1
|
Nold JI, Tinnermann A, Fadai T, Mintah M, Morgenroth MS, Büchel C. Comparing neural responses to cutaneous heat and pressure pain in healthy participants. Sci Rep 2025; 15:14387. [PMID: 40274927 DOI: 10.1038/s41598-025-99247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Even though acute pain comes in many different shapes and forms, a lot of experimental pain studies predominantly employ cutaneous heat pain. This makes a comparison between different pain types and the link between findings from these experimental studies to clinical pain difficult. To bridge this gap, we investigated both cuff pressure pain and cutaneous heat pain using a within-subject design in combination with functional magnetic resonance imaging (fMRI). Noxious stimuli were applied with a 17-s duration at three different intensities above the pain threshold using a thermode and a computer-controlled cuff pressure device. Both pain modalities led to contralateral activation in the anterior insula and parietal operculum. Heat pain showed greater activation in the precentral gyrus, pontine reticular nucleus, and dorsal posterior insula, whilst pressure pain showed greater activation in the primary somatosensory cortex and bilateral superior parietal lobules. Most importantly, the time course of the fMRI signal changes differed between modalities, with pressure pain peaking in the first stimulus half, whereas heat pain led to a prolonged and increasing response across the stimulus duration with a peak in the second stimulus half. Our findings suggest that pressure and heat pain lead to common as well as different (temporal) activation patterns in key pain processing regions.
Collapse
Affiliation(s)
- Janne Ina Nold
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tahmine Fadai
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marilyn Mintah
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Sophie Morgenroth
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Martins I, Tavares I. Reticular Formation and Pain: The Past and the Future. Front Neuroanat 2017; 11:51. [PMID: 28725185 PMCID: PMC5497058 DOI: 10.3389/fnana.2017.00051] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023] Open
Abstract
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
Collapse
Affiliation(s)
- Isabel Martins
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| | - Isaura Tavares
- Departamento de Biomedicina, Faculdade de Medicina do PortoPorto, Portugal.,Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Universidade do PortoPorto, Portugal.,Instituto de Biologia Celular e Molecular (IBMC), Universidade do PortoPorto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S)Porto, Portugal
| |
Collapse
|
3
|
The medullary dorsal reticular nucleus as a relay for descending pronociception induced by the mGluR5 in the rat infralimbic cortex. Neuroscience 2017; 349:341-354. [PMID: 28300633 DOI: 10.1016/j.neuroscience.2017.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) activation in the infralimbic cortex (IL) induces pronociceptive behavior in healthy and monoarthritic rats. Here we studied whether the medullary dorsal reticular nucleus (DRt) and the spinal TRPV1 are mediating the IL/mGluR5-induced spinal pronociception and whether the facilitation of pain behavior is correlated with changes in spinal dorsal horn neuron activity. For drug administrations, all animals had a cannula in the IL as well as a cannula in the DRt or an intrathecal catheter. Heat-evoked paw withdrawal was used to assess pain behavior in awake animals. Spontaneous and heat-evoked discharge rates of single DRt neurons or spinal dorsal horn wide-dynamic range (WDR) and nociceptive-specific (NS) neurons were evaluated in lightly anesthetized animals. Activation of the IL/mGluR5 facilitated nociceptive behavior in both healthy and monoarthritic animals, and this effect was blocked by lidocaine or GABA receptor agonists in the DRt. IL/mGluR5 activation increased spontaneous and heat-evoked DRt discharge rates in healthy but not monoarthritic rats. In the spinal dorsal horn, IL/mGluR5 activation increased spontaneous activity of WDR neurons in healthy animals only, whereas heat-evoked responses of WDR and NS neurons were increased in both experimental groups. Intrathecally administered TRPV1 antagonist prevented the IL/mGluR5-induced pronociception in both healthy and monoarthritic rats. The results suggest that the DRt is involved in relaying the IL/mGluR5-induced spinal pronociception in healthy control but not monoarthritic animals. Spinally, the IL/mGluR5-induced behavioral heat hyperalgesia is mediated by TRPV1 and associated with facilitated heat-evoked responses of WDR and NS neurons.
Collapse
|
4
|
Ambriz-Tututi M, Palomero-Rivero M, Ramirez-López F, Millán-Aldaco D, Drucker-Colín AR. Role of glutamate receptors in the dorsal reticular nucleus in formalin-induced secondary allodynia. Eur J Neurosci 2013; 38:3008-17. [PMID: 23869620 DOI: 10.1111/ejn.12302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/16/2013] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
The role of glutamate receptors present in the medullary dorsal reticular nucleus (DRt) in the formalin test and formalin-induced secondary nociception was studied in rats. Secondary mechanical allodynia was assessed with von Frey filaments applied to the rat's hindpaw, and secondary thermal hyperalgesia was evaluated with the tail-immersion test. The selective glutamate receptor antagonists MK801 (N-methyl-D-aspartate receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (AMPA/KA receptor antagonist) and A841720 (metabotropic glutamate 1 receptor antagonist) were injected into the DRt before or 6 days after formalin injection in the rat. In the formalin test, the three antagonists significantly reduced the number of flinches in both phases of the test. DRt microinjection of MK801 or A841720, but not of CNQX, reduced both secondary nociceptive behaviors. Moreover, pre-treatment with the three antagonists injected into the DRt prevented the development of secondary mechanical allodynia and secondary thermal hyperalgesia. Similarly, in these rats, the number of c-Fos-like immunoreactive neurons were markedly reduced in both the superficial and deep lamina of the dorsal horn. Our findings support the role of DRt as a pain facilitator in acute and chronic pain states, and suggest a key role of glutamate receptors during the development and maintenance of formalin-induced secondary allodynia.
Collapse
Affiliation(s)
- Mónica Ambriz-Tututi
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | - Marcela Palomero-Rivero
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F, México
| | - Fernanda Ramirez-López
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F, México
| | - Diana Millán-Aldaco
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F, México
| | - And René Drucker-Colín
- División de Neurociencias, Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F, México
| |
Collapse
|
5
|
Gray PA. Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 2013; 7:7. [PMID: 23717265 PMCID: PMC3653110 DOI: 10.3389/fnana.2013.00007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic.
Collapse
Affiliation(s)
- Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
6
|
Electrophysiological study of supraspinal input and spinal output of cat's subnucleus reticularis dorsalis (SRD) neurons. PLoS One 2013; 8:e60686. [PMID: 23544161 PMCID: PMC3609786 DOI: 10.1371/journal.pone.0060686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 03/03/2013] [Indexed: 11/19/2022] Open
Abstract
This work addressed the study of subnucleus reticularis dorsalis (SRD) neurons in relation to their supraspinal input and the spinal terminating sites of their descending axons. SRD extracellular unitary recordings from anesthetized cats aimed to specifically test, 1) the rostrocaudal segmental level reached by axons of spinally projecting (SPr) neurons collateralizing or not to or through the ipsilateral nucleus reticularis gigantocellularis (NRGc), 2) whether SPr fibers bifurcate to the thalamus, and 3) the effects exerted on SRD cells by electrically stimulating the locus coeruleus, the periaqueductal grey, the nucleus raphe magnus, and the mesencephalic locomotor region. From a total of 191 SPr fibers tested to cervical 2 (Ce2), thoracic 5 (Th5) and lumbar5 (Lu5) stimulation, 81 ended between Ce2 and Th5 with 39 of them branching to or through the NRGc; 21/49 terminating between Th5 and Lu5 collateralized to or through the same nucleus, as did 34/61 reaching Lu5. The mean antidromic conduction velocity of SPr fibers slowed in the more proximal segments and increased with terminating distance along the cord. None of the 110 axons tested sent collaterals to the thalamus; instead thalamic stimulation induced long-latency polysynaptic responses in most cells but also short-latency, presumed monosynaptic, in 7.9% of the tested neurons (18/227). Antidromic and orthodromic spikes were elicited from the locus coeruleus and nucleus raphe magnus, but exclusively orthodromic responses were observed following stimulation of the periaqueductal gray or mesencephalic locomotor region. The results suggest that information from pain-and-motor-related supraspinal structures converge on SRD cells that through SPr axons having conduction velocities tuned to their length may affect rostral and caudal spinal cord neurons at fixed delays, both directly and in parallel through different descending systems. The SRD will thus play a dual functional role by simultaneously regulating dorsal horn ascending noxious information and pain-related motor responses.
Collapse
|
7
|
Lima D. Anatomical basis for the dynamic processing of nociceptive input. Eur J Pain 2012; 2:195-202. [PMID: 15102379 DOI: 10.1016/s1090-3801(98)90015-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/1998] [Indexed: 11/19/2022]
Abstract
The involvement of the lamina I, or marginal zone, of the spinal cord dorsal horn in pain processing has been extensively demonstrated. Its neuronal population comprises four structurally distinct neuronal groups, which were shown to be present in species as different as the rat, cat and pigeon. In the rat, each neuronal type presents a particular neurochemical nature and supraspinal projection pattern. In addition, there is recent evidence that supraspinal modulatory actions may affect differentially cells of different types. By combining retrograde tracing with noxious-evoked induction of the c fos proto-oncogene, it was verified that activation of different neuronal groups varies as a function of the brain site they target and the nature of the stimulus. These data suggest that the responsiveness of lamina I neurones is under controlling mechanisms which reflect the stimulus characteristics. Accordingly, both the spinal GABAergic and opioidergic anti-nociceptive actions appear to differ when different kinds df input are being processed. Moreover, supraspinal pain-modulatory circuits are also likely to control the excitability of each cell group. Not only reciprocal connections between the spinal cord and various pain-control centres have been identified, but also a correlation between the number of cfos positive projecting cells and the pain-inhibitory or facilitating role of their target has been observed. It is proposed that the compound nature of the nociceptive system serves a dynamic interplay between the spinal cord and the brain, which, by controlling the activation of distinct projection neurones, modulates the nociceptive signal while integrating nociceptive processing with several brain functions.
Collapse
Affiliation(s)
- D Lima
- Institute of Histology and Embryology of the Faculty of Medicine and IBMC, University of Oporto, Portugal
| |
Collapse
|
8
|
Wu SX, Wang W, Li H, Wang YY, Feng YP, Li YQ. The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. Prog Neurobiol 2010; 91:38-54. [DOI: 10.1016/j.pneurobio.2010.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 01/27/2023]
|
9
|
Polgár E, Wright LL, Todd AJ. A quantitative study of brainstem projections from lamina I neurons in the cervical and lumbar enlargement of the rat. Brain Res 2009; 1308:58-67. [PMID: 19854164 PMCID: PMC2828548 DOI: 10.1016/j.brainres.2009.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
Lamina I of the rat spinal cord contains neurons that project to various brain areas including thalamus, periaqueductal grey matter (PAG), lateral parabrachial area (LPb), caudal ventrolateral medulla and a region in dorsal medulla that includes the nucleus tractus solitarius and dorsal reticular nucleus. We have shown that spinothalamic lamina I neurons are infrequent in rat lumbar enlargement, where they constitute approximately 5% of the estimated 400 projection neurons on each side of the L4 segment (Al-Khater and Todd, 2009). They are more numerous in cervical enlargement, but the total number of lamina I projection neurons in this region was not known. Here we have used paired injections of retrograde tracers into the brainstem to estimate the number of lamina I projection cells in the C7 segment. Our results suggest that there are approximately 215 lamina I projection cells per side, and that spinothalamic cells therefore make up approximately 42% of this population. The proportion of lamina I projection neurons labelled from PAG is higher in cervical than lumbar enlargement, while the proportion labelled from dorsal medulla is similar in the two regions. We also found that lamina I cells in L4 that project to the dorsal medulla are included in the population retrogradely labelled from LPb, thus confirming the estimate that there are around 400 lamina I projection cells in this segment.
Collapse
Affiliation(s)
- Erika Polgár
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
10
|
Larauche M, Bradesi S, Million M, McLean P, Taché Y, Mayer EA, McRoberts JA. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1033-40. [PMID: 18308857 DOI: 10.1152/ajpgi.00507.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity has been implicated as an important pathophysiological mechanism in functional gastrointestinal disorders. In this study, we investigated whether the sustained visceral hyperalgesia induced by repeated psychological stress in rats involves the activation of CRF(1) signaling system using two different antagonists. Male Wistar rats were exposed to 10 consecutive days of water avoidance stress (WAS) or sham stress for 1 h/day, and the visceromotor response to phasic colorectal distension (CRD) was assessed before and after the stress period. Animals were injected subcutaneously with the brain penetrant CRF(1) antagonist, CP-154,526, acutely (30 min before the final CRD) or chronically (via osmotic minipump implanted subcutaneously, during stress) or with the peripherally restricted, nonselective CRF(1) and CRF(2) antagonist, astressin, chronically (15 min before each stress session). Repeated WAS induced visceral hypersensitivity to CRD at 40 and 60 mmHg. CP-154,526 injected acutely significantly reduced stress-induced visceral hyperalgesia at 40 mmHg but not at 60 mmHg. Chronic subcutaneous delivery of astressin reduced the stress-induced visceral hyperalgesia to baseline at all distension pressures. Interestingly, chronically administered CP-154,526 eliminated hyperalgesia and produced responses below baseline at 40 mmHg and 60 mmHg, indicating a hypoalgesic effect of the compound. These data support a major role for CRF(1) in both the development and maintenance of visceral hyperalgesia induced by repeated stress and indicate a possible role of peripheral CRF receptors in such mechanisms.
Collapse
Affiliation(s)
- Muriel Larauche
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Yoo CJ, Hwang SJ. The VR1-Positive Primary Afferent-Mediated Expression of pERK in the Lumbosacral Neurons in Response to Mechanical and Chemical Stimulation of the Urinary Bladder in Rats. J Korean Neurosurg Soc 2007; 42:462-9. [PMID: 19096590 DOI: 10.3340/jkns.2007.42.6.462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study characterized the neurons in the lumbosacral cord that express phospho ERK (pERK) after distension or irritation of the bladder, and their relation to the vanilloid receptor 1 (VR1) positive primary afferents. METHODS Mechanical distension and chemical irritation of the bladder were induced by intravesical injection of the saline and mustard oil, respectively. Spinal neurons expressing pERK and the primary afferent fibers were characterized using multiple immunofluorescence for neurokinin 1 (NK1), neuronal nitric oxide synthetase (nNOS) and VR1. RESULTS Neurons in lamina I, medial dorsal horn (MDH), dorsal gray commissure (DGC) and sacral parasympathetic nucleus (SPN) were immunoreactive for pERK after either mechanical or chemical stimulation. The majority of pERK positive cells were positive for NK1 in lamina I and SPN, but not in the DGC. Most of pERK positive cells are not stained for nNOS except in a small population of the cells in the SPN and DGC. Contacts between perikarya and dendrites of pERK-positive cells and terminals of primary afferents expressing VR1 were identified in lamina I, lateral collateral path (LCP) and SPN. CONCLUSION In this study, the lumbosacral neurons activated by mechanical and chemical stimulation of the urinary bladder were identified with expression of the pERK, and also provided the evidence that VR1-positive primary afferents may mediate the activation of these neurons.
Collapse
Affiliation(s)
- Chan Jong Yoo
- Department of Neurosurgery , Gachon University, Gil Medical Center, Incheon, Korea
| | | |
Collapse
|
12
|
Kaddumi EG, Hubscher CH. Convergence of multiple pelvic organ inputs in the rat rostral medulla. J Physiol 2006; 572:393-405. [PMID: 16455688 PMCID: PMC1779668 DOI: 10.1113/jphysiol.2005.102574] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 01/27/2006] [Indexed: 12/12/2022] Open
Abstract
Electrophysiological recordings were used to investigate the degree of pelvic/visceral convergent inputs onto single medullary reticular formation (MRF) neurons. A total of 94 MRF neurons responsive to bilateral electrical stimulation of the pelvic nerve (PN) in 12 urethane-anaesthetized male rats were tested for responses to mechanical stimulation of the urinary bladder, urethra, colon and penis, and electrical stimulation of the dorsal nerve of the penis (DNP) and abdominal branches of the vagus. Responses to distension of the bladder were found for 51% (n = 48) of the MRF neurons tested. Of these 48, 71% responded to urethral infusion, 81% responded to colon distension, 100% responded to penile stimulation (and DNP), and 85% responded to vagal stimulation, with 62% responding to stimulation of all four of these territories. This high degree of visceral convergence (i.e. 62%) in a subset of PN-responsive MRF neurons is significantly greater than for the subset of PN-responsive MRF neurons that did not respond to urinary bladder distension (i.e. out of the 46 remaining neurons, none responded to all four of the other pelvic/visceral stimuli combined). These results suggest that the neurons processing information from the urinary bladder at this level of the neural axis are likely to be important for mediating interactions between different visceral organs for the coordination of multiple pelvic/visceral functions.
Collapse
Affiliation(s)
- Ezidin G Kaddumi
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40292, USA
| | | |
Collapse
|
13
|
Castro AR, Morgado C, Lima D, Tavares I. Differential expression of NK1 and GABAB receptors in spinal neurones projecting to antinociceptive or pronociceptive medullary centres. Brain Res Bull 2006; 69:266-75. [PMID: 16564421 DOI: 10.1016/j.brainresbull.2005.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 11/27/2005] [Accepted: 12/03/2005] [Indexed: 11/16/2022]
Abstract
The balance between excitatory and inhibitory input exerted upon spinal cord neurones that belong to spinofugal pathways determines the ultimate type of information transmitted to the brain. We compared the relative expression of NK1 and GABAB receptors in two spinomedullary pathways targeting an antinociceptive area and a pronociceptive centre, respectively, the lateral part of the caudal ventrolateral medulla (VLMlat) and the dorsal reticular nucleus (DRt). Spinal cord sections of rats injected in the VLMlat or DRt with the retrograde tracer cholera toxin subunit B were triple-immunoreacted for the tracer, NK1 receptors and GABAB receptors. The dorsal horn neurones labelled from the VLMlat mainly co-localized the two receptors while those labelled from the DRt mainly expressed GABAB receptors, which was particularly evident in neurones of laminae IV-V. The morphological classification of lamina I neurones projecting to the VLMlat showed that fusiform, flattened and pyramidal cells mainly co-localized NK1 and GABAB receptors. As to lamina I neurones projecting to the DRt, multipolar neurones mainly expressed GABAB receptors while the majority of flattened and pyramidal neurones co-localized NK1 and GABAB receptors. The present results suggest that the expression of NK1 and GABAB receptors varies in neurones participating to different spinofugal pathways. The importance of the present findings in the knowledge of the endogenous supraspinal pain control system is discussed.
Collapse
Affiliation(s)
- A R Castro
- Institute of Histology and Embryology, Faculdade de Medicina, IBMC, University of Porto, Portugal
| | | | | | | |
Collapse
|
14
|
Leite-Almeida H, Valle-Fernandes A, Almeida A. Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat. Neuroscience 2006; 140:577-95. [PMID: 16563637 DOI: 10.1016/j.neuroscience.2006.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/06/2006] [Accepted: 02/10/2006] [Indexed: 11/28/2022]
Abstract
In the last 15 years a role has been ascribed for the medullary dorsal reticular nucleus as a supraspinal pain modulating area. The medullary dorsal reticular nucleus is reciprocally connected with the spinal dorsal horn, is populated mainly by nociceptive neurons and regulates spinal nociceptive processing. Here we analyze the distribution of brain projections from the medullary dorsal reticular nucleus using the iontophoretic administration of the anterograde tracer biotinylated-dextran amine and the retrograde tracer cholera toxin subunit B. Fibers and terminal boutons labeled from the medullary dorsal reticular nucleus were located predominately in the brainstem, although extending also to the forebrain. In the medulla oblongata, anterograde labeling was observed in the orofacial motor nuclei, inferior olive, caudal ventrolateral medulla, rostral ventromedial medulla, nucleus tractus solitarius and most of the reticular formation. Labeling at the pons-cerebellum level was present in the locus coeruleus, A5 and A7 noradrenergic cell groups, parabrachial and deep cerebellar nuclei, whereas in the mesencephalon it was located in the periaqueductal gray matter, deep mesencephalic, oculomotor and anterior pretectal nuclei, and substantia nigra. In the diencephalon, fibers and terminal boutons were found mainly in the parafascicular, ventromedial, and posterior thalamic nuclei and in the arcuate, lateral, posterior, peri- and paraventricular hypothalamic areas. Telencephalic labeling was consistent but less intense and concentrated in the septal nuclei, globus pallidus and amygdala. The well-known role of the medullary dorsal reticular nucleus in nociception and its pattern of brain projections in rats suggests that the nucleus is possibly implicated in the modulation of: (i) the ascending nociceptive transmission involved in the motivational-affective dimension of pain; (ii) the endogenous supraspinal pain control system centered in the periaqueductal gray matter-rostral ventromedial medulla-spinal cord circuitry; (iii) the motor reactions associated with pain.
Collapse
Affiliation(s)
- H Leite-Almeida
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, CP-II, Piso 3, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
15
|
Zhang L, Zhang Y, Zhao ZQ. Anterior cingulate cortex contributes to the descending facilitatory modulation of pain via dorsal reticular nucleus. Eur J Neurosci 2006; 22:1141-8. [PMID: 16176356 DOI: 10.1111/j.1460-9568.2005.04302.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Supraspinal centres biphasically modulate spinal nociceptive transmission, including descending inhibition and facilitation. Recent studies have revealed that descending facilitatory modulation is a key mechanism underlying induction and maintenance of neuropathic and inflammatory pain. The anterior cingulate cortex (ACC) is not only involved in the transmission of pain sensation but also plays a role in processing pain-related emotion. The ACC also widely connects with relevant regions of the descending modulation system. Here we used electrophysiological and behavioural techniques to study the possible pathways behind the modulation of spinal nociceptive transmission from the ACC. C-fibre-evoked field potentials in the spinal dorsal horn were produced by electrical stimulation of the sciatic nerve at an intensity high enough to excite C fibres, and paw withdrawal latencies (PWLs) to noxious heating were recorded. The results showed that high-frequency tetanic electrical stimulation of the ACC both unilaterally enhanced the C-fibre-evoked field potentials in the spinal dorsal horn and bilaterally shortened PWLs, indicating a facilitation of spinal nociception. A similar effect was observed after microinjection of N-methyl-d-aspartic acid (NMDA; 10 nm, 1 microL) or homocysteic acid (HCA; 0.1 m, 1 microL) into the ACC. When the dorsal reticular nucleus (DRt) was electrolytically lesioned, ACC-induced facilitation of spinal nociception was blocked. These results imply that: (i) activation of the ACC may facilitate spinal nociception; (ii) NMDA receptors in the ACC may be involved in descending facilitation; and (iii) the DRt plays a crucial role in mediating ACC-induced facilitation of spinal nociception.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Neurobiology, Fudan University, Shanghai 200433, P R China
| | | | | |
Collapse
|
16
|
Castro AR, Pinto M, Lima D, Tavares I. Secondary hyperalgesia in the monoarthritic rat is mediated by GABAB and NK1 receptors of spinal dorsal horn neurons: A behavior and c-fos study. Neuroscience 2006; 141:2087-95. [PMID: 16809001 DOI: 10.1016/j.neuroscience.2006.05.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 01/28/2023]
Abstract
Secondary hyperalgesia in the monoarthritic rat is accompanied by a decrease in nociceptive activation of spinal neurons expressing GABA(B) receptors and by the opposite effect in the cells expressing neurokinin 1 (NK1)-receptors. In order to ascertain the relative role of each receptor, the effects of intrathecal administration of SP-saporin (SP-SAP), baclofen or both were evaluated, using a model of secondary hyperalgesia that consists of mechanical stimulation of the hindlimb skin close to an inflamed joint. Four days after the induction of monoarthritis by intraarticular injection of Complete Freund's Adjuvant (CFA), a cannula was implanted at T(13)-L(1) level and 10 microl of saline or SP-SAP (10(-6) M) were intrathecally (i.t.) injected. Fourteen days after CFA-injection, half of the animals from each group received i.t. injections of 10 microl saline and the remainder were injected with the same volume of baclofen (1 microg). Ten minutes later, the animals were behaviorally evaluated by the von Frey test or submitted to noxious mechanical stimulation to analyze c-fos expression. The von Frey thresholds increased after the treatments, but more pronouncedly after baclofen or SP-SAP plus baclofen. In segments L(2)-L(3), the spinal area that receives input from the stimulated skin close to the inflamed joint, the numbers of Fos-immunoreactive neurons were reduced after the three treatments both in the superficial and deep dorsal horn. In segments T(13)-L(1), the numbers of Fos-immunoreactive neurons were significantly reduced after treatment with SP-SAP plus baclofen in both dorsal horn regions, and in the deep dorsal horn after baclofen treatment. We conclude that both GABA(B) and NK1 receptors of spinal dorsal horn neurons participate in secondary hyperalgesia in the monoarthritic rat, although the decrease in GABA inhibition appears to play a more important role than the increase in SP-mediated effects.
Collapse
Affiliation(s)
- A R Castro
- Institute of Histology and Embryology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
17
|
Morato M, Pinho D, Sousa T, Tavares I, Albino-Teixeira A. Inhibition of nociceptive responses of spinal cord neurones during hypertension involves the spinal GABAergic system and a pain modulatory center located at the caudal ventrolateral medulla. J Neurosci Res 2006; 83:647-55. [PMID: 16453312 DOI: 10.1002/jnr.20770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanisms of hypertension-induced hypoalgesia were studied in a model of hypertension induced by adenosine receptors blockade with the non-selective antagonist 1,3-dipropyl-8-sulfophenylxanthine (DPSPX) during 7 days. Based on the positive correlation between pain thresholds and noxious-evoked expression of the c-fos protooncogene in spinal cord neurones, we used this marker of nociceptive activation of spinal neurones to evaluate the involvement of the spinal GABAergic system and the caudal ventrolateral medulla (VLM), an important inhibitory component of the supraspinal endogenous pain modulatory system. In DPSPX-treated animals, a 20% increase in blood pressure was achieved along with a decrease in Fos expression in the superficial (laminae I-II) and deep (laminae III-VII) dorsal horn. In these animals, lower percentages of neurones labeled for GABAB receptors that expressed Fos were obtained in the superficial dorsal horn. Lesioning the VLMlat with quinolinic acid prevented the decrease in Fos expression at the spinal cord of DPSPX-hypertensive rats whereas in normotensive animals, no changes in Fos expression were detected. The present results support previous findings that hypertension is associated with a decrease of nociceptive activation of spinal cord neurones, through descending inhibition exerted by the VLMlat. This study further shows that during hypertension a decrease in the expression of GABAB receptors in nociceptive spinal neurones occurs, probably due to changes in the local GABAergic inhibitory system.
Collapse
Affiliation(s)
- Manuela Morato
- Institute of Pharmacology and Therapeutics, Faculty of Medicine of Porto and IBMC, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
18
|
Castro AR, Pinto M, Lima D, Tavares I. Nociceptive spinal neurons expressing NK1 and GABAB receptors are located in lamina I. Brain Res 2004; 1003:77-85. [PMID: 15019566 DOI: 10.1016/j.brainres.2003.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/30/2022]
Abstract
The nociceptive nature of spinal dorsal horn neurons expressing NK1 and gamma-aminobutyric acid (GABA)(B) receptors was evaluated in the rat. Immunodetection of the Fos protein, induced by noxious mechanical stimulation of the skin, was combined with immunocytochemistry for NK1 or GABA(B) receptors (double-immunostaining study) or both receptors (triple-immunostaining study). Neurons double-labeled for Fos and for each receptor largely prevailed in lamina I. The proportions of Fos-positive cells immunostained for NK1 or GABA(B) receptors were higher in lamina I than in the remaining spinal laminae. More Fos-positive cells were immunoreactive (IR) for GABA(B) receptors than for NK1 in all dorsal horn laminae. In the triple-immunostaining study, co-localization of NK1 and GABA(B) receptors occurred only in lamina I and was higher in neurons expressing Fos. As to the morphological lamina I cell class, NK1-positive cells belonged mainly to the fusiform type while similar proportions of fusiform, pyramidal and flattened NK1 neurons expressed GABA(B) receptors. No differences were found between those cell types as to the degree of nociceptive activation. The present results suggest that the co-localization of NK1 and GABA(B) receptors is a common feature of fusiform, pyramidal and flattened neurons in lamina I. Considering the participation of the three cell classes in various ascending systems, it is concluded that a simultaneous action of substance P (SP) and GABA may play an important role in the modulation of nociceptive input supraspinally transmitted from lamina I.
Collapse
Affiliation(s)
- Ana Rita Castro
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
19
|
Tavares I, Lima D. The caudal ventrolateral medulla as an important inhibitory modulator of pain transmission in the spinal cord. THE JOURNAL OF PAIN 2003; 3:337-46. [PMID: 14622734 DOI: 10.1054/jpai.2002.127775] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The caudal ventrolateral medulla (VLM) has emerged during the last decade as one of the main components of the endogenous pain control system. Profound and long-lasting analgesia is produced by mild stimulation of the VLM. The VLMlat, the reticular formation located between the spinal trigeminal nucleus and the lateral reticular nucleus (LRt), appears to play a major role in that antinociceptive action. The projections to spinal cord laminae involved in nociceptive transmission originate exclusively in the VLMlat. The VLMlat participates in a disynaptic pathway involving spinally projecting pontine A5 noradrenergic neurons, which appears to convey alpha(2)-adrenoreceptor-mediated analgesia produced from the VLM. Neurons in the VLMlat and in lamina I are reciprocally connected by a closed loop that is likely to mediate feedback control of supraspinal nociceptive transmission. On the other hand, the LRt, which is targeted by ventral (lamina VII) and deep dorsal (laminae IV to V) horn inputs, projects to the premotor lamina VII. Nociceptive input ascending from the cord and increases in blood pressure are discussed as possible physiologic triggers of the analgesia produced by the VLM. The overall role of the VLM as a center for integration of nociceptive, cardiovascular, and motor functions is discussed. The putative therapeutic benefits of manipulating the VLM for the control of chronic pain are envisaged.
Collapse
Affiliation(s)
- Isaura Tavares
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, University of Porto, Portugal.
| | | |
Collapse
|
20
|
Dugast C, Almeida A, Lima D. The medullary dorsal reticular nucleus enhances the responsiveness of spinal nociceptive neurons to peripheral stimulation in the rat. Eur J Neurosci 2003; 18:580-8. [PMID: 12911754 DOI: 10.1046/j.1460-9568.2003.02782.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single-unit spinal recordings combined with application of glutamate into the medullary dorsal reticular nucleus were used to assess the action of this nucleus upon deep dorsal horn neurons in rats. Injection of high glutamate concentrations (10 and 100 mm) induced a dramatic and long-lasting increase of the responses of wide-dynamic range neurons to electrical stimulation of the sciatic nerve in the noxious range, without affecting ongoing discharges. Post-stimulus time histograms revealed that this increase concerned the post-discharge, but not A- or C-fibre-mediated responses, which remained unchanged independently of the stimulation frequency applied. The onset of the glutamate-induced response enhancement occurred with a concentration-dependent time delay and developed slowly until its maximum. These data indicate that the medullary dorsal reticular nucleus exerts a facilitating action upon deep dorsal horn wide-dynamic range neurons by enhancing their capacity to respond to peripheral stimulation through prolongation of their discharge. This action is accompanied by the strengthening of wind-up of deep dorsal horn wide-dynamic range neurons, hence providing a plausible substrate for chronic pain states. These results are in agreement with previous behavioural studies suggesting a pronociceptive role for the dorsal reticular nucleus [Almeida et al. (1996) Brain Res. Bull., 39, 7-15; Almeida et al. (1999) Eur. J. Neurosci., 11, 110-122], and support the involvement of a reverberating circuit, previously described in morphological studies [Almeida et al. (1993) Neuroscience, 55, 1093-1106; Almeida et al. (2000) Eur. J. Pain, 4, 373-387], which probably operates only at a certain threshold of activation.
Collapse
Affiliation(s)
- Christophe Dugast
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319 Porto, Portugal.
| | | | | |
Collapse
|
21
|
Almeida A, Cobos A, Tavares I, Lima D. Brain afferents to the medullary dorsal reticular nucleus: a retrograde and anterograde tracing study in the rat. Eur J Neurosci 2002; 16:81-95. [PMID: 12153533 DOI: 10.1046/j.1460-9568.2002.02058.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The medullary dorsal reticular nucleus (DRt) was recently shown to belong to the supraspinal pain control system; neurons within this nucleus give origin to a descending projection that increases spinal nociceptive transmission and facilitates pain perception [Almeida et al. (1999), Eur. J. Neurosci., 11, 110-122]. In the present study, the areas of the brain that may modulate the activity of DRt neurons were investigated by using of tract-tracing techniques. Injection of a retrograde tracer into the DRt resulted in labelling in multiple areas of the brain. In the contralateral orbital, prelimbic, infralimbic, insular, motor and somatosensory cortices labelling was prominent, but a smaller ipsilateral projection from these same areas was also detected. Strong labelling was also noted in the central amygdaloid nucleus, bed nucleus of stria terminalis and substantia innominata. Labelled diencephalic areas were mainly confined to the hypothalamus, namely its lateral and posterior areas as well as the paraventricular nucleus. In the mesencephalon, the periaqueductal grey, red nucleus and deep mesencephalic nucleus were strongly labelled, whereas, in the brainstem, the parabrachial nuclei, rostroventromedial medulla, nucleus tractus solitarius, spinal trigeminal nucleus, and the parvocellular, dorsal, lateral and ventral reticular nuclei were the most densely labelled regions. All deep cerebellar nuclei were labelled bilaterally. These data suggest that the DRt integrates information from the somatosensory, antinociceptive, autonomic, limbic, pyramidal and extrapyramidal systems while triggering its descending facilitating action upon the spinal nociceptive transmission.
Collapse
Affiliation(s)
- Armando Almeida
- Institute of Histology and Embryology, Faculty of Medicine, Porto, Portugal.
| | | | | | | |
Collapse
|
22
|
Potts JT, Lee SM, Anguelov PI. Tracing of projection neurons from the cervical dorsal horn to the medulla with the anterograde tracer biotinylated dextran amine. Auton Neurosci 2002; 98:64-9. [PMID: 12144043 DOI: 10.1016/s1566-0702(02)00034-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In addition to the well-defined role of dorsal horn neurons in pain transmission, neurons in the superficial laminae also provide a rich source of synaptic input to cardiovascular and respiratory centers in the medullary reticular formation. In this study, ascending projection neurons from the superficial laminae of the cervical enlargement were studied in the rat using the anterograde tracer biotinylated dextran amine (BDA). Ipsilateral microinjection of BDA into the cervical spinal cord (C6-C8) resulted in extensive labeling of dorsal horn neurons in laminae I-V. Axons and terminal processes of cervical dorsal horn cells projecting to the medulla were present in the cuneate nucleus (Cu), the nucleus of the solitary tract (NTS), the lateral reticular nucleus, (LRt) as well as the caudal and rostral ventrolateral medulla (VLM). The highest density of BDA labeling was found ipsilaterally in the Cu, LRt, caudal and rostral VLM, while a moderate density of labeling was present in the NTS caudal to the area postrema (AP). Moderate-to-weak labeling was also found in the LRt, the caudal and rostral VLM contralateral to the BDA injection. These results support the existence of a spinomedullary pathway that transmits noxious and innocuous Adelta and C fiber-mediated sensory signals to the medulla. Neurons in this ascending spinal pathway likely participate in the patterning of autonomic responses evoked by pain or during exercise.
Collapse
Affiliation(s)
- Jeffrey T Potts
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
23
|
Gamboa-Esteves FO, Kaye JC, McWilliam PN, Lima D, Batten TF. Immunohistochemical profiles of spinal lamina I neurones retrogradely labelled from the nucleus tractus solitarii in rat suggest excitatory projections. Neuroscience 2001; 104:523-38. [PMID: 11377852 DOI: 10.1016/s0306-4522(01)00071-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three morphologically distinct types of lamina I neurones, fusiform, flattened and pyramidal, project from the spinal cord to the caudal part of the nucleus tractus solitarii in the rat, and may represent a pathway whereby peripheral stimuli can modify autonomic functions. The neurochemistry of these three types of projection neurones was investigated using retrograde neuronal tracing with cholera toxin B-subunit combined with dual and triple immunofluorescence labelling for different neuroactive substances. None of the lamina I neurones with immunoreactivity for GABA or glycine were found to project to the nucleus tractus solitarii, whereas high levels of glutamate immunoreactivity, which may indicate a glutamatergic phenotype, were found in 18.4% of fusiform, 9.6% of pyramidal and 2.1% of flattened projection neurones. Immunoreactivity for calbindin-D28K was present in 34.9% of fusiform cells, 18.3% of pyramidal cells and 10.5% of flattened cells, and nitric oxide synthase immunoreactivity was detected in 13.8% of fusiform cells, 1.1% of pyramidal cells and 4.2% of flattened cells that had projections to the nucleus tractus solitarii. Calbindin immunoreactivity was co-localised in major subpopulations of projection neurones of each morphological type that contained glutamate immunoreactivity, whereas co-localisation of nitric oxide synthase immunoreactivity in these neurones was relatively uncommon. The pyramidal cell was the only retrogradely labelled cell type found to be immunoreactive for substance P, but few (<5%) of these neurones were immunolabelled. These data are consistent with the hypothesis that lamina I neurones projecting to the dorsal vagal complex are not inhibitory, and that some of them, belonging mostly to the fusiform and pyramidal types, may exert excitatory, glutamate- or substance P-mediated effects upon inhibitory interneurones in the nucleus tractus solitarii. Such excitatory pathways could be involved in the attenuation of the reflex control of blood pressure by both painful and innocuous peripheral stimuli, such as those arising in injury and exercise.
Collapse
Affiliation(s)
- F O Gamboa-Esteves
- Institute for Cardiovascular Research, School of Medicine, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | | | | |
Collapse
|
24
|
Almeida A, Tavares I, Lima D. Reciprocal connections between the medullary dorsal reticular nucleus and the spinal dorsal horn in the rat. Eur J Pain 2001; 4:373-87. [PMID: 11124010 DOI: 10.1053/eujp.2000.0193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synaptic architecture of spinal afferents of the dorsal portion (DRtd) of the medullary dorsal reticular nucleus (DRt) is studied. After iontophoretic injections of cholera toxin subunit B (CTb) into the superficial (laminae I-II), deep (laminae IV-V) or entire (laminae I-V) dorso-ventral extent of the spinal dorsal horn at the cervico-thoracic or lumbo-sacral levels, axonal boutons of two distinct types were labelled in the DRtd. Type A boutons (82% after cervico-thoracic injections and 92% after lumbo-sacral injections) were roundish, small and presented few mitochondria and small, round synaptic vesicles. Type B boutons (18% after cervico-thoracic injections and 8% after lumbo-sacral injections) were elongated, two to three times larger, and exhibited numerous mitochondria and larger round vesicles. Both types of bouton established asymmetrical synaptic contacts with small dendritic profiles and, less frequently, with dendritic trunks and perikarya. Retrograde labelling occurred in the postsynaptic profile of 15-18% type A boutons labelled from any injection site. Taken together with previous data on DRt-spinal synaptic contacts at the superficial dorsal horn, the present results point to the occurrence of a reciprocal excitatory loop connecting the dorsal DRt and lamina I, which may be at the basis of the DRt-mediated pain-facilitating effects described recently.
Collapse
Affiliation(s)
- A Almeida
- Institute of Histology and Embryology of the Faculty of Medicine and IBMC, University of Oporto, Porto, 4200, Portugal
| | | | | |
Collapse
|
25
|
Lu Y, Westlund KN. Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res 2001; 889:118-30. [PMID: 11166695 DOI: 10.1016/s0006-8993(00)03124-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study demonstrates sites of expression for Fos protein in the brainstem and lumbosacral spinal cord of rats subjected to mustard oil irritation of the colon. The protective effect of baclofen, a selective GABA(B) receptor agonist, on the induced Fos protein increases was determined. Mustard oil injected into the lumen of the colon produces an acute site-specific inflammation. Immunocytochemical localization of Fos protein in neuronal nuclei was evident after 1 h, was greatest at 2 h and was still evident but declining at 8 h. In the spinal cord the majority of Fos labeled neurons were localized in the superficial laminae of lumbar (L6) cord with more found in the sacral (S1) cord. Some labeled neurons were also found in the deeper spinal laminae, intermediolateral nucleus and around lamina X. Brainstem sites expressing Fos included the nucleus of the solitary tract in the medulla, parabrachial, locus coeruleus, pontine and caudal dorsal raphe nuclei and periaqueductal gray. Weak Fos protein labeling existed in a few cells in vehicle control animals. Systemic administration of the GABA(B) receptor agonist, baclofen (10 mg/kg, i.p.), significantly reduced Fos expression in the spinal cord after mustard oil treatment but significantly increased the relative number of nuclei labeled in the nucleus of the solitary tract. Baclofen also significantly decreases dorsal horn CGRP immunoreactivity relative to the increased levels seen after inflammation of the colon. The SP content increases observed after inflammation of the colon were not altered by baclofen. These data suggest that: (1) neurons in regions important for nociceptive transmission, descending inhibitory control and autonomic control are activated by noxious stimulation of the colon, and (2) baclofen specifically reduces Fos expression in the superficial dorsal horn of the spinal cord induced by nociceptive afferent input.
Collapse
Affiliation(s)
- Y Lu
- Department of Anatomy and Neuroscience and The Marine Biomedical Institute, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1069, USA
| | | |
Collapse
|
26
|
Galhardo V, Lima D, Necker R. Spinomedullary pathways in the pigeon (Columba livia): Differential involvement of lamina I cells. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000807)423:4<631::aid-cne8>3.0.co;2-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
28
|
Almeida A, Størkson R, Lima D, Hole K, Tjølsen A. The medullary dorsal reticular nucleus facilitates pain behaviour induced by formalin in the rat. Eur J Neurosci 1999; 11:110-22. [PMID: 9987016 DOI: 10.1046/j.1460-9568.1999.00411.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of the dorsal reticular nucleus (DRt) on pain behaviour during the formalin test was studied in the rat by lesioning the nucleus through local application of electrical current or quinolinic acid. Animals in which the DRt was lesioned ipsilaterally to the paw injected with formalin spent less time in focused (licking, biting or scratching the injected paw) and total (focused pain behaviour plus protection of the injected paw during movements) pain behaviour, and showed paw-jerks less frequently than non-lesioned animals in both phases 1 and 2 of the test. Animals in which the DRt was lesioned contralaterally to the injected paw presented a decrease in total pain behaviour and number of paw-jerks only during phase 2. The number of superficial (laminae I-II) and deep (laminae III-VI) spinal dorsal horn cells expressing the c-fos proto-oncogene 2 h after subcutaneous injection of formalin was reduced by 34% and 50%, respectively, in animals with an ipsilateral DRt lesion as compared to non-lesioned rats. No differences in c-fos expression were observed after lesioning the DRt contralateral to the formalin injection. The results indicate that the DRt is involved in the facilitation of nociception during the formalin test by enhancing the response capacity of dorsal horn neurons to noxious stimulation. It is suggested that the pronociceptive action of the DRt is mediated by the reciprocal connections it establishes with the spinal dorsal horn.
Collapse
Affiliation(s)
- A Almeida
- Institute of Histology and Embryology of the Faculty of Medicine and IBMC, University of Oporto, Porto, Portugal.
| | | | | | | | | |
Collapse
|