1
|
Zhu Y, Zheng B, Zhang Y, Li M, Jiang Y, Zhou J, Zhang Y, Kang N, Wu M, Yan Y, Xing J, Zhou J. Ectopic endometrial stromal cell-derived extracellular vesicles encapsulating microRNA-25-3p induce endometrial collagen I deposition impairing decidualization in endometriosis. Mol Hum Reprod 2024; 30:gaae042. [PMID: 39718837 DOI: 10.1093/molehr/gaae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/20/2024] [Indexed: 12/26/2024] Open
Abstract
Endometrial collagen I undergoes dynamic degradation and remodelling in response to endometrial stromal cell (ESC) decidualization and embryo implantation. However, excessive collagen I deposition in the endometrium during the implantation window may impair decidualization, causing embryo implantation failure in patients with endometriosis (EMS). We found that endometrial collagen I expression during the mid-secretory phase was increased in the EMS group of patients. Collagen I stimulation resulted in decreased expression of the decidualization markers prolactin and insulin-like growth factor binding protein-1 in ESCs, impeding ESC transformation to a decidual morphology and decreasing the blastocyst-like spheroid expansion area in vitro. Treatment with extracellular vesicles (EVs) derived from the ectopic ESCs of EMS patients (EMS-EVs) increased collagen I expression in vivo and in vitro and decreased the blastocyst-like spheroid expansion area. Furthermore, EV microRNA (miRNA) sequencing revealed that there were 40 upregulated and 77 downregulated miRNAs in EMS-EVs when compared to the EVs derived from ESCs in the endometrium of control patients (CTL-EVs), including increased expression of miR-25-3p that targets phosphatase and tensin homolog (PTEN). We also found that PTEN expression was decreased and p-Akt expression was increased in the endometrium of EMS patients and EMS-EV-treated ESCs. miR-25-3p transfected ESCs exhibited increased collagen I, decreased PTEN, and increased p-Akt. Additionally, an EV uptake study further showed that EMS-EVs were preferentially taken up by ESCs rather than by endometrial epithelial cells. These results suggest that EMS-EVs encapsulating miR-25-3p might be preferentially taken up by eutopic ESCs where they may induce endometrial collagen I deposition to impair ESC decidualization in EMS.
Collapse
Affiliation(s)
- Yuan Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Bo Zheng
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Yuting Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Mengyun Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Yuan Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Nannan Kang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Yuan Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Jun Xing
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| | - Jianjun Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, PR China
| |
Collapse
|
2
|
Zhang C, Cheng H, Ye X, Cui H, Li Y, Zhu H, Chang X. ECM1 promotes migration and invasion in endometriosis. Reprod Biol 2024; 24:100826. [PMID: 37992590 DOI: 10.1016/j.repbio.2023.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Extracellular matrix protein 1 (ECM1) is a glycoprotein that may be a key player in tumorigenesis and tumor progression. However, knowledge regarding the role of ECM1 in endometriosis (EM) is still lacking. Microarray analyses were performed to compare the mRNA expression patterns between paired EU tissues and ectopic endometrial (EC) tissues (n = 4) from EM patients. ECM1 expression was significantly increased in the eutopic endometrial (EU) tissues than paired EC tissues of endometriotic patients and normal endometrial (NE) tissues of controls without EM. Blocking ECM1 with siRNA attenuated the migration and invasion of hEM15A cells and modified the distribution of the F-actin cytoskeleton. We conducted microarray analyses and bioinformatics analyses to investigate the differentially expressed genes (DEGs) and related pathways regulated by ECM1. A total of 161 DEGs between the siECM1 and the negative control (siNC) treatments were identified, consisting of 79 downregulated genes and 82 upregulated genes. Enriched DEGs were associated with 9 gene ontology (GO) terms. Moreover, a protein-protein interaction (PPI) network was constructed for the hub genes and modules. Radixin (RDX) was the second most downregulated gene in the siECM1 group compared with the siNC group. ECM1 knockdown significantly decreased the expression of RDX, RhoC, ROCK1, N-cadherin and β-catenin but not ROCK2. ECM1 showed high tissue-specific expression in EU tissues from EM patients, and may contribute to the migration, invasion and reorganization of the F-actin cytoskeleton in eutopic endometrial stromal cells via the RhoC/ROCK1 signaling pathway in EM.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xue Ye
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Heng Cui
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Yi Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
The Anti-Endometriotic Effect of Cyperi Rhizoma Extract, Inhibiting Cell Adhesion and the Expression of Pain-Related Factors through Akt and NF-kB Pathways. Medicina (B Aires) 2022; 58:medicina58030335. [PMID: 35334511 PMCID: PMC8953559 DOI: 10.3390/medicina58030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
Rhizomes of Cyperus rotundus have been widely used as a traditional medicine in Asia for the treatment of gynecological diseases. However, there is no scientific evidence demonstrating the effect of C. rotundus rhizomes on endometriosis, which is characterized by the adhesion of endometrial tissues outside the uterus, resulting in chronic and severe pelvic pain. The aim of this study was to investigate the effects of Cyperi rhizoma extract (CRE) on cell adhesion and the expression of pain-related factors (neurotrophins) in endometriotic cells, and to elucidate the underlying molecular mechanisms. CRE inhibited the adhesion of human endometriotic 12Z cells to peritoneal mesothelial Met5A cells using by adhesion assays. The mRNA expression of adhesion molecules [P-cadherin and matrix metalloproteinase (MMP)-2] was downregulated by CRE treatment. In addition, CRE significantly inhibited the mRNA expression of neurotrophins (BDNF, NGF, NT-3 and NT-4/5) in 12Z cells. Moreover, Akt overexpression markedly neutralized the inhibition of cell adhesion by CRE and expression of neurotrophins in 12Z cells. Furthermore, it was found that CRE suppressed NF-kB activation through the Akt pathway. These data suggest that CRE exerts anti-endometriotic activities by the inhibition of cell adhesion and neurotrophin expression, through the negative regulation of the Akt and NF-kB pathways in endometriotic cells.
Collapse
|
4
|
Fibronectin Molecular Status in Plasma of Women with Endometriosis and Fertility Disorders. Int J Mol Sci 2021; 22:ijms222111410. [PMID: 34768846 PMCID: PMC8583846 DOI: 10.3390/ijms222111410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
The diagnosis of endometriosis and fertility disorders is difficult; therefore, it is necessary to look for reliable biomarkers. Analysis of the molecular status of fibronectin as a key player in repair and wound healing processes, as well as in coagulation and fibrinolysis pathways, is justified. ELISA and SDS-agarose immunoblotting were applied to determine the fibronectin concentration and presence and occurrence of soluble FN-fibrin complexes in the blood plasma of women with endometriosis (n = 38), fertility disorders (n = 28) and the healthy group (n = 25). The concentration of fibronectin in the blood plasma of women with endometriosis (292.61 ± 96.17 mg/L) and fertility disorders (287.53 ± 122.68 mg/L) was significantly higher than in the normal group (226.55 ± 91.98 mg/L). The presence of FN-fibrin complexes of 750, 1000, 1300, 1600 and 1900 kDa in the plasma of women with endometriosis and fertility disorders was shown. The presence of FN-fibrin complexes with a molecular mass of more than 1300 kDa in women with endometriosis and infertility and the complete absence of these complexes in healthy women may indicate an increased and chronic activation of coagulation mechanisms in these patients. The presence of complexes of high molecular mass may be one of the biomarkers of fertility disorders in women.
Collapse
|
5
|
Multi-omics analysis reveals the interaction between the complement system and the coagulation cascade in the development of endometriosis. Sci Rep 2021; 11:11926. [PMID: 34099740 PMCID: PMC8185094 DOI: 10.1038/s41598-021-90112-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Endometriosis (EMS) is a disease that shows immune dysfunction and chronic inflammation characteristics, suggesting a role of complement system in its pathophysiology. To find out the hub genes and pathways involved in the pathogenesis of EMs, three raw microarray datasets were recruited from the Gene Expression Omnibus database (GEO). Then, a series of bioinformatics technologies including gene ontology (GO), Hallmark pathway enrichment, protein-protein interaction (PPI) network and gene co-expression correlation analysis were performed to identify hub genes. The hub genes were further verified by the Real-time quantitative polymerase chain reaction (RT-PCR) and Western Blot (WB). We identified 129 differentially expressed genes (DEGs) in EMs, of which 78 were up-regulated and 51 were down-regulated. Through GO functional enrichment analysis, we found that the DEGs are mainly enriched in cell adhesion, extracellular matrix remodeling, chemokine regulation, angiogenesis regulation, epithelial cell proliferation, et al. In Hallmark pathway enrichment analysis, coagulation pathway showed great significance and the terms in which included the central complement factors. Moreover, the genes were dominating in PPI network. Combined co-expression analysis with experimental verification, we found that the up-regulated expression of complement (C1S, C1QA, C1R, and C3) was positively related to tissue factor (TF) in EMs. In this study, we discovered the over expression complement and the positive correlation between complement and TF in EMs, which suggested that interaction of complement and coagulation system may play a role within the pathophysiology of EMS.
Collapse
|
6
|
Keleş CD, Vural B, Filiz S, Vural F, Gacar G, Eraldemir FC, Kurnaz S. THE EFFECTS OF ETANERCEPT AND CABERGOLINE ON ENDOMETRIOTIC IMPLANTS, UTERUS AND OVARIES IN RAT ENDOMETRIOSIS MODEL. J Reprod Immunol 2021; 146:103340. [PMID: 34139652 DOI: 10.1016/j.jri.2021.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The pathophysiology of endometriosis is still unknown and treatment options remain controversial. Searches focus on angiogenesis, stem cells, immunologic and inflammatory factors. This study investigated the effects of etanercept and cabergoline on ovaries, ectopic, and eutopic endometrium in an endometriosis rat model. This randomized, placebo-controlled, blinded study included 50 rats, Co(control), Sh(Sham), Cb(cabergoline), E(etanercept), and E + Cb(etanercept + cabergoline) groups. After surgical induction of endometriosis, 2nd operation was performed for endometriotic volume and AMH level. After 15 days of treatment: AMH level, flow cytometry, implant volume, histologic scores, immunohistochemical staining of ectopic, eutopic endometrium, and ovary were evaluated at 3rd operation. All groups had significantly reduced volume, TNF-α, VEGF, and CD 146/PDGF-Rβ staining of endometriotic implants comparing to the Sh group (p < 0.05).TNF-α staining of eutopic endometrium in all treatment groups was similar to Sh and Co groups (p > 0.05). E and E + Cb groups significantly decreased TNF-α staining in the ovary comparing to Sh, Co, and Cb groups (p < 0.05). All treatment groups had significantly higher AFC compared to the Sh group. CD25+ Cells' median percentage was significantly increased in the E + Cb group compared to Co, Sh, Cb, and E group. E + Cb group had a significantly higher CD5+ Cells' level than the Co group (p = 0.035). In conclusion; Etanercept and/or Cabergoline decreased volume, TNF-α, VEGF, and CD 146/PDGF-Rβ staining of the ectopic endometrial implant. E and E + Cb treatment decreased TNF-α levels in the ovary. E + Cb also increased peripheral blood CD25+ & CD5+ Cell's.
Collapse
Affiliation(s)
- Cihan Deniz Keleş
- Department of Obstetrics & Gynecology, Milas Government Hospital, Muğla, Turkey
| | - Birol Vural
- Department of Obstetrics & Gynecology, Assisted Reproductive Technology Unit, Şişli Kolan International Hospital, İstanbul, Turkey.
| | - Serdar Filiz
- Department of Histology & Embryology, Assisted Reprodoctive Technology Unit, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Fisun Vural
- Department of Obstetrics & Gynecology, Haydarpaşa Numune Training and Research Hospital, Health Sciences University, Hamidiye Medical Faculty, Istanbul, Turkey
| | - Gülçin Gacar
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Fatma Ceyla Eraldemir
- Department of Medical Biochemistry, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Sema Kurnaz
- Department of Histology & Embryology, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
7
|
Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ. Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 2019; 76:2111-2132. [PMID: 30826860 PMCID: PMC11105498 DOI: 10.1007/s00018-019-03056-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endometriosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
| | - Jun Shao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Reproductive Medicine Center, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, 215008, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200090, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|