1
|
Howitz WJ, Guaglianone G, McKnelly KJ, Haduong K, Ashby SN, Laayouni M, Nowick JS. Macrocyclic Peptides Derived from Familial Alzheimer's Disease Mutants Show Charge-Dependent Oligomeric Assembly and Toxicity. ACS Chem Neurosci 2022; 13:714-720. [PMID: 35191689 PMCID: PMC9042422 DOI: 10.1021/acschemneuro.1c00833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This work probes the role of charge in the oligomeric assembly, toxicity, and membrane destabilization of a series of peptides derived from Aβ and the E22Q and E22K familial mutants. In the mutant Aβ peptides, an acidic residue (E) is replaced with either a neutral or basic residue (Q or K), thus altering the net charge of the peptide. Acetylation at peripheral positions permits modulation of charge of the peptides and allows investigation of the role of charge in their oligomeric assembly, cytotoxicity, and membrane disruption. Peptides with the same net charge generally behave similarly even if the amino acid residue at position 22 differs. As the net charge of the peptide decreases, so does the extent of assembly, cytotoxicity, and membrane destabilization, which were determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, lactate dehydrogenase (LDH)-release assays with SH-SY5Y cells, and dye leakage assays using liposomes. These findings suggest that the charge of the amino acid side chain, rather than its size or hydrophobicity, accounts for the differences in the oligomeric assembly and toxicity of the E22 familial mutants of Aβ.
Collapse
Affiliation(s)
- William J. Howitz
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Gretchen Guaglianone
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kate J. McKnelly
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Katelyn Haduong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shareen N. Ashby
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mohamed Laayouni
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - James S. Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Effects of Single Amino Acid Substitutions on Aggregation and Cytotoxicity Properties of Amyloid β Peptide. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Dhouafli Z, Leri M, Bucciantini M, Stefani M, Gadhoumi H, Mahjoub B, Ben Jannet H, Guillard J, Ksouri R, Saidani Tounsi M, Soto C, Hayouni EA. 1,2,4-trihydroxynaphthalene-2-O-β-D-glucopyranoside delays amyloid-β 42 aggregation and reduces amyloid cytotoxicity. Biofactors 2018; 44:272-280. [PMID: 29582494 DOI: 10.1002/biof.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Presently, misfolding and aggregation of amyloid-β42 (Aβ42 ) are considered early events in Alzheimer's disease (AD) pathogenesis. The use of natural products to inhibit the aggregation process and to protect cells from cytotoxicity of early aggregate grown at the onset of the aggregation path is one of the promising strategies against AD. Recently, we have purified a new powerful antioxidant and inhibitor of Aβ42 aggregation from the leaves of Lawsonia inermis. The new compound was identified as a new Lawsoniaside; 1,2,4-trihydroxynaphthalene-2-O-β-D-glucopyranoside (THNG). Herein, we show that THNG interferes with Aβ42 aggregation, inhibits its conformational change to a β-sheet-rich structure, decreases its polymerization into large fibrillar species, reduces oxidative stress, and aggregate cytotoxicity. These results indicate that THNG has great potential as a neuroprotective and therapeutic agent against AD. © 2018 BioFactors, 44(3):272-280, 2018.
Collapse
Affiliation(s)
- Zohra Dhouafli
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Hamza Gadhoumi
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Borhane Mahjoub
- Laboratoire de Chimie, Institut Supérieur Agronomique de Chott Meriem, Sousse, Tunisia
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Tunisie
| | - Jérôme Guillard
- Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP, UMR CNRS 7285, Poitiers Cedex 9, France
| | - Riadh Ksouri
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Moufida Saidani Tounsi
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, University of Texas Medical School at Houston, Houston, TX, USA
| | - El Akrem Hayouni
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| |
Collapse
|
4
|
Agrawal N, Skelton AA. Binding of 12-Crown-4 with Alzheimer’s Aβ40 and Aβ42 Monomers and Its Effect on Their Conformation: Insight from Molecular Dynamics Simulations. Mol Pharm 2017; 15:289-299. [DOI: 10.1021/acs.molpharmaceut.7b00966] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nikhil Agrawal
- College
of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
| | - Adam A. Skelton
- College
of Health Sciences, Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville, Durban 4041, South Africa
| |
Collapse
|
5
|
A Toxic Conformer of Aβ42 with a Turn at 22-23 is a Novel Therapeutic Target for Alzheimer's Disease. Sci Rep 2017; 7:11811. [PMID: 28924167 PMCID: PMC5603611 DOI: 10.1038/s41598-017-11671-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy targeting Aβ42 is drawing attention as a possible therapeutic approach for Alzheimer’s disease (AD). Considering the significance of reported oligomerized Aβ42 species, selective targeting of the oligomer will increase the therapeutic efficacy. However, what kinds of oligomers are suitable targets for immunotherapy remains unclear. We previously identified a toxic conformer of Aβ42, which has a turn structure at 22–23 (“toxic turn”), among Aβ42 conformations. This toxic conformer of Aβ42 has been reported to show rapid oligomerization and to exhibit strong neurotoxicity and synaptotoxicity. We recently developed a monoclonal antibody against the toxic conformer (24B3), which demonstrated the increase of the toxic conformer in the cerebrospinal fluid of AD patients, indicating its accumulation in AD patients’ brains. In this study, we evaluated the therapeutic efficacy of 24B3 targeting the toxic conformer in AD model mice. The intraperitoneal administration of 24B3 for 3 months improved cognitive impairment and reduced the toxic conformer levels. Notably, this treatment did not reduce the number of senile plaques. Furthermore, the single intravenous administration of 24B3 suppressed the memory deficit in AD mice. These results suggest that the toxic conformer of Aβ42 with a turn at 22–23 represents one of the promising therapeutic targets.
Collapse
|
6
|
Murakami K. Conformation-specific antibodies to target amyloid β oligomers and their application to immunotherapy for Alzheimer's disease. Biosci Biotechnol Biochem 2015; 78:1293-305. [PMID: 25130729 DOI: 10.1080/09168451.2014.940275] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid β-protein (Aβ) oligomers, intermediates of Aβ aggregation, cause cognitive impairment and synaptotoxicity in the pathogenesis of Alzheimer's disease (AD). Immunotherapy using anti-Aβ antibody is one of the most promising approaches for AD treatment. However, most clinical trials using conventional sequence-specific antibodies have proceeded with difficulty. This is probably due to the unintended removal of the non-pathological monomer and fibrils of Aβ as well as the pathological oligomers by these antibodies that recognize Aβ sequence, which is not involved in synaptotoxicity. Several efforts have been made recently to develop conformation-specific antibodies that target the tertiary structure of Aβ oligomers. Here, we review the recent findings of Aβ oligomers and anti-Aβ antibodies including our own, and discuss their potential as therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Kazuma Murakami
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| |
Collapse
|
7
|
Benilova I, Gallardo R, Ungureanu AA, Castillo Cano V, Snellinx A, Ramakers M, Bartic C, Rousseau F, Schymkowitz J, De Strooper B. The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation. J Biol Chem 2014; 289:30977-89. [PMID: 25253695 DOI: 10.1074/jbc.m114.599027] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously.
Collapse
Affiliation(s)
- Iryna Benilova
- From the VIB Center for the Biology of Disease, the Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, University of Leuven
| | - Rodrigo Gallardo
- the VIB Switch Laboratory, the Switch Laboratory, Department of Cellular and Molecular Medicine
| | - Andreea-Alexandra Ungureanu
- Laboratory of Solid State Physics and Magnetism, University of Leuven, 3000 Leuven, and Imec, 3001 Leuven, Belgium
| | - Virginia Castillo Cano
- the VIB Switch Laboratory, the Switch Laboratory, Department of Cellular and Molecular Medicine
| | - An Snellinx
- From the VIB Center for the Biology of Disease, the Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, University of Leuven
| | - Meine Ramakers
- the VIB Switch Laboratory, the Switch Laboratory, Department of Cellular and Molecular Medicine
| | - Carmen Bartic
- Laboratory of Solid State Physics and Magnetism, University of Leuven, 3000 Leuven, and Imec, 3001 Leuven, Belgium
| | - Frederic Rousseau
- the VIB Switch Laboratory, the Switch Laboratory, Department of Cellular and Molecular Medicine
| | - Joost Schymkowitz
- the VIB Switch Laboratory, the Switch Laboratory, Department of Cellular and Molecular Medicine
| | - Bart De Strooper
- From the VIB Center for the Biology of Disease, the Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases, University of Leuven,
| |
Collapse
|
8
|
Silymarin Attenuated the Amyloid β Plaque Burden and Improved Behavioral Abnormalities in an Alzheimer’s Disease Mouse Model. Biosci Biotechnol Biochem 2014; 74:2299-306. [DOI: 10.1271/bbb.100524] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Early accumulation of intracellular fibrillar oligomers and late congophilic amyloid angiopathy in mice expressing the Osaka intra-Aβ APP mutation. Transl Psychiatry 2012; 2:e183. [PMID: 23149447 PMCID: PMC3565767 DOI: 10.1038/tp.2012.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogenic amyloid-β peptide precursor (APP) mutations clustered around position 693 of APP-position 22 of the Aβ sequence--are commonly associated with congophilic amyloid angiopathy (CAA) and intracerebral hemorrhages. In contrast, the Osaka (E693Δ) intra-Aβ APP mutation shows a recessive pattern of inheritance that leads to AD-like dementia despite low brain amyloid on in vivo positron emission tomography imaging. Here, we investigated the effects of the Osaka APP mutation on Aβ accumulation and deposition in vivo using a newly generated APP transgenic mouse model (E22ΔAβ) expressing the Osaka mutation together with the Swedish (K670N/M671L) double mutation. E22ΔAβ mice exhibited reduced α-processing of APP and early accumulation of intraneuronal fibrillar Aβ oligomers associated with cognitive deficits. In line with our in vitro findings that recombinant E22Δ-mutated Aβ peptides form amyloid fibrils, aged E22ΔAβ mice showed extracellular CAA deposits in leptomeningeal cerebellar and cortical vessels. In vitro results from thioflavin T aggregation assays with recombinant Aβ peptides revealed a yet unknown antiamyloidogenic property of the E693Δ mutation in the heterozygous state and an inhibitory effect of E22Δ Aβ42 on E22Δ Aβ40 fibrillogenesis. Moreover, E22Δ Aβ42 showed a unique aggregation kinetics lacking exponential fibril growth and poor seeding effects on wild-type Aβ aggregation. These results provide a possible explanation for the recessive trait of inheritance of the Osaka APP mutation and the apparent lack of amyloid deposition in E693Δ mutation carriers.
Collapse
|
10
|
Izuo N, Kume T, Sato M, Murakami K, Irie K, Izumi Y, Akaike A. Toxicity in rat primary neurons through the cellular oxidative stress induced by the turn formation at positions 22 and 23 of Aβ42. ACS Chem Neurosci 2012; 3:674-81. [PMID: 23019494 DOI: 10.1021/cn300033k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 06/06/2012] [Indexed: 12/23/2022] Open
Abstract
The 42-mer amyloid β-protein (Aβ42) aggregates to form soluble oligomers that cause memory loss and synaptotoxicity in Alzheimer's disease (AD). Oxidative stress is closely related to the pathogenesis of AD. We previously identified the toxic conformer of Aβ42 with a turn at positions 22 and 23 ("toxic turn") by solid-state NMR and demonstrated that a monoclonal antibody (11A1) against the toxic turn in Aβ42 mainly detected the oligomer in the brains of AD patients. Our recent study suggested that oxidative stress is a key factor of the oligomerization and cognitive impairment induced by Aβ overproduction in vivo. However, the involvement of the toxic conformer in Aβ42-induced oxidative damage remains unclear. To investigate this mechanism, we examined the levels of intracellular reactive oxygen species (ROS) and neurotoxicity in rat primary neurons using E22P-Aβ42, a mutant that induces a turn at positions 22 and 23, and E22V-Aβ42, a turn-preventing mutant. E22P-Aβ42, but not E22V-Aβ42, induced greater ROS production than Wt-Aβ42 in addition to potent neurotoxicity. Interestingly, the formation of the toxic conformer in both E22P-Aβ42 and Wt-Aβ42 probed by the 11A1 antibody preceded Aβ42-induced neurotoxicity. Trolox (a radical scavenger) and Congo red (an aggregation inhibitor) significantly prevented the neurotoxicity and intracellular ROS induced by E22P-Aβ42 and Wt-Aβ42, respectively. These results suggest that Aβ42-mediated toxicity is caused by the turn that favors toxic oligomers, which increase generation of ROS.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Pharmacology,
Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Toshiaki Kume
- Department of Pharmacology,
Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Mizuho Sato
- Division of Food Science and
Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuma Murakami
- Division of Food Science and
Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuhiro Irie
- Division of Food Science and
Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuhiko Izumi
- Department of Pharmacology,
Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Akinori Akaike
- Department of Pharmacology,
Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Tamaoka A. [108th Scientific Meeting of the Japanese Society of Internal Medicine: symposium: 1. Progress in dementia research--dementia disorders and protein; (2) amyloid P3 protein]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2011; 100:2469-2475. [PMID: 22117336 DOI: 10.2169/naika.100.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Akira Tamaoka
- Department of Neurology, Graduate School of Comprehensive Human Sciences Majors of Medical Sciences, University of Tsukuba, Japan
| |
Collapse
|
12
|
Apple Procyanidins Suppress Amyloid β-Protein Aggregation. Biochem Res Int 2011; 2011:784698. [PMID: 21826271 PMCID: PMC3150145 DOI: 10.1155/2011/784698] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/11/2011] [Accepted: 05/27/2011] [Indexed: 11/29/2022] Open
Abstract
Procyanidins (PCs) are major components of the apple polyphenols (APs). We previously reported that treatment with PC extended the mean lifespan of Caenorhabditis elegans (Sunagawa et al., 2011). In order to estimate the neuroprotective effects of PC, we investigated the antiaggregative activity of PC on amyloid β-protein (Aβ) aggregation, which is a pathological hallmark of Alzheimer's disease. We herein report that PC significantly suppressed Aβ42 aggregation and dissociated Aβ42 aggregates in a dose-dependent manner, indicating that PC is a potent suppressor of Aβ aggregation. Furthermore, PC significantly inhibited Aβ42 neurotoxicity and stimulated proliferation in PC-12 cells. These results suggested that the PC and AP acted as neuroprotective factors against toxic Aβ aggregates.
Collapse
|
13
|
Devanand DP, Schupf N, Stern Y, Parsey R, Pelton GH, Mehta P, Mayeux R. Plasma Aβ and PET PiB binding are inversely related in mild cognitive impairment. Neurology 2011; 77:125-31. [PMID: 21715709 PMCID: PMC3140071 DOI: 10.1212/wnl.0b013e318224afb7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/22/2011] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To evaluate the relations between PET Pittsburgh compound B (PiB-PET) binding (amyloid imaging) and plasma Aβ in patients with mild cognitive impairment (MCI) and similarly aged controls. METHODS In 20 patients with MCI and 19 cognitively intact controls (case-control study), PiB binding potential (BP(nd)) was assessed in 4 regions, and total brain excluding cerebellum, referenced to cerebellar binding. The mean of plasma Aβ levels measured in duplicate was analyzed. RESULTS Plasma Aβ42/Aβ40 ratio was decreased in MCI compared to controls (mean 0.15 SD 0.04 vs mean 0.19 SD 0.07, p = 0.03) but Aβ40 (p = 0.3) and Aβ42 (p = 0.06) levels did not differ between the 2 groups. PiB BP(nd) was increased in MCI compared to controls in the cingulate (p = 0.02), parietal (p = 0.02), and total brain (p = 0.03), but not in prefrontal cortex (p = 0.08) or parahippocampal gyrus (p = 0.07). Linear regression analyses adjusting for age, sex, and cognitive test scores showed that low Aβ42/Aβ40 ratio was associated with high cingulate, parietal, and total brain PiB binding (0.01< p ≤ 0.05). These associations between PiB binding and the Aβ42/Aβ40 ratio were strongest in PiB-positive subjects and within the MCI group. CONCLUSIONS Though cross-sectional, the findings support the "sink" hypothesis that increased brain Aβ is accompanied by lower peripheral levels of Aβ, particularly the Aβ42/Aβ40 ratio in patients with MCI. The association between PiB binding and the plasma Aβ42/Aβ40 ratio suggests possible use of plasma Aβ combined with PiB binding as a risk biomarker with potential clinical application.
Collapse
Affiliation(s)
- D P Devanand
- Divisions of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yates EA, Cucco EM, Legleiter J. Point mutations in Aβ induce polymorphic aggregates at liquid/solid interfaces. ACS Chem Neurosci 2011; 2:294-307. [PMID: 22778873 DOI: 10.1021/cn200001k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/11/2011] [Indexed: 11/30/2022] Open
Abstract
A pathological hallmark of Alzheimer's disease (AD), a late onset neurodegenerative disease, is the development of neuritic amyloid plaques, composed predominantly of aggregates of the β-amyloid (Aβ) peptide. It has been demonstrated that Aβ can aggregate into a variety of polymorphic aggregate structures under different chemical environments, and a potentially important environmental factor in dictating aggregate structure is the presence of surfaces. There are also several mutations clustered around the central hydrophobic core of Aβ (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy (CAA) to typical Alzheimer's disease pathology. The goal of this study was to determine how these mutations influence the morphology of Aβ aggregates under free solution conditions and at an anionic surface/liquid interface. While the rate of formation of specific aggregates was altered by mutations in Aβ under free solution conditions, the respective aggregate morphologies were similar. However, aggregation occurring directly on a negatively charged mica surface resulted in distinct aggregate morphologies formed by different mutant forms of Aβ. These studies provide insight into the potential role anionic surfaces play in dictating the formation of Aβ polymorphic aggregate structures.
Collapse
Affiliation(s)
- Elizabeth A. Yates
- The C. Eugene Bennett Department of Chemistry, ‡WVnano Initiative, §the Center for Neurosciences, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26506, United States
| | - Elena M. Cucco
- The C. Eugene Bennett Department of Chemistry, ‡WVnano Initiative, §the Center for Neurosciences, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, ‡WVnano Initiative, §the Center for Neurosciences, West Virginia University, 217 Clark Hall, P.O. Box 6045, Morgantown, West Virginia 26506, United States
| |
Collapse
|
15
|
Murakami K, Yokoyama SI, Murata N, Ozawa Y, Irie K, Shirasawa T, Shimizu T. Insulin receptor mutation results in insulin resistance and hyperinsulinemia but does not exacerbate Alzheimer's-like phenotypes in mice. Biochem Biophys Res Commun 2011; 409:34-9. [PMID: 21549686 DOI: 10.1016/j.bbrc.2011.04.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 01/12/2023]
Abstract
Obesity is a risk factor for Alzheimer's disease (AD), which is characterized by amyloid β depositions and cognitive dysfunction. Although insulin resistance is one of the phenotypes of obesity, its deleterious effects on AD progression remain to be fully elucidated. We previously reported that the suppression of insulin signaling in a mouse with a heterozygous mutation (P1195L) in the gene for the insulin receptor showed insulin resistance and hyperinsulinemia but did not develop diabetes mellitus [15]. Here, we generated a novel AD mouse model carrying the same insulin receptor mutation and showed that the combination of insulin resistance and hyperinsulinemia did not accelerate plaque formation or memory abnormalities in these mice. Interestingly, the insulin receptor mutation reduced oxidative damage in the brains of the AD mice. These findings suggest that insulin resistance is not always involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Kazuma Murakami
- Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Murakami K, Shimizu T, Irie K. Formation of the 42-mer Amyloid β Radical and the Therapeutic Role of Superoxide Dismutase in Alzheimer's Disease. JOURNAL OF AMINO ACIDS 2011; 2011:654207. [PMID: 22332002 PMCID: PMC3276080 DOI: 10.4061/2011/654207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022]
Abstract
Oxidative stress is closely involved in age-related diseases and ageing itself. There is evidence of the leading contribution of oxidative damage to neurodegenerative disease, in contrast to other diseases where oxidative stress plays a secondary role. The 42-mer amyloid β (Aβ42) peptide is thought to be a culprit in the pathogenesis of Alzheimer's disease (AD). Aβ42 aggregates form the oligomeric assembly and show neurotoxicity, causing synaptic dysfunction. Aβ42 also induces tissue oxidation (DNA/RNA, proteins, and lipids) through trace metals (Cu, Zn, and Fe), which can be protected by antioxidant enzymes, vitamin C, and vitamin E. Superoxide dismutase catalyzes the conversion of toxic superoxide radical to less reactive hydrogen peroxide, contributing to protection from AD. Here we review the involvement of oxidative stress in AD progression induced from an imbalance between the radical formation of Aβ42 itself together with unique turn structure at positions Glu22 and Asp23 and several defense systems.
Collapse
Affiliation(s)
- Kazuma Murakami
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahiko Shimizu
- Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kazuhiro Irie
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Suzuki T, Murakami K, Izuo N, Kume T, Akaike A, Nagata T, Nishizaki T, Tomiyama T, Takuma H, Mori H, Irie K. E22Δ Mutation in Amyloid β-Protein Promotes β-Sheet Transformation, Radical Production, and Synaptotoxicity, But Not Neurotoxicity. Int J Alzheimers Dis 2010; 2011:431320. [PMID: 21234376 PMCID: PMC3017891 DOI: 10.4061/2011/431320] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 11/16/2010] [Indexed: 01/14/2023] Open
Abstract
Oligomers of 40- or 42-mer amyloid β-protein (Aβ40, Aβ42) cause cognitive decline and synaptic dysfunction in Alzheimer's disease. We proposed the importance of a turn at Glu22 and Asp23 of Aβ42 to induce its neurotoxicity through the formation of radicals. Recently, a novel deletion mutant at Glu22 (E22Δ) of Aβ42 was reported to accelerate oligomerization and synaptotoxicity. To investigate this mechanism, the effects of the E22Δ mutation in Aβ42 and Aβ40 on the transformation of β-sheets, radical production, and neurotoxicity were examined. Both mutants promoted β-sheet transformation and the formation of radicals, while their neurotoxicity was negative. In contrast, E22P-Aβ42 with a turn at Glu22 and Asp23 exhibited potent neurotoxicity along with the ability to form radicals and potent synaptotoxicity. These data suggest that conformational change in E22Δ-Aβ is similar to that in E22P-Aβ42 but not the same, since E22Δ-Aβ42 exhibited no cytotoxicity, unlike E22P-Aβ42 and wild-type Aβ42.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Laboratory of Organic Chemistry in Life Science, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|