1
|
Matamoros JA, Rubio-Casado S, Fernández-Albarral JA, Martínez-López MA, Salobrar-García E, Marco EM, Paleo-García V, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sánchez-Puebla L, Ramírez JM, Salazar JJ, López-Gallardo M, Ramírez AI. Neuroprotective Effect of the Combination of Citicoline and CoQ10 in a Mouse Model of Ocular Hypertension. Antioxidants (Basel) 2024; 14:4. [PMID: 39857338 PMCID: PMC11761561 DOI: 10.3390/antiox14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death. This study investigated the neuroprotective effects on RGCs and visual pathway neurons of a compound consisting of citicoline and coenzyme Q10 (CoQ10) in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Four groups of mice were used: vehicle group (n = 6), citicoline + CoQ10 group (n = 6), laser-vehicle group (n = 6), and laser-citicoline + CoQ10 group (n = 6). The citicoline + CoQ10 was administered orally once a day starting 15 days before laser treatment, continuing until sacrifice (7 days post-laser). Retinas, the dorsolateral geniculate nucleus (dLGN), the superior colliculus (SC), and the visual cortex (V1) were analyzed. The citicoline + CoQ10 compound used in the laser-citicoline + CoQ10 group demonstrated (1) an ocular hypotensive effect only at 24 h post-laser; (2) prevention of Brn3a+ RGC death in OHT eyes; and (3) no changes in NeuN+ neurons in the dLGN. This study demonstrates that the oral administration of the citicoline + CoQ10 combination may exert a neuroprotective effect against RGC death in an established rodent model of OHT.
Collapse
Affiliation(s)
- José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Rubio-Casado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Miguel A. Martínez-López
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva M. Marco
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Genetics, Microbiology and Physiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Victor Paleo-García
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Schmelter C, Fomo KN, Brueck A, Perumal N, Markowitsch SD, Govind G, Speck T, Pfeiffer N, Grus FH. Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A). Biomolecules 2023; 13:1161. [PMID: 37509196 PMCID: PMC10377047 DOI: 10.3390/biom13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Alina Brueck
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| |
Collapse
|
4
|
Tonner H, Hunn S, Auler N, Schmelter C, Pfeiffer N, Grus FH. Dynamin-like Protein 1 (DNML1) as a Molecular Target for Antibody-Based Immunotherapy to Treat Glaucoma. Int J Mol Sci 2022; 23:ijms232113618. [PMID: 36362420 PMCID: PMC9654827 DOI: 10.3390/ijms232113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Slow and progressive loss of retinal ganglion cells (RGCs) is the main characteristic of glaucoma, the second leading cause of blindness worldwide. Previous studies have shown that impaired mitochondrial dynamics could facilitate retinal neurodegeneration. Mitochondrial dynamics are regulated directly (fission) or more indirectly (fusion) by dynamin-like protein 1 (DNML1). Therefore, DNM1L might be a promising target for an antibody-based approach to treat glaucoma. The consequences of targeting endogenous DNM1L by antibodies in a glaucoma animal model have not been investigated yet. Here, we show that the intravitreal application of an anti-DNM1L antibody showed protective effects regarding the survival of RGCs and their axons in the retinal nerve fiber layer (RNFL). Antibody treatment also improved retinal functionality, as observed by electroretinography (Ganzfeld ERG). Western blot analysis revealed altered DNM1L phosphorylation and altered expression of proteins related to apoptosis suggesting a decreased apoptosis rate. Mass spectrometry analysis revealed 28 up-regulated and 21 down-regulated proteins (p < 0.05) in both experimental groups. Protein pathway analysis showed that many proteins interacted directly with the target protein DNM1L and could be classified into three main protein clusters: Vesicle traffic-associated (NSF, SNCA, ARF1), mitochondrion-associated (HSP9A, SLC25A5/ANT2, GLUD1) and cytoskeleton-associated (MAP1A) signaling pathway. Our results demonstrate that DNM1L is a promising target for an antibody-based approach to glaucoma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Franz H. Grus
- Correspondence: ; Tel.: +49-6131-17-3328; Fax: +49-6131-4970563
| |
Collapse
|
5
|
A Monoclonal Anti-HMGB1 Antibody Attenuates Neurodegeneration in an Experimental Animal Model of Glaucoma. Int J Mol Sci 2022; 23:ijms23084107. [PMID: 35456925 PMCID: PMC9028318 DOI: 10.3390/ijms23084107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a crucial process for the loss of retinal ganglion cells (RGC), a major characteristic of glaucoma. High expression of high-mobility group box protein 1 (HMGB1) plays a detrimental role in inflammatory processes and is elevated in the retinas of glaucoma patients. Therefore, this study aimed to investigate the effects of the intravitreal injection of an anti-HMGB1 monoclonal antibody (anti-HMGB1 Ab) in an experimental animal model of glaucoma. Two groups of Spraque Dawley rats received episcleral vein occlusion to chronically elevate intraocular pressure (IOP): (1) the IgG group, intravitreal injection of an unspecific IgG as a control, n = 5, and (2) the HMGB1 group, intravitreal injection of an anti-HMGB1 Ab, n = 6. IOP, retinal nerve fiber layer thickness (RNFLT), and the retinal flash response were monitored longitudinally. Post-mortem examinations included immunohistochemistry, microarray, and mass spectrometric analysis. RNFLT was significantly increased in the HMGB1 group compared with the IgG group (p < 0.001). RGC density showed improved neuronal cell survival in the retina in HMGB1 compared with the IgG group (p < 0.01). Mass spectrometric proteomic analysis of retinal tissue showed an increased abundance of RNA metabolism-associated heterogeneous nuclear ribonucleoproteins (hnRNPs), such as hnRNP U, D, and H2, in animals injected with the anti-HMGB1 Ab, indicating that the application of the antibody may cause increased gene expression. Microarray analysis showed a significantly decreased expression of C-X-C motif chemokine ligand 8 (CXCL8, p < 0.05) and connective tissue growth factor (CTGF, p < 0.01) in the HMGB1 group. Thus, these data suggest that intravitreal injection of anti-HMGB1 Ab reduced HMGB1-dependent inflammatory signaling and mediated RGC neuroprotection.
Collapse
|
6
|
Progression patterns of normal-tension glaucoma groups classified by hierarchical cluster analysis. Eye (Lond) 2020; 35:536-543. [PMID: 32367001 DOI: 10.1038/s41433-020-0893-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To investigate differences in progression patterns of normal-tension glaucoma (NTG) patients in three clusters classified by hierarchical cluster analysis (HCA). MATERIALS AND METHODS In a retrospective study, 200 eyes of NTG patients classified by HCA in 2015 who were followed up to the current date were evaluated. Peripapillary retinal nerve fibre layer (RNFL) thicknesses were measured by Cirrus HD-OCT and progression rate was calculated by trend analysis (Guided Progression Analysis [GPA]). VF progression rate was evaluated by linear regression analysis of mean deviation (MD). Progression patterns of three clusters were compared by histograms. RESULTS In total, 153 eyes of 153 patients were followed up. Mean observation period was 5 years. RNFL reduction rate was -0.83 μm/year in cluster 1, which showed early glaucomatous damage in previous reports; -0.45 μm/year in cluster 2, which showed moderate glaucomatous damage; and -0.36 μm/year in cluster 3, which showed young and myopic glaucomatous damage. The progression pattern of cluster 3 showed a double-peak distribution; RNFL reduction rate was 0.11 μm/year in the non-progressive group and -1.07 μm/year in the progressive group. CONCLUSION The progression patterns were different among three NTG groups that were divided by HCA. In particular, the group of young and myopic eyes showed a mixture of two different patterns.
Collapse
|
7
|
Beutgen VM, Schmelter C, Pfeiffer N, Grus FH. Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clin Transl Immunology 2020; 9:e01101. [PMID: 32140226 PMCID: PMC7049230 DOI: 10.1002/cti2.1101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Primary open-angle glaucoma (POAG) is a neurodegenerative disorder leading to a gradual vision loss caused by progressive damage to the optic nerve. Immunological processes are proposed to be involved in POAG pathogenesis. Altered serological autoantibody levels have been frequently reported, but complete analyses of the natural autoantibodies with respect to disease-related alterations are scarce. Here, we provide an explorative analysis of pathways and biological processes that may involve naturally immunogenic proteins and highlight POAG-specific alterations. METHODS Mass spectrometry-based antibody-mediated identification of autoantigens (MS-AMIDA) was carried out in healthy and glaucomatous trabecular meshwork (TM) cell lines, using antibody pools purified from serum samples of 30 POAG patients and 30 non-glaucomatous subjects. Selected antigens were validated by protein microarray (n = 120). Bioinformatic assessment of identified autoantigens, including Gene Ontology (GO) enrichment analysis and protein-protein interaction networks, was applied. RESULTS Overall, we identified 106 potential autoantigens [false discovery rate (FDR) < 0.01], from which we considered 66 as physiological targets of natural autoantibodies. Twenty-one autoantigens appeared to be related to POAG. Bioinformatic analysis revealed that the platelet-derived growth factor receptor beta (PDGFRB) pathway involved in TM fibrosis was particularly rich in POAG-related antigens. Antibodies to threonine-tRNA ligase (TARS), component 1 Q subcomponent-binding protein (C1QBP) and paraneoplastic antigen Ma2 (PNMA2) showed significantly (P < 0.05) higher levels in POAG patients as validated by protein microarray. CONCLUSION This study provides new insights into autoimmunity in health and glaucoma. Bioinformatic analysis of POAG-related autoantigens showed a strong association with the PDGFRB pathway and also increased levels of PNMA2, TARS, and C1QBP autoantibodies in the serum of POAG patients as potential glaucoma biomarkers.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Carsten Schmelter
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Norbert Pfeiffer
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| | - Franz H Grus
- Experimental and Translational OphthalmologyDepartment of OphthalmologyUniversity Medical Center of the Johannes Gutenberg ‐ UniversityMainzGermany
| |
Collapse
|
8
|
Evaluation of Iron Deficiency Anemia Frequency as a Risk Factor in Glaucoma. Anemia 2018; 2018:1456323. [PMID: 30155291 PMCID: PMC6093034 DOI: 10.1155/2018/1456323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Iron deficiency anemia is an important public health problem. Also it is considered to be a risk factor for many diseases. The study demonstrates the iron deficiency anemia frequency in glaucoma patients and compares with the normal subjects. We aimed to determine the iron deficiency anemia frequency in glaucoma patients. Methods Prospective, controlled study in a single university hospital setting. A total of 130 normal subjects (Group 1) and 131 glaucoma patients (Group 2) were included. The erythrocytes parameters, hemoglobin, red blood cell, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, and red blood cell distribution width, and iron status indicators, Fe (iron), total iron binding capacity, and ferritin of the cases, in normal subjects and glaucoma patients were compared. Results There was no statistically significant difference for the erythrocyte parameters between the groups (p≥0.05). The number of the patients with iron deficiency anemia in both groups was similar. No statistically significant difference was found in the comparison of erythrocyte parameters and iron status indicators values according to the number of antiglaucomatous agents and visual field changes according to the presence of anemia in Group 2 (p≥0.05). A statistically significant difference was found only in MCH when the erythrocyte parameters and iron status indicators values of the cases in glaucoma patients were compared with the glaucoma duration (p<0.05). Conclusion The iron deficiency anemia frequency was like the normal population in glaucoma patients.
Collapse
|
9
|
Schmelter C, Perumal N, Funke S, Bell K, Pfeiffer N, Grus FH. Peptides of the variable IgG domain as potential biomarker candidates in primary open-angle glaucoma (POAG). Hum Mol Genet 2018; 26:4451-4464. [PMID: 29036575 DOI: 10.1093/hmg/ddx332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
Autoantibody profiling has gained increasing interest in the research field of glaucoma promising the detection of highly specific and sensitive marker candidates for future diagnostic purposes. Recent studies demonstrated that immune responses are characterized by the expression of congruent or similar complementarity determining regions (CDR) in different individuals and could be used as molecular targets in biomarker discovery. Main objective of this study was to characterize glaucoma-specific peptides from the variable region of sera-derived immunoglobulins using liquid chromatography--mass spectrometry (LC-MS)-based quantitative proteomics. IgG was purified from sera of 13 primary open-angle glaucoma patients (POAG) and 15 controls (CTRL) and subsequently digested into Fab and Fc by papain. Fab was further purified, tryptic digested and measured by LC-MS/MS. Discovery proteomics revealed in total 75 peptides of the variable IgG domain showing significant glaucoma-related level changes (P < 0.05; log2 fold change ≥ 0.5): 6 peptides were high abundant in POAG sera, whereas 69 peptides were low abundant in comparison to CTRL group. Via accurate inclusion mass screening strategy 28 IgG V domain peptides were further validated showing significantly decreased expression levels in POAG sera. Amongst others 5 CDR1, 2 CDR2 and 1 CDR3 sequences. In addition, we observed significant shifts in the variable heavy chain family distribution and disturbed κ/λ ratios in POAG patients in contrast to CTRL. These findings strongly indicate that glaucoma is accompanied by systemic effects on antibody production and B cell maturation possibly offering new prospects for future diagnostic or therapy purposes.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Funke
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Katharina Bell
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Bell K, Holz A, Ludwig K, Pfeiffer N, Grus FH. Elevated Regulatory T Cell Levels in Glaucoma Patients in Comparison to Healthy Controls. Curr Eye Res 2016; 42:562-567. [PMID: 27723363 DOI: 10.1080/02713683.2016.1205629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many studies analyzing neurodegenerative diseases demonstrate altered frequencies of regulatory T cells (Tregs). Till date, there is hardly any information concerning Tregs in glaucoma. To gather first results concerning Treg levels in glaucoma patients, we aimed to investigate whether the number of CD4(+)CD25(+)T cells vary in the patients suffering from primary open-angle glaucoma (POAG) and healthy controls. METHODS Heparinized blood samples were collected from 16 healthy individuals and 16 POAG patients. The groups were age and gender matched. A density gradient centrifugation over Ficoll-Paque was performed to isolate the peripheral blood mononuclear cells. The resulting cells were stained with fluorescein isithiocyanate (FITC)-conjugated anti-CD4 and phycoerythrin (PE)-conjugated anti-CD25 in single and double staining procedures. Fluorescence-activated cell sorting (FACS) analyses were performed. A total of 200,000 lymphocytes were gated per measurement based on forward/side scatter. The measurements were performed in triplicate for each sample. Student's t-test was performed. The level of significance was set at p < 0.05. Results were expressed as mean value ± standard error of the mean. RESULTS We detected a mean percentage of 8.45% CD4(+)CD25(+) T cells of all CD4 (+) T-Lymphocytes in glaucoma patients (standard deviation ± 2.3%). In contrast, a significant smaller percentage of CD4(+)CD25(+) T cells of all CD4 (+) T-Lymphocytes was detected in healthy controls (5.79%; standard deviation ± 1.61%) (p < 0.01). CONCLUSION This study demonstrates increased numbers of CD4(+)CD25(+) T cells in the patients suffering from the neurodegenerative disease glaucoma. Tregs inherit suppressive functions that could be attenuated in glaucoma patients. These results underline the hypothesis of an immunologic involvement in glaucoma via the cellular immunity.
Collapse
Affiliation(s)
- Katharina Bell
- a Experimental Ophthalmology , Department of Ophthalmology of the Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Anna Holz
- a Experimental Ophthalmology , Department of Ophthalmology of the Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Kirstin Ludwig
- a Experimental Ophthalmology , Department of Ophthalmology of the Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , Department of Ophthalmology of the Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , Department of Ophthalmology of the Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| |
Collapse
|
11
|
Bell K, Wilding C, Funke S, Perumal N, Beck S, Wolters D, Holz-Müller J, Pfeiffer N, Grus FH. Neuroprotective effects of antibodies on retinal ganglion cells in an adolescent retina organ culture. J Neurochem 2016; 139:256-269. [PMID: 27507598 DOI: 10.1111/jnc.13765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/04/2016] [Accepted: 07/29/2016] [Indexed: 11/28/2022]
Abstract
Glaucoma, a neurodegenerative disease, is characterized by a progressive loss of retinal ganglion cells (rgc). Up- and down-regulated autoantibody immunoreactivities in glaucoma patients have been demonstrated. Previous studies showed protective effects of down-regulated antibodies [gamma (γ)-synuclein and glial fibrillary acidic protein [GFAP]) on neuroretinal cells. The aim of this study was to test these protective antibody effects on rgc in an organ culture model and to get a better understanding of cell-cell interactions of the retina in the context of the protective effect. We used an adolescent retinal organ culture (pig) with an incubation time of up to 4 days. Retinal explants were incubated with different antibodies for 24 h (anti-GFAP, anti-γ-synuclein and anti-myoglobin antibody as a control). Brn3a and TUNEL staining were performed. We also conducted glutamine synthetase staining and quantification of the retinal explants. Mass spectrometry analyses were performed as well as protein analyses via microarray. We detected a continuous decrease of rgc/mm in the retinal explants throughout the 4 days of incubation with increased TUNEL rgc staining. Immunohistochemical analyses showed a protective effect of anti-γ-synuclein (increased rgc/mm of 41%) and anti-GFAP antibodies (increased rgc/mm of 37%). Mass spectrometric, microarray and immunohistochemical analyses demonstrated Müller cell involvement and decreased endoplasmic reticulum stress response in the antibody-treated retinae. We could detect that the tested antibodies have a protective effect on rgc which seems to be the result of reduced stress levels in the retina as well as a shift of glutamine synthetase localization in the endfeet of the Müller cells towards the inner retinal layer. Loss of retinal ganglion cells (rgc) in glaucoma leads to blindness. Several antibodies are down-regulated in glaucoma patients. Our aim was to test if these antibodies have a protective effect of rgc in a retinal organ culture. This could be shown with an increase of rgc numbers. This effect results through reduced stress levels and the shift of glutamine synthetase localization.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Corina Wilding
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Natarajan Perumal
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dominik Wolters
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jana Holz-Müller
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Khanal S, Davey PG, Racette L, Thapa M. Comparison of retinal nerve fiber layer and macular thickness for discriminating primary open-angle glaucoma and normal-tension glaucoma using optical coherence tomography. Clin Exp Optom 2016; 99:373-81. [PMID: 26996257 DOI: 10.1111/cxo.12366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/11/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the discrimination capabilities of macular and peripapillary retinal nerve fiber layer (pRNFL) thickness parameters as measured using spectral domain optical coherence tomography (SD-OCT) between primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG). METHODS A total of 90 subjects were enrolled: 30 healthy subjects, 30 subjects with POAG and 30 subjects with NTG, consecutively. Retinal nerve fiber layer thickness, macular thickness and volume measurements were obtained with circular and radial SD-OCT scans. All parameters were compared between groups using an analysis of variance test. Areas under receiver-operating characteristic (AROC) curves with sensitivities at specificities greater than or equal to 90 per cent were generated to compare discrimination capabilities of various parameters between POAG and NTG. RESULTS Macular thickness and volume measurements were the highest in normal subjects, followed by NTG and POAG (p < 0.05). Average retinal nerve fiber layer thickness had perfect discrimination for normal-POAG (AROC: 1.000; sensitivity: 100 per cent) and near perfect discrimination for normal-NTG (AROC: 0.979; sensitivity: 93 per cent) as well as NTG-POAG pairs (AROC: 0.900; sensitivity: 60 per cent). Inferior outer macular thickness (IOMT) and total volume were the best macular thickness and volume parameters having similar AROCs and sensitivities between normal and POAG (IOMT, AROC: 0.987; sensitivity: 92 per cent and total volume, AROC: 0.997; sensitivity: 97 per cent), normal and NTG (IOMT, AROC: 0.862, sensitivity: 47 per cent and total volume, AROC: 0.898, sensitivity: 67 per cent) and also between NTG and POAG (IOMT, AROC: 0.910, sensitivity: 53 per cent and total volume, AROC: 0.922, sensitivity: 77 per cent). In each comparison group, there was no statistically significant difference in AROCs between average retinal nerve fiber layer and inferior outer macular thickness, as well as total volume. CONCLUSIONS The macular parameters offer comparable performance to pRNFL parameters for the discrimination of NTG and POAG. Average retinal nerve fiber layer thickness, total macular volume and inferior outer macular thickness were the best SD-OCT parameters with superior discriminating capabilities.
Collapse
Affiliation(s)
- Safal Khanal
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. , .,College of Optometry, Western University of Health Sciences, Pomona, California, USA. ,
| | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, Pomona, California, USA
| | - Lyne Racette
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Madhu Thapa
- BP Koirala Lions Center for Ophthalmic Studies, Institute of Medicine, Kathmandu, Nepal
| |
Collapse
|
13
|
GFAP antibodies show protective effect on oxidatively stressed neuroretinal cells via interaction with ERP57. J Pharmacol Sci 2015; 127:298-304. [DOI: 10.1016/j.jphs.2014.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 12/28/2014] [Indexed: 01/07/2023] Open
|
14
|
Bae HW, Lee N, Lee HS, Hong S, Seong GJ, Kim CY. Systemic hypertension as a risk factor for open-angle glaucoma: a meta-analysis of population-based studies. PLoS One 2014; 9:e108226. [PMID: 25254373 PMCID: PMC4177901 DOI: 10.1371/journal.pone.0108226] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/26/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND/AIMS Systemic hypertension is thought to increase the risk for developing open-angle glaucoma (OAG) through several mechanisms. However, previous epidemiological studies have shown conflicting results regarding this potential association. We systematically evaluated this issue by conducting a meta-analysis of population-based studies. METHODS A comprehensive search for articles published before 31 March 2014 was performed using PubMed, Embase, and reference lists. The pooled odds ratio (OR) was calculated using the fixed- and random-effects models, and meta-regression was performed according to age. Subgroup analyses were also conducted, and publication bias was assessed using a funnel plot and Egger's regression test. RESULTS This meta-analysis included 16 studies involving 60,084 individuals, with substantial homogeneity among the studies. The pooled OR for OAG was 1.22 (95% confidence interval, CI: 1.09-1.36) using the fixed-effects model and 1.22 (95% CI: 1.08-1.37) using the random-effects model in all included studies. For subgroup analyses, the pooled OR for high-tension glaucoma (HTG) was higher than that for normal-tension glaucoma (NTG) (OR=1.92 and 0.94, respectively). No significant difference was detected between Asian and Western populations, and no publication bias was detected in either analysis. CONCLUSIONS Systemic hypertension increases the risk for developing OAG, especially in those with HTG.
Collapse
Affiliation(s)
- Hyoung Won Bae
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Naeun Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
- Department of Ophthalmology, Hallym Hospital, Incheon, Korea
| | - Hye Sun Lee
- Department of Research Affairs, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Samin Hong
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Gong Je Seong
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Yun Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
15
|
Wilding C, Bell K, Beck S, Funke S, Pfeiffer N, Grus FH. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway. PLoS One 2014; 9:e90737. [PMID: 24595072 PMCID: PMC3940944 DOI: 10.1371/journal.pone.0090737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/05/2014] [Indexed: 01/11/2023] Open
Abstract
The family of synuclein proteins (α, β and γ) are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody) but also down-regulations (e.g. γ-synuclein antibody) of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5) as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15%) and decreased reactive oxygen species levels (up to −12%) of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated) and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated). These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical stainings. These findings let us assume a novel physiological function of γ-synuclein antibodies and give insights in the role of autoantibodies in glaucoma. We hypothesize that the down-regulation of autoantibodies found in glaucoma patients lead to a loss of protective autoimmunity.
Collapse
Affiliation(s)
- Corina Wilding
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
16
|
Bell K, Funke S, Pfeiffer N, Grus FH. Serum and antibodies of glaucoma patients lead to changes in the proteome, especially cell regulatory proteins, in retinal cells. PLoS One 2012; 7:e46910. [PMID: 23071659 PMCID: PMC3469602 DOI: 10.1371/journal.pone.0046910] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022] Open
Abstract
Purpose Previous studies show significantly specifically changed autoantibody reactions against retinal antigens in the serum of glaucoma and ocular hypertension (OHT) patients in comparison to healthy people. As pathogenesis of glaucoma still is unknown the aim of this study was to analyze if the serum and antibodies of glaucoma patients interact with neuroretinal cells. Methods R28 cells were incubated with serum of patients suffering from primary open angle glaucoma (POAG), normal tension glaucoma (NTG) or OHT, POAG serum after antibody removal and serum from healthy people for 48 h under a normal or an elevated pressure of 15000 Pa (112 mmHg). RGC5 cells were additionally incubated with POAG antibodies under a normal pressure. Protein profiles of the R28 cells were measured with Seldi-Tof-MS, protein identification was performed with Maldi-TofTof-MS. Protein analysis of the RGC5 cells was performed with ESI-Orbitrap MS. Statistical analysis including multivariate statistics, variance component analysis as well as calculating Mahalanobis distances was performed. Results Highly significant changes of the complex protein profiles after incubation with glaucoma and OHT serum in comparison to healthy serum were detected, showing specific changes in the cells (e.g. Protein at 9192 Da (p<0.001)). The variance component analysis showed an effect of the serum of 59% on the cells. The pressure had an effect of 11% on the cells. Antibody removal led to significantly changed cell reactions (p<0.03). Furthermore, the incubation with POAG serum and its antibodies led to pro-apoptotic changes of proteins in the cells. Conclusions These studies show that the serum and the antibodies of glaucoma patients significantly change protein expressions involved in cell regulatory processes in neuroretinal cells. These could lead to a higher vulnerability of retinal cells towards stress factors such as an elevated IOP and eventually could lead to an increased apoptosis of the cells as in glaucoma.
Collapse
Affiliation(s)
- Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Franz H. Grus
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
17
|
Firat PG, Doganay S, Demirel EE, Colak C. Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT. Graefes Arch Clin Exp Ophthalmol 2012; 251:831-8. [DOI: 10.1007/s00417-012-2114-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/30/2012] [Accepted: 07/07/2012] [Indexed: 12/19/2022] Open
|
18
|
Abstract
Normal tension glaucoma (NTG) is considered a primary optic neuropathy within the glaucoma family. Whereas NTG shares many of the same pathologic characteristics as primary open angle glaucoma (POAG), there are several differences such as pattern of visual field defect and incidence of disc hemorrhaging. The most notable difference is that NTG does not manifest a recordable intraocular pressure (IOP) greater than 21 mmHg. Debate has existed as to whether NTG is a pressure-sensitive neuropathy and if pressure reduction affects the course of the disease. Likely, there are aspects in the pathophysiology of NTG that are both pressure sensitive and insensitive, and the etiology of NTG has never been adequately explained.
Collapse
Affiliation(s)
- Joseph Sowka
- Nova Southeastern University, College of Optometry, 3200 South University Drive, Ft. Lauderdale, FL 33328, USA.
| |
Collapse
|