1
|
Wang Y, Ge H, Chen P, Wang Y. Wnt/β-catenin signaling in corneal epithelium development, homeostasis, and pathobiology. Exp Eye Res 2024; 246:110022. [PMID: 39117134 DOI: 10.1016/j.exer.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The corneal epithelium is located on the most anterior surface of the eyeball and protects against external stimuli. The development of the corneal epithelium and the maintenance of corneal homeostasis are essential for the maintenance of visual acuity. It has been discovered recently via the in-depth investigation of ocular surface illnesses that the Wnt/β-catenin signaling pathway is necessary for the growth and stratification of corneal epithelial cells as well as the control of endothelial cell stability. In addition, the Wnt/β-catenin signaling pathway is directly linked to the development of common corneal illnesses such as keratoconus, fungal keratitis, and corneal neovascularization. This review mainly summarizes the role of the Wnt/β-catenin signaling pathway in the development, homeostasis, and pathobiology of cornea, hoping to provide new insights into the study of corneal epithelium and the treatment of related diseases.
Collapse
Affiliation(s)
- Yihui Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong 266042, China.
| |
Collapse
|
2
|
Meng F, Ren S. Identification of hub genes and molecular pathways in keratoconus by integrating bioinformatics and literature mining at the RNA level. Int Ophthalmol 2024; 44:244. [PMID: 38904678 DOI: 10.1007/s10792-024-03071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/16/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Keratoconus (KC) is a condition characterized by progressive corneal steepening and thinning. However, its pathophysiological mechanism remains vague. We mainly performed literature mining to extract bioinformatic and related data on KC at the RNA level. The objective of this study was to explore the potential pathological mechanisms of KC by identifying hub genes and key molecular pathways at the RNA level. METHODS We performed an exhaustive search of the PubMed database and identified studies that pertained to gene transcripts derived from diverse corneal layers in patients with KC. The identified differentially expressed genes were intersected, and overlapping genes were extracted for further analyses. Significantly enriched genes were screened using "Gene Ontology" (GO) and "Kyoto Encyclopedia of Genes and Genomes" (KEGG) analysis with the "Database for Annotation, Visualization, and Integrated Discovery" (DAVID) database. A protein-protein interaction (PPI) network was constructed for the significantly enriched genes using the STRING database. The PPI network was visualized using the Cytoscape software, and hub genes were screened via betweenness centrality values. Pathways that play a critical role in the pathophysiology of KC were discovered using the GO and KEGG analyses of the hub genes. RESULTS 68 overlapping genes were obtained. Fifty genes were significantly enriched in 67 biological processes, and 16 genes were identified in 7 KEGG pathways. Moreover, 14 nodes and 32 edges were identified via the PPI network constructed using the STRING database. Multiple analyses identified 4 hub genes, 12 enriched biological processes, and 6 KEGG pathways. GO enrichment analysis showed that the hub genes are mainly involved in the positive regulation of apoptotic process, and KEGG analysis showed that the hub genes are primarily associated with the interleukin-17 (IL-17) and tumor necrosis factor (TNF) pathways. Overall, the matrix metalloproteinase 9, IL-6, estrogen receptor 1, and prostaglandin-endoperoxide synthase 2 were the potential important genes associated with KC. CONCLUSION Four genes, matrix metalloproteinase 9, IL-6, estrogen receptor 1, and prostaglandin endoperoxide synthase 2, as well as IL-17 and TNF pathways, are critical in the development of KC. Inflammation and apoptosis may contribute to the pathogenesis of KC.
Collapse
Affiliation(s)
- Feiying Meng
- Henan Eye Hospital, Henan Provincial People's Hospital/People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Shengwei Ren
- Henan Eye Hospital, Henan Provincial People's Hospital/People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
3
|
Liu Y, Yang X, Li H, Li D, Zou Y, Gong B, Yu M. Characteristics of Autophagy-Related Genes, Diagnostic Models, and Their Correlation with Immune Infiltration in Keratoconus. J Inflamm Res 2023; 16:3763-3781. [PMID: 37663760 PMCID: PMC10474872 DOI: 10.2147/jir.s420164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Keratoconus (KTCN) is one of the most common degenerative keratopathies, significantly affecting vision and even leading to blindness. This study identifies potential biomarkers of KTCN based on the characterization of autophagy-related genes (ARGs) and the construction of a diagnostic model; and explores their relevance to immune infiltrating cells in KTCN. Methods Gene Expression Omnibus (GEO) data were downloaded and ARGs were acquired from GeneCards and Molecular Signatures Database (MSigDB). Autophagy-related differential expression genes (ARDEGs) were discovered through the integration of differentially expressed genes (DEGs) with ARGs, while hub genes of KTCN were discovered by protein-protein interaction (PPI) network analysis. The probable biological roles of these hub ARDEGs were examined using functional enrichment analysis, and a KTCN diagnostic model was generated using the least absolute shrinkage and selection operator (LASSO) regression analysis. We also employed the CIBERSORTx and ssGSEA algorithms to identify potential regulatory pathways to compare the abundance of immune cell infiltrates and their association with hub genes. Finally, the hub gene expression levels were confirmed using validation datasets as well as blood samples from KTCN and healthy individuals. Results In this study, we identified 12 hub ARDEGs, of which 9 genes were substantially distinct between KTCN patients and normal groups. The LASSO risk score was used to generate the nomogram, and the calibration curve evaluated the model's effective diagnostic performance (C index of 0.961). Patients with KTCN had greater percentages of M2 Macrophages and Gamma delta T cells, according to CIBERSORTx and ssGSEA. The outcomes of the bioinformatics analysis were supported by the DDIT3 and BINP3 expression levels in KTCN patients and healthy controls, according to the qRT-PCR data. Conclusion Five biomarkers (CFTR, PLIN2, DDIT3, BAG3, and BNIP3) and diagnostic models offer fresh perspectives on identifying and managing KTCN.
Collapse
Affiliation(s)
- Yi Liu
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Huan Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Dongfeng Li
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| | - Yuhao Zou
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| | - Bo Gong
- Department of Health Management, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Sun X, Zhang H, Shan M, Dong Y, Zhang L, Chen L, Wang Y. Comprehensive Transcriptome Analysis of Patients With Keratoconus Highlights the Regulation of Immune Responses and Inflammatory Processes. Front Genet 2022; 13:782709. [PMID: 35281826 PMCID: PMC8914074 DOI: 10.3389/fgene.2022.782709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Keratoconus (KTCN), characterized by the steeper curvature of the cornea and the thinner central corneal thickness, was a degenerative corneal ectasia with ambiguous etiology and mechanism. We aim to reveal underlying pathological mechanisms of KTCN by multi-level transcriptomic, integrative omics analyses. We performed RNA-sequencing on corneal epithelial samples from seven patients and seven control donors, as well as peripheral matched blood samples from three of the patients and three control donors. After RNA extraction, library construction, and sequencing, differentially expressed genes and splicing events were identified, followed by over-representation analysis. In total, 547 differential expressed genes were identified in KTCN corneal epithelial samples, which were mainly enriched in immune responses and inflammatory processes. WGCNA module analysis, the transcriptomic analysis of peripheral blood samples, multiple omics data, and the meta-analysis of GEO samples confirmed the involvement of immune and inflammatory factors. Besides, 190 and 1,163 aberrant splicing events were identified by rMATS combined with CASH methods in corneal epithelial and blood samples with KCTN. In conclusion, this comprehensive transcriptome analysis of KTCN patients based on patients’ tissue and blood samples uncovered a significant association between immune-inflammatory genes and pathways with KCTN, highlighting the contribution of the perturbed immune signaling to the pathogenesis of KCTN. Our study suggested the importance of measures to control inflammation in the treatment of KCTN.
Collapse
Affiliation(s)
- Xiao Sun
- School of Medicine, Nankai University, Tianjin, China
| | - Hao Zhang
- Tianjin Medical University, Tianjin, China
| | - Mengyuan Shan
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Dong
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
| | - Lin Zhang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
| | - Luxia Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
| | - Yan Wang
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
- *Correspondence: Yan Wang,
| |
Collapse
|
5
|
Hao XD, Gao H, Xu WH, Shan C, Liu Y, Zhou ZX, Wang K, Li PF. Systematically Displaying the Pathogenesis of Keratoconus via Multi-Level Related Gene Enrichment-Based Review. Front Med (Lausanne) 2022; 8:770138. [PMID: 35141241 PMCID: PMC8818795 DOI: 10.3389/fmed.2021.770138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 01/20/2023] Open
Abstract
Keratoconus (KC) is an etiologically heterogeneous corneal ectatic disorder. To systematically display the pathogenesis of keratoconus (KC), this study reviewed all the reported genes involved in KC, and performed an enrichment analysis of genes identified at the genome, transcription, and protein levels respectively. Combined analysis of multi-level results revealed their shared genes, gene ontology (GO), and pathway terms, to explore the possible pathogenesis of KC. After an initial search, 80 candidate genes, 2,933 transcriptional differential genes, and 947 differential proteins were collected. The candidate genes were significantly enriched in extracellular matrix (ECM) related terms, Wnt signaling pathway and cytokine activities. The enriched GO/pathway terms of transcription and protein levels highlight the importance of ECM, cell adhesion, and inflammatory once again. Combined analysis of multi-levels identified 13 genes, 43 GOs, and 12 pathways. The pathogenic relationships among these overlapping factors maybe as follows. The gene mutations/variants caused insufficient protein dosage or abnormal function, together with environmental stimulation, leading to the related functions and pathways changes in the corneal cells. These included response to the glucocorticoid and reactive oxygen species; regulation of various signaling (P13K-AKT, MAPK and NF-kappaB), apoptosis and aging; upregulation of cytokines and collagen-related enzymes; and downregulation of collagen and other ECM-related proteins. These undoubtedly lead to a reduction of extracellular components and induction of cell apoptosis, resulting in the loosening and thinning of corneal tissue structure. This study, in addition to providing information about the genes involved, also provides an integrated insight into the gene-based etiology and pathogenesis of KC.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Hua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Foster JW, Parikh RN, Wang J, Bower KS, Matthaei M, Chakravarti S, Jun AS, Eberhart CG, Soiberman US. Transcriptomic and Immunohistochemical Analysis of Progressive Keratoconus Reveal Altered WNT10A in Epithelium and Bowman's Layer. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 33988693 PMCID: PMC8132000 DOI: 10.1167/iovs.62.6.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose To identify global gene expression changes in the corneal epithelium of keratoconus (KC) patients compared to non-KC myopic controls. Methods RNA-sequencing was performed on corneal epithelium samples of five progressive KC and five myopic control patients. Selected results were validated using TaqMan quantitative PCR (qPCR) on 31 additional independent samples, and protein level validation was conducted using western blot analysis on a subset. Immunohistochemistry was performed on tissue microarrays containing cores from over 100 KC and control cases. WNT10A transcript levels in corneal epithelium were correlated with tomographic indicators of KC disease severity in 15 eyes. Additionally, WNT10A was overexpressed in vitro in immortalized corneal epithelial cells. Results WNT10A was found to be underexpressed in KC epithelium at the transcript (ratio KC/control = 0.59, P = 0.02 per RNA-sequencing study; ratio = 0.66, P = 0.03 per qPCR) and protein (ratio = 0.07, P = 0.06) levels. Immunohistochemical analysis also indicated WNT10A protein was decreased in Bowman's layer of KC patients. In contrast, WNT10A transcript level positively correlated with increased keratometry (Kmax ρ = 0.57, P = 0.02). Finally, WNT10A positively regulated COL1A1 expression in corneal epithelial cells. Conclusions A specific Wnt ligand, WNT10A, is reduced at the mRNA and protein level in KC epithelium and Bowman's layer. This ligand positively regulates collagen type I expression in corneal epithelial cells. The results suggest that WNT10A expression in the corneal epithelium may play a role in progressive KC.
Collapse
Affiliation(s)
- James W Foster
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Rupin N Parikh
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jiangxia Wang
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kraig S Bower
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Shukti Chakravarti
- Department of Ophthalmology and Pathology, NYU Langone Health, New York, New York, United States
| | - Albert S Jun
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Charles G Eberhart
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Uri S Soiberman
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Karolak JA, Gambin T, Rydzanicz M, Polakowski P, Ploski R, Szaflik JP, Gajecka M. Accumulation of sequence variants in genes of Wnt signaling and focal adhesion pathways in human corneas further explains their involvement in keratoconus. PeerJ 2020; 8:e8982. [PMID: 32328353 PMCID: PMC7164425 DOI: 10.7717/peerj.8982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background Keratoconus (KTCN) is a protrusion and thinning of the cornea, resulting in loss of visual acuity. The etiology of KTCN remains unclear. The purpose of this study was to assess the potential involvement of new genetic variants in KTCN etiology based on both the genomic and transcriptomic findings recognized in the same corneal tissues. Methods Corneal tissues derived from five unrelated Polish individuals with KTCN were examined using exome sequencing (ES), followed by enrichment analyses. For comparison purposes, the datasets comprising ES data of five randomly selected Polish individuals without ocular abnormalities and five Polish patients with high myopia were used. Expression levels of selected genes from the overrepresented pathways were obtained from the previous RNA-Seq study. Results Exome capture discovered 117 potentially relevant variants that were further narrowed by gene overrepresentation analyses. In each of five patients, the assessment of functional interactions revealed rare (MAF ≤ 0.01) DNA variants in at least one gene from Wnt signaling (VANGL1, WNT1, PPP3CC, LRP6, FZD2) and focal adhesion (BIRC2, PAK6, COL4A4, PPP1R12A, PTK6) pathways. No genes involved in pathways enriched in KTCN corneas were overrepresented in our control sample sets. Conclusions The results of this first pilot ES profiling of human KTCN corneas emphasized that accumulation of sequence variants in several genes from Wnt signaling and/or focal adhesion pathways might cause the phenotypic effect and further points to a complex etiology of KTCN.
Collapse
Affiliation(s)
- Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Piotr Polakowski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
8
|
Shinde V, Hu N, Renuse S, Mahale A, Pandey A, Eberhart C, Stone D, Al-Swailem SA, Maktabi A, Chakravarti S. Mapping Keratoconus Molecular Substrates by Multiplexed High-Resolution Proteomics of Unpooled Corneas. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:583-597. [PMID: 31651220 DOI: 10.1089/omi.2019.0143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Keratoconus (KCN) is a leading cause for cornea grafting worldwide. Keratoconus is a multifactorial disease that causes progressive thinning of the cornea and whose etiology is poorly understood. Several studies have used proteomics on patient tear fluids to identify potential biomarkers. However, proteome of the cornea itself has not been investigated fully. We report here new findings from a case-control study using multiplexed mass spectrometry (MS) on individual (unpooled) corneas to gain deeper insights into proteins and biomarkers relevant to keratoconus. We employed a high-pressure approach to extract total protein from individual corneas from five cases and five controls, followed by trypsin digestion and tandem mass tag (TMT) labeling. The MS-derived data were searched using the Human NCBI RefSeq protein database v92, with peptides and proteins filtered at 1% false discovery rate. A total of 3132 proteins were detected, of which 627 were altered significantly (p ≤ 0.05) in keratoconus corneas. The increases were overwhelmingly in the mTOR/PI3/AKT signal-mediated regulations of cell survival and proliferation, nonsense-mediated decay of transcripts, and proteasomal pathways. The decreases were in several extracellular matrix proteins and in many members of the complement system. Importantly, this multiplexed proteomic study of keratoconus corneas identified, to our knowledge, the largest number of corneal proteins. The novel findings include changes in pathways that regulate transcript stability, proteasomal degradation, and the complement system in corneas with keratoconus. These observations offer new prospects toward future discovery of novel molecular targets for diagnostic and therapeutic innovations for patients with keratoconus.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Nan Hu
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Alka Mahale
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Charles Eberhart
- Pathology, Ophthalmology and Oncology Department, Johns Hopkins Hospital, Baltimore, Maryland
| | - Donald Stone
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland
| | - Samar A Al-Swailem
- Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Azza Maktabi
- Department of Pathology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Health, New York, New York.,Department of Pathology, NYU Langone Health, New York, New York
| |
Collapse
|
9
|
Loukovitis E, Sfakianakis K, Syrmakesi P, Tsotridou E, Orfanidou M, Bakaloudi DR, Stoila M, Kozei A, Koronis S, Zachariadis Z, Tranos P, Kozeis N, Balidis M, Gatzioufas Z, Fiska A, Anogeianakis G. Genetic Aspects of Keratoconus: A Literature Review Exploring Potential Genetic Contributions and Possible Genetic Relationships with Comorbidities. Ophthalmol Ther 2018; 7:263-292. [PMID: 30191404 PMCID: PMC6258591 DOI: 10.1007/s40123-018-0144-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Keratoconus (KC) is a complex, genetically heterogeneous, multifactorial degenerative disorder that is accompanied by corneal ectasia which usually progresses asymmetrically. With an incidence of approximately 1 per 2000 and 2 cases per 100,000 population presenting annually, KC follows an autosomal recessive or dominant pattern of inheritance and is, apparently, associated with genes that interact with environmental, genetic, and/or other factors. This is an important consideration in refractive surgery in the case of familial KC, given the association of KC with other genetic disorders and the imbalance between dizygotic twins. The present review attempts to identify the genetic loci contributing to the different KC clinical presentations and relate them to the common genetically determined comorbidities associated with KC. METHODS The PubMed, MEDLINE, Google Scholar, and GeneCards databases were screened for KC-related articles published in English between January 2006 and November 2017. Keyword combinations of "keratoconus," "risk factor(s)," "genetics," "genes," "genetic association(s)," and "cornea" were used. In total, 217 articles were retrieved and analyzed, with greater weight placed on the more recent literature. Further bibliographic research based on the 217 articles revealed another 124 relevant articles that were included in this review. Using the reviewed literature, an attempt was made to correlate genes and genetic risk factors with KC characteristics and genetically related comorbidities associated with KC based on genome-wide association studies, family-based linkage analysis, and candidate-gene approaches. RESULTS An association matrix between known KC-related genes and KC symptoms and/or clinical signs together with an association matrix between identified KC genes and genetically related KC comorbidities/syndromes were constructed. CONCLUSION Twenty-four genes were identified as potential contributors to KC and 49 KC-related comorbidities/syndromes were found. More than 85% of the known KC-related genes are involved in glaucoma, Down syndrome, connective tissue disorders, endothelial dystrophy, posterior polymorphous corneal dystrophy, and cataract.
Collapse
Affiliation(s)
| | - Konstantinos Sfakianakis
- Division of Surgical Anatomy, Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | - Panagiota Syrmakesi
- AHEPA University Hospital, Thessaloníki, Greece
- Ophthalmica Eye Institute, Thessaloníki, Greece
| | - Eleni Tsotridou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Myrsini Orfanidou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Dimitra Rafailia Bakaloudi
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Maria Stoila
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Athina Kozei
- Ophthalmica Eye Institute, Thessaloníki, Greece
- School of Pharmacology, University of Nicosia, Makedonitissis, Nicosia, Cyprus
| | | | | | | | | | | | - Zisis Gatzioufas
- Department of Ophthalmology, Cornea, Cataract and Refractive Surgery, University Hospital Basel, Basel, Switzerland
| | - Aliki Fiska
- Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | | |
Collapse
|
10
|
You J, Corley SM, Wen L, Hodge C, Höllhumer R, Madigan MC, Wilkins MR, Sutton G. RNA-Seq analysis and comparison of corneal epithelium in keratoconus and myopia patients. Sci Rep 2018; 8:389. [PMID: 29321650 PMCID: PMC5762683 DOI: 10.1038/s41598-017-18480-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Keratoconus is a common degenerative corneal disease that can lead to significant visual morbidity, and both genetic and environmental factors have been implicated in its pathogenesis. We compared the transcriptome of keratoconus and control epithelium using RNA-Seq. Epithelial tissues were obtained prior to surgery from keratoconus and myopia control patients, undergoing collagen cross-linking and photorefractive keratectomy, respectively. We identified major differences in keratoconus linked to cell-cell communication, cell signalling and cellular metabolism. The genes associated with the Hedgehog, Wnt and Notch1 signaling pathways were down-regulated in keratoconus. We also identified plasmolipin and Notch1 as being significantly reduced in keratoconus for both gene and protein expression (p < 0.05). Plasmolipin is a novel protein identified in human corneal epithelium, and has been demonstrated to have a key role in epithelial cell differentiation in other tissues. This study shows altered gene and protein expression of these three proteins in keratoconus, and further studies are clearly warranted to confirm the functional role of these proteins in the pathogenesis of keratoconus.
Collapse
Affiliation(s)
- Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia.
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia.
| | - Susan M Corley
- School of Biotechnology and Biomolecular Science, NSW System Biology Initiative, University of New South Wales, New South Wales, Australia
| | - Li Wen
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Chris Hodge
- Lions NSW Eye Bank, Sydney, Australia
- Vision Eye Institute, Chatswood, New South Wales, Australia
| | - Roland Höllhumer
- University of the Witwatersrand, Johannesburg, South Africa
- The Cornea Foundation, Johannesburg, South Africa
| | - Michele C Madigan
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Science, NSW System Biology Initiative, University of New South Wales, New South Wales, Australia
| | - Gerard Sutton
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, Australia
- Lions NSW Eye Bank, Sydney, Australia
- Vision Eye Institute, Chatswood, New South Wales, Australia
| |
Collapse
|
11
|
Shetty R, Vunnava KP, Dhamodaran K, Matalia H, Murali S, Jayadev C, Murugeswari P, Ghosh A, Das D. Characterization of Corneal Epithelial Cells in Keratoconus. Transl Vis Sci Technol 2018; 8:2. [PMID: 30627477 PMCID: PMC6322712 DOI: 10.1167/tvst.8.1.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose We studied the cellular characteristics of epithelial cells in the cone and extraconal periphery of corneas in keratoconus eyes. Methods This prospective observational study was conducted at Narayana Nethralaya Eye Institute. A total of 83 and 42 eyes with keratoconus and normal topography, respectively, were included in the study. Corneal epithelial cells were collected and analyzed for apoptosis, proliferation, epithelial-mesenchymal transition, and differentiation status using molecular and biochemical tools. Statistical analysis was performed using the Student's t-test. Results Corneal epithelial cells from the cone showed significantly higher expression of proapoptotic marker BAX (P < 0.005) compared to controls. Significantly elevated expression of cell cycle markers CYCLIN D1 (P < 0.005) and Ki67 (P < 0.005) were noted in the extraconal region compared to controls. Cells of the cone showed significantly higher ZO-1 (P < 0.005) and lower vimentin (P < 0.005) compared to controls. Significantly lower expression of the differentiation marker CK3/12 (P < 0.05) was observed in cones compared to controls. Conclusions Cones of keratoconic corneas show enhanced cell death, poor differentiation, proliferation and epithelial-mesenchymal transition. The cellular changes of the corneal epithelial cells in the cone and extraconal region differ significantly in a keratoconus corneas. Translational Relevance Characterization of patient-specific corneal epithelial cellular status in keratoconus has the potential to determine the optimal treatment and therapeutic outcomes paving the way towards personalized treatment in the future.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Krishna Poojita Vunnava
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Kamesh Dhamodaran
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,Current address: Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Subramani Murali
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-Retinal Services, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Ponnulagu Murugeswari
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Mas Tur V, MacGregor C, Jayaswal R, O'Brart D, Maycock N. A review of keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol 2017; 62:770-783. [PMID: 28688894 DOI: 10.1016/j.survophthal.2017.06.009] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
We discuss new approaches to the early detection of keratoconus and recent investigations regarding the nature of its pathophysiology. We review the current evidence for its complex genetics and evaluate the presently identified genes/loci and potential candidate gene/loci. In addition, we highlight current research methodologies that may be used to further elucidate the pathogenesis of keratoconus.
Collapse
Affiliation(s)
- Veronica Mas Tur
- Eye Department, Queen Alexandra Hospital, Portsmouth, Hants, United Kingdom
| | - Cheryl MacGregor
- Eye Department, Queen Alexandra Hospital, Portsmouth, Hants, United Kingdom
| | - Rakesh Jayaswal
- Eye Department, Queen Alexandra Hospital, Portsmouth, Hants, United Kingdom
| | - David O'Brart
- Department of Ophthalmology, St Thomas' Hospital, London, United Kingdom
| | - Nicholas Maycock
- Department of Ophthalmology, St Thomas' Hospital, London, United Kingdom.
| |
Collapse
|
13
|
Joseph R, Srivastava OP, Pfister RR. Modeling Keratoconus Using Induced Pluripotent Stem Cells. Invest Ophthalmol Vis Sci 2017; 57:3685-97. [PMID: 27403997 PMCID: PMC5996875 DOI: 10.1167/iovs.16-19105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To model keratoconus (KC) using induced pluripotent stem cells (iPSC) generated from fibroblasts of both KC and normal human corneal stroma by a viral method. METHODS Both normal and KC corneal fibroblasts from four human donors were reprogramed directly by delivering reprogramming factors in a single virus using 2A "self-cleaving" peptides, using a single polycistronic lentiviral vector coexpressing four transcription factors (Oct 4, Sox2, Klf4, and Myc) to yield iPSC. These iPS cells were characterized by immunofluorescence detection using of stem cell markers (SSEA4, Oct4, and Sox2). The mRNA sequencing was performed and the datasets were analyzed using ingenuity pathways analysis (IPA) software. RESULTS The generated stem cell-like clones expressed the pluripotency markers, SSEA4, Oct4, Sox2, Tra-1-60, and also expressed pax6. Our transcriptome analysis showed 4300 genes, which had 2-fold change and 870 genes with a q-value of <0.05 in keratoconus iPSC compared to normal iPSC. One of the genes that showed difference in KC iPSC was FGFR2 (down-regulated by 2.4 fold), an upstream target of Pi3-Kinase pathway, was further validated in keratoconus corneal sections and also KC iPSC-derived keratocytes (down regulated by 2.0-fold). Both normal and KC-derived keratocytes expressed keratocan, signature marker for keratocytes. KC iPSC-derived keratocytes showed adverse growth and proliferation and was further confirmed by using Ly2924002, a PI3k inhibitor, which severely affected the growth and differentiation in normal iPSC. CONCLUSIONS Based on our result, we propose a model for KC in which inhibition FGFR2-Pi3-Kinase pathway affects the AKT phosphorylation, and thus affecting the keratocytes survival signals. This inhibition of the survival signals could be a potential mechanism for the KC-specific decreased cell survival and apoptosis of keratocytes.
Collapse
Affiliation(s)
- Roy Joseph
- Department of Optometry and Vision Science University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P Srivastava
- Department of Optometry and Vision Science University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Roswell R Pfister
- Eye Research Laboratory, Eye Research Foundation, Birmingham, Alabama, United States
| |
Collapse
|
14
|
Ghosh A, Zhou L, Ghosh A, Shetty R, Beuerman R. Proteomic and gene expression patterns of keratoconus. Indian J Ophthalmol 2014; 61:389-91. [PMID: 23925320 PMCID: PMC3775070 DOI: 10.4103/0301-4738.116056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA) and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.
Collapse
Affiliation(s)
- Arkasubhra Ghosh
- Genes, Repair and Regeneration at Ophthalmic Workstation (GROW Research Laboratory), Narayana Nethralaya, Bangalore, Karnataka, India
| | | | | | | | | |
Collapse
|
15
|
Gene expression profile of compressed primary human cementoblasts before and after IL-1β stimulation. Clin Oral Investig 2014; 18:1925-39. [DOI: 10.1007/s00784-013-1167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
|
16
|
Increased expression of secreted frizzled-related protein-1 and microtubule-associated protein light chain 3 in keratoconus. Cornea 2013; 32:702-7. [PMID: 23449484 DOI: 10.1097/ico.0b013e318282987a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To study the expression of secreted frizzled-related protein-1 (SFRP-1) and microtubule-associated protein light chain 3 (LC3), an autophagy marker, in keratoconus. METHODS Under an institutional review board-approved protocol, de-identified and/or surgically discarded normal donor (n = 10) and keratoconus corneas (n = 10) were obtained. The corneal samples were fixed in formalin and embedded in paraffin. Immunohistochemical staining using SFRP-1 and LC3 antibodies was performed. RESULTS The majority of expression of SFRP-1 was seen in the epithelium; however, in 3 tissues that showed high expression, staining was also present in the stroma and endothelium. Like SFRP-1, the LC3 expression in keratoconus tissues occurred at 3 different levels: low, medium, and high. Collectively these data suggest that there are differences in the expression levels of SFRP-1 and LC3 in keratoconus tissue compared with the normal tissue. Low expressivity of SFRP-1 seemed to correspond to low expressivity of LC3, whereas medium to high expressivity of SFRP-1 corresponded to medium to high expressivity of LC3. CONCLUSIONS Increased expression of SFRP-1 and LC3 was observed in keratoconus corneas. Keratocyte autophagy seen with keratoconus may play a role in the pathogenesis of keratoconus.
Collapse
|
17
|
You J, Wen L, Roufas A, Madigan MC, Sutton G. Expression of SFRP Family Proteins in Human Keratoconus Corneas. PLoS One 2013; 8:e66770. [PMID: 23825088 PMCID: PMC3688946 DOI: 10.1371/journal.pone.0066770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/10/2013] [Indexed: 01/08/2023] Open
Abstract
We investigated the expression of the secreted frizzled-related proteins (SFRPs) in keratoconus (KC) and control corneas. KC buttons (∼8 mm diameter) (n = 15) and whole control corneas (n = 7) were fixed in 10% formalin or 2% paraformaldehyde and subsequently paraffin embedded and sectioned. Sections for histopathology were stained with hematoxylin and eosin, or Periodic Acid Schiff's reagent. A series of sections was also immunolabelled with SFRP 1 to 5 antibodies, visualised using immunofluorescence, and examined with a Zeiss LSM700 scanning laser confocal microscope. Semi-quantitative grading was used to compare SFRP immunostaining in KC and control corneas. Overall, KC corneas showed increased immunostaining for SFRP1 to 5, compared to controls. Corneal epithelium in all KC corneas displayed heterogeneous moderate to strong immunoreactivity for SFRP1 to 4, particularly in the basal epithelium adjacent to cone area. SFRP3 and 5 were localised to epithelial cell membranes in KC and control corneas, with increased SFRP3 cytoplasmic expression observed in KC. Strong stromal expression of SFRP5, including extracellular matrix, was seen in both KC and control corneas. In control corneas we observed differential expression of SFRP family proteins in the limbus compared to more central cornea. Taken together, our results support a role for SFRPs in maintaining a healthy cornea and in the pathogenesis of epithelial and anterior stromal disruption observed in KC.
Collapse
Affiliation(s)
- Jingjing You
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Li Wen
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Athena Roufas
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Michele C. Madigan
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
- School of Optometry & Vision Sciences, University of New South Wales, Kensington, New South Wales, Australia
- * E-mail:
| | - Gerard Sutton
- Save Sight Institute & Discipline of Clinical Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
- Auckland University, Auckland, New Zealand
- Vision Eye Institute, Chatswood, New South Wales, Australia
| |
Collapse
|
18
|
Dehkordi FA, Rashki A, Bagheri N, Chaleshtori MH, Memarzadeh E, Salehi A, Ghatreh H, Zandi F, Yazdanpanahi N, Tabatabaiefar MA, Chaleshtori MH. Study of VSX1 mutations in patients with keratoconus in southwest Iran using PCR-single-strand conformation polymorphism/heteroduplex analysis and sequencing method. Acta Cytol 2013; 57:646-51. [PMID: 24107477 DOI: 10.1159/000353297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Keratoconus (KC) is an eye disorder in which the cornea is swollen, thinned and deformed. Despite extensive studies, the pathophysiological processes and genetic etiology of KC are unknown. The disease incidence is approximately 1 in 2,000, and it is the most common cause of corneal transplantation in the USA. Many genes are involved in the disease, but evidence suggests a major role for VSX1 in the etiology of KC. This study aimed to determine the frequency of mutations in exons 2, 3 and 4 of the VSX1 gene in Chaharmahal va Bakhtiari province in the southwest of Iran. STUDY DESIGN In this experimental study, mutations in 3 exons, namely exons 2, 3 and 4, of VSX1 were investigated in 50 patients with KC and 50 healthy control subjects. DNA was extracted using a standard phenol-chloroform method. PCR-single-strand conformational polymorphism/heteroduplex analysis was performed, followed by DNA sequencing to confirm the identified motility shifts. RESULTS H244R mutations were found in 1 patient and also in 1 healthy control subject. Furthermore, 12 polymorphisms were identified in patients with KC and 7 in healthy control subjects [rs6138482 and c.546A>G (rs12480307)]. CONCLUSION Our investigation showed that KC-related VSX1 mutations were found in a very small proportion of the studied patients from Iran. Further investigations on other genes are needed to clarify their roles in KC pathogenesis.
Collapse
|
19
|
|
20
|
You J, Hodge C, Wen L, McAvoy JW, Madigan MC, Sutton G. Using soybean trypsin inhibitor as an external loading control for Western blot analysis of tear proteins: application to corneal disease. Exp Eye Res 2012; 99:55-62. [PMID: 22498032 DOI: 10.1016/j.exer.2012.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/06/2012] [Accepted: 03/24/2012] [Indexed: 01/26/2023]
Affiliation(s)
- Jingjing You
- Save Sight Institute, Discipline of Ophthalmology, University of Sydney, GPO Box 4337, Sydney NSW 2001, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Zhou Y, Liu Q, Zhou T, Lin Z, Zong R, Liu Z, Sun F, Shao Y, Liu X, Ma JX, Liu Z. Modulation of the canonical Wnt pathway by Benzalkonium Chloride in corneal epithelium. Exp Eye Res 2011; 93:355-62. [DOI: 10.1016/j.exer.2011.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 11/29/2022]
|
22
|
Mao W, Wordinger RJ, Clark AF. Focus on molecules: SFRP1. Exp Eye Res 2010; 91:552-3. [PMID: 20478307 DOI: 10.1016/j.exer.2010.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/08/2010] [Accepted: 05/10/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Weiming Mao
- Department of Cell Biology & Anatomy, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | | | | |
Collapse
|
23
|
Roads untraveled. Clin Exp Ophthalmol 2010; 38:2-3. [DOI: 10.1111/j.1442-9071.2009.02223.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|