ORMDL protein conservation among different species suggest that they may have shared functions. We hypothesized that if single nucleotide polymorphisms (SNPs) in ORMDL3 alter its gene expression and play a role in asthma, variants in ORMDL1 and ORMDL2 might also be associated with asthma. METHODS Asthma associations of 44 genotyped SNPs were determined in at least 1303 subjects (651 asthmatics). ORMDL expression was evaluated in peripheral blood mononuclear cells (PBMC) from 55 subjects (eight asthmatics) before and after allergen stimulation, and in blood (n = 60, 5 asthmatics). Allele-specific cis-effects on ORMDL expression were assessed. Interactions between human ORMDL proteins were determined in living cells. RESULTS Sixteen SNPs in all three ORMDLs were associated with asthma (14 in ORMDL3). Baseline expression of ORMDL1 (P = 1.7 × 10(-6) ) and ORMDL2 (P = 4.9 × 10(-5) ) was significantly higher in PBMC from asthmatics, while induction of ORMDLs upon stimulation was stronger in nonasthmatics. Disease-associated alleles (rs8079416, rs4795405, rs3902920) alter ORMDL3 expression. ORMDL proteins formed homo- and heterooligomers and displayed similar patterns of interaction with SERCA2 and SPT1. CONCLUSIONS Polymorphisms in ORMDL genes are associated with asthma. Asthmatics exhibit increased ORMDL levels, suggesting that ORMDLs contribute to asthma. Formation of heterooligomers and similar interaction patterns with proteins involved in calcium homeostasis and sphingolipid metabolism could indicate shared biological roles of ORMDLs, influencing airway remodeling and hyperresponsiveness.
Collapse
Affiliation(s)
- A. A. Toncheva
- Department of Pediatric Pneumology and Allergy; University Children's Hospital Regensburg (KUNO); Regensburg Germany
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
| | - D. P. Potaczek
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
| | - M. Schedel
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
- Department of Pediatrics; National Jewish Health; Denver CO USA
| | - S. W. Gersting
- Department of Molecular Pediatrics; Dr. von Hauner Children's Hospital; Ludwig-Maximilians-University; Munich Germany
| | - S. Michel
- Department of Pediatric Pneumology and Allergy; University Children's Hospital Regensburg (KUNO); Regensburg Germany
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
| | - N. Krajnov
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
| | - V. D. Gaertner
- Department of Pediatric Pneumology and Allergy; University Children's Hospital Regensburg (KUNO); Regensburg Germany
| | - J. M. Klingbeil
- Department of Molecular Pediatrics; Dr. von Hauner Children's Hospital; Ludwig-Maximilians-University; Munich Germany
| | - T. Illig
- Research Unit of Molecular Epidemiology; Helmholtz Zentrum Munich; Neuherberg Germany
- Hannover Unified Biobank; Hannover Medical School; Hannover Germany
| | - A. Franke
- Institute of Clinical Molecular Biology; Christian-Albrechts-University Kiel; Kiel Germany
| | - C. Winkler
- Department of Clinical Airway Research; Fraunhofer Institute for Toxicology and Experimental Medicine; Hannover Germany
- Department of Respiratory Medicine; Hannover Medical School; Hannover Germany
| | - J. M. Hohlfeld
- Department of Clinical Airway Research; Fraunhofer Institute for Toxicology and Experimental Medicine; Hannover Germany
- Department of Respiratory Medicine; Hannover Medical School; Hannover Germany
| | - C. Vogelberg
- University Children's Hospital; Technical University Dresden; Dresden Germany
| | - A. von Berg
- Research Institute for the Prevention of Allergic Diseases; Children's Department; Marien-Hospital; Wesel Germany
| | - A. Bufe
- Department of Experimental Pneumology; Ruhr-University; Bochum Germany
| | - A. Heinzmann
- University Children's Hospital; Albert Ludwigs University; Freiburg Germany
| | - O. Laub
- Kinder- und Jugendarztpraxis Laub; Rosenheim Germany
| | - E. Rietschel
- University Children's Hospital; University of Cologne; Cologne Germany
| | - B. Simma
- Children's Department; University Teaching Hospital; Landeskrankenhaus Feldkirch; Feldkirch Austria
| | - J. Genuneit
- Institute of Epidemiology and Medical Biometry; Ulm University; Ulm Germany
| | - A. C. Muntau
- University Children's Hospital; University Medical Center Hamburg Eppendorf; Hamburg Germany
| | - M. Kabesch
- Department of Pediatric Pneumology and Allergy; University Children's Hospital Regensburg (KUNO); Regensburg Germany
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
| |
Collapse
|
37
|
Abstract
The pathogenic role of immunoglobulin E (IgE) antibodies in triggering and maintaining allergic inflammation in response to allergens is due to the binding of multivalent allergens to allergen-specific IgEs on sensitized effector cells. These interactions trigger effector cell activation, resulting in release of potent inflammatory mediators, recruitment of inflammatory cells, antigen presentation, and production of allergen-specific antibody responses. Since its discovery in the 1960s, the central role of IgE in allergic disease has been intensively studied, placing IgE and its functions at the heart of therapeutic efforts for the treatment of allergies. Here, we provide an overview of the nature, roles, and significance of IgE antibodies in allergic diseases, infections, and inflammation and the utility of antibodies as therapies. We place special emphasis on allergen-IgE-Fcε receptor complexes in the context of allergic and inflammatory diseases and describe strategies, including monoclonal antibodies, aimed at interrupting these complexes. Of clinical significance, one antibody, omalizumab, is presently in clinical use and works by preventing formation of IgE-Fcε receptor interactions. Active immunotherapy approaches with allergens and allergen derivatives have also demonstrated clinical benefits for patients with allergic diseases. These treatments are strongly associated with serum increases of IgE-neutralizing antibodies and feature a notable redirection of humoral responses towards production of antibodies of the IgG4 subclass in patients receiving immunotherapies. Lastly, we provide a new perspective on the rise of recombinant antibodies of the IgE class recognizing tumor-associated antigens, and we discuss the potential utility of tumor antigen-specific IgE antibodies to direct potent IgE-driven immune responses against tumors.
Collapse
|
38
|
|
39
|
Liao EC, Chang CY, Wu CC, Wang GJ, Tsai JJ. Association of Single Nucleotide Polymorphisms in the MD-2 Gene Promoter Region With Der p 2 Allergy. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:249-55. [PMID: 25749780 PMCID: PMC4397365 DOI: 10.4168/aair.2015.7.3.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
Purpose Sensitization to house dust mite (Dermatophagoides pteronyssinus) is a considerable risk factor for the progression of allergic disease. The group 2 allergen from Dermatophagoides pteronyssinus, Der p 2, is considered a major one in patients with specific immunoglobulin E (IgE) to Der p 2. Der p 2 has structural homology with myeloid differentiation 2 (MD-2), which is involved in the lipopolysaccharide-binding component of the Toll-like receptor 4 signaling pathway and the development of inflammation. The aim of this study was to examine the genetic association of single nucleotide polymorphisms (SNPs) in the promoter region of MD-2 with Der p 2-sensitive allergy. Methods We investigated associations between cohort's characteristics, including 280 allergic and 80 healthy subjects by examining total IgE, eosinophils, D. pteronyssinus-specific IgE, Der p 2-specific IgE, the number of IgE-producing B cells induced by Der p 2, and the odds ratio of allergic symptoms. Results Based on the 1,000 genome project data, the minor allele frequencies of the rs1809441 and rs1809442 are 0.467 and 0.474, respectively. However, the correlation of linkage disequilibrium (LD) between these 2 SNPs is D'=1, the genotype frequencies of the 2 MD-2 (LY96) SNPs (rs1809441 and rs1809442) that are located nearby were significantly different between allergic and health subjects: the TT genotype of rs1809441 and the GG genotype of rs1809442 were more frequent in allergic subjects than in healthy subjects (16.1% vs 2.5% in both genotypes). The allergic patients with these genotypes exhibited significantly higher levels of D. pteronyssinus-specific IgE and Der p 2-specific Ig E, and a larger number of Der p 2-activated B cells. In addition, these 2 SNPs in the MD-2 promoter region were significantly associated with the prevalence of nasal, skin, and asthmatic allergic symptoms. Conclusions Our results indicated that 2 SNPs in the MD-2 promoter region were significantly associated with Der p 2-specific Ig E, and thereby suggest that these SNPs may play a major role in susceptibility to Der p 2-triggered immune responses in a Taiwanese population.
Collapse
Affiliation(s)
- En Chih Liao
- Center for Translational Medicine, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.; Department of BioIndustry Technology, Da Yeh University, Changhua, Taiwan.; Department of Medical Technology, Jen-Ten College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ching Yun Chang
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia Che Wu
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Gou Jen Wang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Jaw Ji Tsai
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.; College of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.; Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
40
|
Huang SK, Zhang Q, Qiu Z, Chung KF. Mechanistic impact of outdoor air pollution on asthma and allergic diseases. J Thorac Dis 2015; 7:23-33. [PMID: 25694815 DOI: 10.3978/j.issn.2072-1439.2014.12.13] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022]
Abstract
Over the past decades, asthma and allergic diseases, such as allergic rhinitis and eczema, have become increasingly common, but the reason for this increased prevalence is still unclear. It has become apparent that genetic variation alone is not sufficient to account for the observed changes; rather, the changing environment, together with alterations in lifestyle and eating habits, are likely to have driven the increase in prevalence, and in some cases, severity of disease. This is particularly highlighted by recent awareness of, and concern about, the exposure to ubiquitous environmental pollutants, including chemicals with oxidant-generating capacities, and their impact on the human respiratory and immune systems. Indeed, several epidemiological studies have identified a variety of risk factors, including ambient pollutant gases and airborne particles, for the prevalence and the exacerbation of allergic diseases. However, the responsible pollutants remain unclear and the causal relationship has not been established. Recent studies of cellular and animal models have suggested several plausible mechanisms, with the most consistent observation being the direct effects of particle components on the generation of reactive oxygen species (ROS) and the resultant oxidative stress and inflammatory responses. This review attempts to highlight the experimental findings, with particular emphasis on several major mechanistic events initiated by exposure to particulate matters (PMs) in the exposure-disease relationship.
Collapse
Affiliation(s)
- Shau-Ku Huang
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Qingling Zhang
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Zhiming Qiu
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| | - Kian Fan Chung
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 115 Zhunan, Taiwan ; 2 Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA ; 3 State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China ; 4 National Heart & Lung Institute, Imperial College London & Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
41
|
Guidelines for severe uncontrolled asthma. Arch Bronconeumol 2015; 51:235-46. [PMID: 25677358 DOI: 10.1016/j.arbres.2014.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 01/29/2023]
Abstract
Since the publication, 9 years ago, of the latest SEPAR (Spanish Society of Pulmonology and Thoracic Surgery) Guidelines on Difficult-to-Control Asthma (DCA), much progress has been made in the understanding of asthmatic disease. These new data need to be reviewed, analyzed and incorporated into the guidelines according to their level of evidence and recommendation. Recently, consensus documents and clinical practice guidelines (CPG) addressing this issue have been published. In these guidelines, specific mention will be made of what the previous DCA guidelines defined as "true difficult-to-control asthma". This is asthma that remains uncontrolled after diagnosis and a systematic evaluation to rule out factors unrelated to the disease itself that lead to poor control ("false difficult-to-control asthma"), and despite an appropriate treatment strategy (Spanish Guidelines for the Management of Asthma [GEMA] steps 5 and 6): severe uncontrolled asthma. In this respect, the guidelines propose a revised definition, an attempt to classify the various manifestations of this type of asthma, a proposal for a stepwise diagnostic procedure, and phenotype-targeted treatment. A specific section has also been included on DCA in childhood, aimed at assisting healthcare professionals to improve the care of these patients.
Collapse
|
42
|
Sharma A, Menche J, Huang CC, Ort T, Zhou X, Kitsak M, Sahni N, Thibault D, Voung L, Guo F, Ghiassian SD, Gulbahce N, Baribaud F, Tocker J, Dobrin R, Barnathan E, Liu H, Panettieri RA, Tantisira KG, Qiu W, Raby BA, Silverman EK, Vidal M, Weiss ST, Barabási AL. A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum Mol Genet 2015; 24:3005-20. [PMID: 25586491 DOI: 10.1093/hmg/ddv001] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/05/2015] [Indexed: 01/24/2023] Open
Abstract
Recent advances in genetics have spurred rapid progress towards the systematic identification of genes involved in complex diseases. Still, the detailed understanding of the molecular and physiological mechanisms through which these genes affect disease phenotypes remains a major challenge. Here, we identify the asthma disease module, i.e. the local neighborhood of the interactome whose perturbation is associated with asthma, and validate it for functional and pathophysiological relevance, using both computational and experimental approaches. We find that the asthma disease module is enriched with modest GWAS P-values against the background of random variation, and with differentially expressed genes from normal and asthmatic fibroblast cells treated with an asthma-specific drug. The asthma module also contains immune response mechanisms that are shared with other immune-related disease modules. Further, using diverse omics (genomics, gene-expression, drug response) data, we identify the GAB1 signaling pathway as an important novel modulator in asthma. The wiring diagram of the uncovered asthma module suggests a relatively close link between GAB1 and glucocorticoids (GCs), which we experimentally validate, observing an increase in the level of GAB1 after GC treatment in BEAS-2B bronchial epithelial cells. The siRNA knockdown of GAB1 in the BEAS-2B cell line resulted in a decrease in the NFkB level, suggesting a novel regulatory path of the pro-inflammatory factor NFkB by GAB1 in asthma.
Collapse
Affiliation(s)
- Amitabh Sharma
- Center for Complex Networks Research, Department of Physics, Northeastern University, Boston, MA 02115, USA Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jörg Menche
- Center for Complex Networks Research, Department of Physics, Northeastern University, Boston, MA 02115, USA Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA Department of Theoretical Physics, Budapest University of Technology and Economics, H1111, Budapest, Hungary Center for Network Science, Central European University, Nador u. 9, 1051 Budapest, Hungary
| | - C Chris Huang
- Janssen Research & Development, Inc., 1400 McKean Road, Spring House, PA 19477, USA
| | - Tatiana Ort
- Janssen Research & Development, Inc., 1400 McKean Road, Spring House, PA 19477, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maksim Kitsak
- Center for Complex Networks Research, Department of Physics, Northeastern University, Boston, MA 02115, USA Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nidhi Sahni
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Derek Thibault
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Linh Voung
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Feng Guo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Dina Ghiassian
- Center for Complex Networks Research, Department of Physics, Northeastern University, Boston, MA 02115, USA Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Natali Gulbahce
- Department of Cellular and Molecular Pharmacology, University of California 1700, 4th Street, Byers Hall 308D, San Francisco, CA 94158, USA
| | - Frédéric Baribaud
- Janssen Research & Development, Inc., 1400 McKean Road, Spring House, PA 19477, USA
| | - Joel Tocker
- Janssen Research & Development, Inc., 1400 McKean Road, Spring House, PA 19477, USA
| | - Radu Dobrin
- Janssen Research & Development, Inc., 1400 McKean Road, Spring House, PA 19477, USA
| | - Elliot Barnathan
- Janssen Research & Development, Inc., 1400 McKean Road, Spring House, PA 19477, USA
| | - Hao Liu
- Janssen Research & Development, Inc., 1400 McKean Road, Spring House, PA 19477, USA
| | - Reynold A Panettieri
- Pulmonary Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Suite 1200, Philadelphia, PA 19104, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Albert-László Barabási
- Center for Complex Networks Research, Department of Physics, Northeastern University, Boston, MA 02115, USA Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Department of Theoretical Physics, Budapest University of Technology and Economics, H1111, Budapest, Hungary Center for Network Science, Central European University, Nador u. 9, 1051 Budapest, Hungary
| |
Collapse
|
43
|
Landolina N, Gangwar RS, Levi-Schaffer F. Mast cells' integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol 2015; 125:41-85. [PMID: 25591464 DOI: 10.1016/bs.ai.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) and eosinophils (Eos) are the key players in the development of allergic inflammation (AI). Their cross-talk, named the Allergic Effector Unit (AEU), takes place through an array of soluble mediators and ligands/receptors interactions that enhance the functions of both the cells. One of the salient features of the AEU is the CD48/2B4 receptor/ligand binding complex. Furthermore, MCs and Eos have been demonstrated to play a role not only in AI but also in the modulation of its consequence, i.e., fibrosis/tissue remodeling, by directly influencing fibroblasts (FBs), the main target cells of these processes. In turn, FBs can regulate the survival, activity, and phenotype of both MCs and Eos. Therefore, a complex three players, MCs/Eos/FBs interaction, can take place in various stages of AI. The characterization of the soluble and physical mediated cross talk among these three cells might lead to the identification of both better and novel targets for the treatment of allergy and its tissue remodeling consequences.
Collapse
Affiliation(s)
- Nadine Landolina
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roopesh Singh Gangwar
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
44
|
Zhou Y, Taylor B, van der Mei I, Stewart N, Charlesworth J, Blizzard L, Ponsonby AL, Dwyer T, Pittas F, Simpson S. Genetic variation in PBMC-produced IFN-γ and TNF-α associations with relapse in multiple sclerosis. J Neurol Sci 2014; 349:40-4. [PMID: 25575858 DOI: 10.1016/j.jns.2014.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/17/2014] [Accepted: 12/15/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Alterations in peripheral blood mononuclear cell (PBMC) cytokine production have been found in multiple sclerosis (MS) compared to healthy controls. We have previously found that stimulated PBMC-produced TNF-α and IFN-γ modulated MS relapse risk, such that raised TNF-α was protective, while raised IFN-γ increased relapse risk. OBJECTIVE To assess whether SNPs within genes for relevant cytokines and their receptors modulate the associations of TNF-α and IFN-γ with relapse, thus providing additional information about these cytokine effects and the roles of these genes in MS. METHODS Prospective cohort of 91 participants with relapsing-remitting MS and cytokine and genotype data. SNPs (N=361) within a window of 10 kb around each cytokine/cytokine receptor gene (N=84) were selected for analysis. Predictors of PBMC cytokines were evaluated by multilevel mixed-effects linear regression. Predictors of relapse were evaluated by Cox proportional hazards regression. Bonferroni correction was used to adjust for multiple testing; thus p<1.39 × 10(-4) was defined as significant. RESULTS Individuals of GG genotype of rs3218295 (within the gene IL2RB) demonstrated a significant protective effect of TNF-α on relapse while those of GA/AA genotype showed a significant positive association (pinteraction=5.04 × 10(-5)). Carriers of CC genotype of rs522807 (3' region of TNFRSF1B) and the AA genotype of rs25879 (5' region of IL3) showed a strong association between IFN-γ and increased relapse risk (pinteraction=8.21 × 10(-5) and 1.70 × 10(-5), respectively). CONCLUSIONS Our results show novel modulation of TNF-α and IFN-γ associations with relapse by SNPs in major cytokines. These findings suggest the potential for these genes and/or their products as potential therapeutic targets in MS.
Collapse
Affiliation(s)
- Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Niall Stewart
- School of Pharmacy, University of Tasmania, Australia; School of Medicine, University of Tasmania, Australia
| | - Jac Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | | | - Terence Dwyer
- Murdoch Children's Research Institute, University of Melbourne, Australia
| | - Fotini Pittas
- School of Medicine, University of Tasmania, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Australia.
| |
Collapse
|
45
|
Gupta SD, Gable K, Alexaki A, Chandris P, Proia RL, Dunn TM, Harmon JM. Expression of the ORMDLS, modulators of serine palmitoyltransferase, is regulated by sphingolipids in mammalian cells. J Biol Chem 2014; 290:90-8. [PMID: 25395622 DOI: 10.1074/jbc.m114.588236] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relationship between serine palmitoyltransferase (SPT) activity and ORMDL regulation of sphingolipid biosynthesis was investigated in mammalian HEK293 cells. Each of the three human ORMDLs reduced the increase in long-chain base synthesis seen after overexpression of wild-type SPT or SPT containing the C133W mutation in hLCB1, which produces the non-catabolizable sphingoid base, 1-deoxySa. ORMDL-dependent repression of sphingoid base synthesis occurred whether SPT was expressed as individual subunits or as a heterotrimeric single-chain SPT fusion protein. Overexpression of the single-chain SPT fusion protein under the control of a tetracycline-inducible promoter in stably transfected cells resulted in increased endogenous ORMDL expression. This increase was not transcriptional; there was no significant increase in any of the ORMDL mRNAs. Increased ORMDL protein expression required SPT activity since overexpression of a catalytically inactive SPT with a mutation in hLCB2a had little effect. Significantly, increased ORMDL expression was also blocked by myriocin inhibition of SPT as well as fumonisin inhibition of the ceramide synthases, suggesting that increased expression is a response to a metabolic signal. Moreover, blocking ORMDL induction with fumonisin treatment resulted in significantly greater increases in in vivo SPT activity than was seen when ORMDLs were allowed to increase, demonstrating the physiological significance of this response.
Collapse
Affiliation(s)
- Sita D Gupta
- From the Departments of Biochemistry and Molecular Biology and
| | - Kenneth Gable
- From the Departments of Biochemistry and Molecular Biology and
| | - Aikaterini Alexaki
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Panagiotis Chandris
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L Proia
- Genetics of Development and Disease Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa M Dunn
- From the Departments of Biochemistry and Molecular Biology and
| | - Jeffrey M Harmon
- Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799 and
| |
Collapse
|
46
|
Abstract
Clinically relevant features of monogenic diseases, including severity of symptoms and age of onset, can vary widely in response to environmental differences as well as to the presence of genetic modifiers affecting the trait’s penetrance and expressivity. While a better understanding of modifier loci could lead to treatments for Mendelian diseases, the rarity of individuals harboring both a disease-causing allele and a modifying genotype hinders their study in human populations. We examined the genetic architecture of monogenic trait modifiers using a well-characterized yeast model of the human Mendelian disease classic galactosemia. Yeast strains with loss-of-function mutations in the yeast ortholog (GAL7) of the human disease gene (GALT) fail to grow in the presence of even small amounts of galactose due to accumulation of the same toxic intermediates that poison human cells. To isolate and individually genotype large numbers of the very rare (∼0.1%) galactose-tolerant recombinant progeny from a cross between two gal7Δ parents, we developed a new method, called “FACS-QTL.” FACS-QTL improves upon the currently used approaches of bulk segregant analysis and extreme QTL mapping by requiring less genome engineering and strain manipulation as well as maintaining individual genotype information. Our results identified multiple distinct solutions by which the monogenic trait could be suppressed, including genetic and nongenetic mechanisms as well as frequent aneuploidy. Taken together, our results imply that the modifiers of monogenic traits are likely to be genetically complex and heterogeneous.
Collapse
|
47
|
Kong Q, Li WJ, Huang HR, Zhong YQ, Fang JP. Differential gene expression profiles of peripheral blood mononuclear cells in childhood asthma. J Asthma 2014; 52:343-52. [PMID: 25329679 DOI: 10.3109/02770903.2014.971967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Asthma is a common childhood disease with strong genetic components. This study compared whole-genome expression differences between asthmatic young children and healthy controls to identify gene signatures of childhood asthma. METHODS Total RNA extracted from peripheral blood mononuclear cells (PBMC) was subjected to microarray analysis. QRT-PCR was performed to verify the microarray results. Classification and functional characterization of differential genes were illustrated by hierarchical clustering and gene ontology analysis. Multiple logistic regression (MLR) analysis, receiver operating characteristic (ROC) curve analysis, and discriminate power were used to scan asthma-specific diagnostic markers. RESULTS For fold-change>2 and p < 0.05, there were 758 named differential genes. The results of QRT-PCR confirmed successfully the array data. Hierarchical clustering divided 29 highly possible genes into seven categories and the genes in the same cluster were likely to possess similar expression patterns or functions. Gene ontology analysis presented that differential genes primarily enriched in immune response, response to stress or stimulus, and regulation of apoptosis in biological process. MLR and ROC curve analysis revealed that the combination of ADAM33, Smad7, and LIGHT possessed excellent discriminating power. CONCLUSIONS The combination of ADAM33, Smad7, and LIGHT would be a reliable and useful childhood asthma model for prediction and diagnosis.
Collapse
Affiliation(s)
- Qian Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University , Guangzhou, Guangdong , P.R. China
| | | | | | | | | |
Collapse
|
48
|
Zhao YF, Luo YM, Xiong W, Wu XL. Genetic variation in ORMDL3 gene may contribute to the risk of asthma: a meta-analysis. Hum Immunol 2014; 75:960-7. [PMID: 25167772 DOI: 10.1016/j.humimm.2014.08.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Since the first genome-wide association study report of an association between the ORMDL3 rs7216389 polymorphism and asthma, many studies have been carried out to establish its role in asthma susceptibility among different ethnic groups. However, results have not been consistent across all studies, compelling us to conduct the present meta-analysis. METHODS A literature search for eligible studies published before January 20, 2014 was conducted in the MEDLINE, EMBASE, and CNKI databases. The association was assessed using pooled crude odds ratios (ORs) with their corresponding 95% confidence intervals (CIs). RESULTS A total of 18 individual studies in 15 publications (total 7904 asthma patients and 10,874 healthy controls) were included in the meta-analysis. A meta-analysis of all included studies suggested that there was a highly significant risk effect conferred by the rs7216389*T allele on asthma susceptibility. In addition, we performed stratified analyses to evaluate ethnicity-specific and age-specific effects. Our subgroup analyses based on ethnicity and age-of-onset confirmed the role of the ORMDL3 rs7216389 polymorphism in conferring susceptibility to both childhood- and adult-onset asthma, especially in Caucasians and Asians. CONCLUSIONS The results of this meta-analysis firmly established that genetic variation at the rs7216389 locus, which controls the expression of the ORMDL3, may be a major, independent predisposing factor for asthma in ethnically diverse populations. However, further systematic studies are needed to determine the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Yun-Feng Zhao
- Department of Respiratory Medicine, Pudong New Area Gongli Hospital, Shanghai, China
| | - Yi-Min Luo
- Diagnostics Teaching and Research Section, Southeast University Medical College, Nanjing 210009, China
| | - Wei Xiong
- Department of Respiratory Medicine, Pudong New Area Gongli Hospital, Shanghai, China
| | - Xue-Ling Wu
- Institute of Respiratory Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
49
|
Bérubé JC, Bossé Y. Future clinical implications emerging from recent genome-wide expression studies in asthma. Expert Rev Clin Immunol 2014; 10:985-1004. [PMID: 25001610 DOI: 10.1586/1744666x.2014.932249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Host susceptibility to environmental triggers is the most likely explanation for the development of asthma. Quantifying gene expression levels in disease-relevant tissues and cell types using fast evolving genomic technologies have generated new hypotheses about the pathogenesis of asthma and identified new therapeutic targets to treat asthma and asthma-exacerbations. New biomarkers and distinct transcriptomic phenotypes in blood, sputum and other tissues were also identified and proved effective to refine asthma classification and guide targeted therapies. The wealth of information provided by transcriptomic studies in asthma is yet to be fully exploited, but discoveries in this field may soon be implemented in clinical settings to improve diagnosis and treatment of patients afflicted with this common disease.
Collapse
Affiliation(s)
- Jean-Christophe Bérubé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Pavillon Marguerite-d'Youville, Y4190, 2725 Chemin Ste-Foy, Quebec, Canada, G1V 4G5
| | | |
Collapse
|
50
|
Mathias RA. Introduction to genetics and genomics in asthma: genetics of asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 795:125-55. [PMID: 24162907 DOI: 10.1007/978-1-4614-8603-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While asthma is a heterogeneous disease, a strong genetic basis has been firmly established. Rather than being a single disease entity, asthma consists of related, overlapping syndromes [Barnes (Proc Am Thor Soc 8:143-148, 2011)] including three general domains: variable airway obstruction, airway hyper-responsiveness, and airway inflammation with a considerable proportion, but not all, of asthma being IgE-mediated further adding to its heterogeneity. This chapter reviews the approaches to the elucidation of genetics of asthma from the early evidence of familial clustering to the current state of knowledge with genome-wide approaches. The conclusion is that research efforts have led to a tremendous repository of genetic determinants of asthma, most of which fall into the above phenotypic domains of the syndrome. We now look to future integrative approaches of genetics, genomics (Chap. 10), and epigenetics (Chap. 11) to better understand the causal mechanism through which, these genetic loci act in manifesting asthma.
Collapse
Affiliation(s)
- Rasika Ann Mathias
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, 3B.79, Baltimore, MD, 21224, USA,
| |
Collapse
|