1
|
Spoto G, Butera A, Albertini ML, Consoli C, Ceraolo G, Nicotera AG, Rosa GD. The Ambiguous Role of Growth Factors in Autism: What Do We Really Know? Int J Mol Sci 2025; 26:1607. [PMID: 40004071 PMCID: PMC11855502 DOI: 10.3390/ijms26041607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with multifactorial origins, including the potential involvement of neurotrophins and growth factors. These molecules, which are crucial for neuronal survival, synaptic plasticity, and brain development, have been implicated in ASD pathophysiology. Altered levels of neurotrophins such as NGF, BDNF, NT3, and NT4, as well as growth factors like IGF1, VEGF, and FGF, have been associated with cognitive deficits, sensory processing abnormalities, and behavioral issues in ASD patients. However, the literature presents conflicting results, often due to differences in research methodologies, sample sizes, patient populations, and diagnostic criteria. Despite these inconsistencies, the potential of neurotrophins and growth factors as biomarkers and therapeutic targets for ASD remains promising. Future research with standardized methodologies, larger cohorts, and a clearer understanding of genetic influences is needed to further elucidate their roles in ASD diagnosis and treatment.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (G.S.); (G.D.R.)
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Chemical, Biological, Farmaceutical & Environmental Science, University of Messina, 98122 Messina, Italy;
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Maria Ludovica Albertini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Carla Consoli
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Graziana Ceraolo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (M.L.A.); (C.C.); (G.C.)
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, 98125 Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (G.S.); (G.D.R.)
| |
Collapse
|
2
|
Lee SY, Hwang G, Choi M, Jo CH, Oh SJ, Jin YB, Lee WJ, Rho GJ, Lee HC, Lee SL, Hwang TS. Histological and Molecular Biological Changes in Canine Skin Following Acute Radiation Therapy-Induced Skin Injury. Animals (Basel) 2024; 14:2505. [PMID: 39272290 PMCID: PMC11394491 DOI: 10.3390/ani14172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Radiation therapy is a crucial cancer treatment, but it can damage healthy tissues, leading to side effects like skin injuries and molecular alterations. This study aimed to elucidate histological and molecular changes in canine skin post-radiation therapy (post-RT) over nine weeks, focusing on inflammation, stem cell activity, angiogenesis, keratinocyte regeneration, and apoptosis. Four male beagles received a cumulative radiation dose of 48 Gy, followed by clinical observations, histological examinations, and an RT-qPCR analysis of skin biopsies. Histological changes correlated with clinical recovery from inflammation. A post-RT analysis revealed a notable decrease in the mRNA levels of Oct4, Sox2, and Nanog from weeks 1 to 9. VEGF 188 levels initially saw a slight increase at week 1, but they had significantly declined by week 9. Both mRNA and protein levels of COX-2 and Keratin 10 significantly decreased over the 9 weeks following RT, although COX-2 expression surged in the first 2 weeks, and Keratin 10 levels increased at weeks 4 to 5 compared to normal skin. Apoptosis peaked at 2 weeks and diminished, nearing normal by 9 weeks. These findings offer insights into the mechanisms of radiation-induced skin injury and provide guidance for managing side effects in canine radiation therapy.
Collapse
Affiliation(s)
- Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gunha Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonyeong Choi
- Yangsan S Animal Cancer Center, Yangsan 50638, Republic of Korea
| | - Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Chun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
A review of vascular endothelial growth factor and its potential to improve functional outcomes following spinal cord injury. Spinal Cord 2023; 61:231-237. [PMID: 36879041 DOI: 10.1038/s41393-023-00884-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Spinal cord injuries (SCI) are traumatic events with limited treatment options. Following injury, the lesion site experiences a drastic change to both its structure and vasculature which reduces its ability for tissue regeneration. Despite the lack of clinical options, researchers are investigating therapies to induce neuronal regeneration. Cell-based therapies have long been assessed in the context of SCI to promote neuronal protection and repair. Vascular endothelial growth factor (VEGF) not only demonstrates this ability, but also demonstrates angiogenic potential to promote blood vessel formation. While there have been numerous animal studies investigating VEGF, further research is still warranted to pinpoint its role following SCI. This review aims to discuss the literature surrounding the role of VEGF following SCI and its potential in promoting functional recovery.
Collapse
|
4
|
Premarin Reduces Neurodegeneration and Promotes Improvement of Function in an Animal Model of Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms23042384. [PMID: 35216504 PMCID: PMC8875481 DOI: 10.3390/ijms23042384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Spinal cord injury (SCI) causes significant mortality and morbidity. Currently, no FDA-approved pharmacotherapy is available for treating SCI. Previously, low doses of estrogen (17β-estradiol, E2) were shown to improve the post-injury outcome in a rat SCI model. However, the range of associated side effects makes advocating its therapeutic use difficult. Therefore, this study aimed at investigating the therapeutic efficacy of Premarin (PRM) in SCI. PRM is an FDA-approved E2 (10%) formulation, which is used for hormone replacement therapy with minimal risk of serious side effects. The effects of PRM on SCI were examined by magnetic resonance imaging, immunofluorescent staining, and western blot analysis in a rat model. SCI animals treated with vehicle alone, PRM, E2 receptor antagonist (ICI), or PRM + ICI were graded in a blinded way for locomotor function by using the Basso–Beattie–Bresnahan (BBB) locomotor scale. PRM treatment for 7 days decreased post-SCI lesion volume and attenuated neuronal cell death, inflammation, and axonal damage. PRM also altered the balance of pro- and anti-apoptotic proteins in favor of cell survival and improved angiogenesis and microvascular growth. Increased expression of estrogen receptors (ERs) ERα and ERβ following PRM treatment and their inhibition by ER inhibitor indicated that the neuroprotection associated with PRM treatment might be E2-receptor mediated. The attenuation of glial activation with decreased inflammation and cell death, and increased angiogenesis by PRM led to improved functional outcome as determined by the BBB locomotor scale. These results suggest that PRM treatment has significant therapeutic implications for the improvement of post-SCI outcome.
Collapse
|
5
|
Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021; 6:406. [PMID: 34815399 PMCID: PMC8609271 DOI: 10.1038/s41392-021-00818-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Currently, SARS-CoV-2 has caused a global pandemic and threatened many lives. Although SARS-CoV-2 mainly causes respiratory diseases, growing data indicate that SARS-CoV-2 can also invade the central nervous system (CNS) and peripheral nervous system (PNS) causing multiple neurological diseases, such as encephalitis, encephalopathy, Guillain-Barré syndrome, meningitis, and skeletal muscular symptoms. Despite the increasing incidences of clinical neurological complications of SARS-CoV-2, the precise neuroinvasion mechanisms of SARS-CoV-2 have not been fully established. In this review, we primarily describe the clinical neurological complications associated with SARS-CoV-2 and discuss the potential mechanisms through which SARS-CoV-2 invades the brain based on the current evidence. Finally, we summarize the experimental models were used to study SARS-CoV-2 neuroinvasion. These data form the basis for studies on the significance of SARS-CoV-2 infection in the brain.
Collapse
Affiliation(s)
- Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatricts, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular, Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Blank N, Mayer M, Mass E. The development and physiological and pathophysiological functions of resident macrophages and glial cells. Adv Immunol 2021; 151:1-47. [PMID: 34656287 DOI: 10.1016/bs.ai.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past, brain function and the onset and progression of neurological diseases have been studied in a neuron-centric manner. However, in recent years the focus of many neuroscientists has shifted to other cell types that promote neurodevelopment and contribute to the functionality of neuronal networks in health and disease. Particularly microglia and astrocytes have been implicated in actively contributing to and controlling neuronal development, neuroinflammation, and neurodegeneration. Here, we summarize the development of brain-resident macrophages and astrocytes and their core functions in the developing brain. We discuss their contribution and intercellular crosstalk during tissue homeostasis and pathophysiology. We argue that in-depth knowledge of non-neuronal cells in the brain could provide novel therapeutic targets to reverse or contain neurological diseases.
Collapse
Affiliation(s)
- Nelli Blank
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Marina Mayer
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Lee CG, Moon SR, Cho MY, Park KR. Mast cell degranulation and vascular endothelial growth factor expression in mouse skin following ionizing irradiation. JOURNAL OF RADIATION RESEARCH 2021; 62:856-860. [PMID: 34350962 PMCID: PMC8438482 DOI: 10.1093/jrr/rrab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The present study aimed to identify the mechanisms underlying the increase in vascular permeability in mouse skin following irradiation. The left ears of C3H mice were subjected to 2 and 15 Gy of radiation in a single exposure. At 24 h after irradiation, the ears were excised and tissue sections were stained with toluidine blue to assess mast cell degranulation. Vascular endothelial growth factor (VEGF) expression was assessed via immunohistochemistry and western blotting. Approximately 5% (3%-14%) (mean [95% CI]) of mast cells in the skin of control mice were degranulated; moreover, at 24 h after 2 Gy irradiation, this value increased to approximately 20% (17%-28%). Mast cell degranulation by 15 Gy irradiation (32% [24%-40%]) was greater than that by 2 Gy irradiation. Significant differences were observed in mast cell degranulation among the control, 2 Gy and 15 Gy groups (p = 0.012). Furthermore, VEGF-positive reactions were observed in the cytoplasm of scattered fibroblasts in the dermis. In immunohistochemistry tests, VEGF expression at 24 h after irradiation increased slightly in the 2 Gy group compared to that in the control group, whereas no difference in VEGF expression was observed in the 15 Gy group compared to that in the control group. Expression of VEGF in western blots was consistent with that in immunohistochemistry. In conclusion, mast cell degranulation was increased in mouse skin at 24 h after irradiation in a dose-dependent manner. In contrast, VEGF expression was slightly increased following only low-dose (2 Gy) irradiation.
Collapse
Affiliation(s)
- Chang Geol Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Rock Moon
- Department of Radiation Oncology, Wonkwang University College of Medicine, Iksan, South Korea
| | - Mee Yon Cho
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Kyung Ran Park
- Department of Radiation Oncology, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
8
|
Neuroprotective Effect of Vascular Endothelial Growth Factor on Motoneurons of the Oculomotor System. Int J Mol Sci 2021; 22:ijms22020814. [PMID: 33467517 PMCID: PMC7830098 DOI: 10.3390/ijms22020814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) was initially characterized as a potent angiogenic factor based on its activity on the vascular system. However, it is now well established that VEGF also plays a crucial role as a neuroprotective factor in the nervous system. A deficit of VEGF has been related to motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). Strikingly, motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration in ALS compared to other motoneurons. These motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem pools. That higher VEGF level could be due to an enhanced retrograde input from their target muscles, but it can also be produced by the motoneurons themselves and act in an autocrine way. By contrast, VEGF’s paracrine supply from the vicinity cells, such as glial cells, seems to represent a minor source of VEGF for brainstem motoneurons. In addition, ocular motoneurons experiment an increase in VEGF and Flk-1 level in response to axotomy, not observed in facial or hypoglossal motoneurons. Therefore, in this review, we summarize the differences in VEGF availability that could contribute to the higher resistance of extraocular motoneurons to injury and neurodegenerative diseases.
Collapse
|
9
|
Silva-Hucha S, Carrero-Rojas G, Fernández de Sevilla ME, Benítez-Temiño B, Davis-López de Carrizosa MA, Pastor AM, Morcuende S. Sources and lesion-induced changes of VEGF expression in brainstem motoneurons. Brain Struct Funct 2020; 225:1033-1053. [PMID: 32189115 DOI: 10.1007/s00429-020-02057-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration compared to other cranial motoneurons, as seen in amyotrophic lateral sclerosis (ALS). The overexpression of vascular endothelial growth factor (VEGF) is involved in motoneuronal protection. As previously shown, motoneurons innervating extraocular muscles present a higher amount of VEGF and its receptor Flk-1 compared to facial or hypoglossal motoneurons. Therefore, we aimed to study the possible sources of VEGF to brainstem motoneurons, such as glial cells and target muscles. We also studied the regulation of VEGF in response to axotomy in ocular, facial, and hypoglossal motor nuclei. Basal VEGF expression in astrocytes and microglial cells of the cranial motor nuclei was low. Although the presence of VEGF in the different target muscles for brainstem motoneurons was similar, the presynaptic element of the ocular neuromuscular junction showed higher amounts of Flk-1, which could result in greater efficiency in the capture of the factor by oculomotor neurons. Seven days after axotomy, a clear glial reaction was observed in all the brainstem nuclei, but the levels of the neurotrophic factor remained low in glial cells. Only the injured motoneurons of the oculomotor system showed an increase in VEGF and Flk-1, but such an increase was not detected in axotomized facial or hypoglossal motoneurons. Taken together, our findings suggest that the ocular motoneurons themselves upregulate VEGF expression in response to lesion. In conclusion, the low VEGF expression observed in glial cells suggests that these cells are not the main source of VEGF for brainstem motoneurons. Therefore, the higher VEGF expression observed in motoneurons innervating extraocular muscles is likely due either to the fact that this factor is more avidly taken up from the target muscles, in basal conditions, or is produced by these motoneurons themselves, and acts in an autocrine manner after axotomy.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
10
|
Dahl NA, Liu A, Foreman N, Widener M, Fenton L, Macy ME. Bevacizumab in the treatment of radiation injury for children with central nervous system tumors. Childs Nerv Syst 2019; 35:2043-2046. [PMID: 31367784 PMCID: PMC7251774 DOI: 10.1007/s00381-019-04304-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Radiation-induced injury is a well-described toxicity in children receiving radiation therapy for tumors of the central nervous system. Standard therapy has historically consisted primarily of high-dose corticosteroids, which carry significant side effects. Preclinical models suggest that radiation necrosis may be mediated in part through vascular endothelial growth factor (VEGF) overexpression, providing the rationale for use of VEGF inhibitors in the treatment of CNS radiation necrosis. We present the first prospective experience examining the safety, feasibility, neurologic outcomes, and imaging characteristics of bevacizumab therapy for CNS radiation necrosis in children. METHODS Seven patients between 1 and 25 years of age with neurologic deterioration and MRI findings consistent with radiation injury or necrosis were enrolled on an IRB-approved pilot feasibility study. Patients received bevacizumab at a dose of 10 mg/kg intravenously every 2 weeks for up to 6 total doses. RESULTS Five patients (83%) were able to wean off corticosteroid therapy during the study period and 4 patients (57%) demonstrated improvement in serial neurologic exams. All patients demonstrated a decrease in T1-weighted post-gadolinium enhancement on MRI, while 5 (71%) showed a decrease in FLAIR signal. Four patients developed a progressive disease of their underlying tumor during bevacizumab therapy. CONCLUSIONS Our experience lends support to the safety and feasibility of bevacizumab administration for the treatment of radiation necrosis for appropriately selected patients within the pediatric population.
Collapse
Affiliation(s)
- Nathan A. Dahl
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Denver, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Arthur Liu
- Department of Radiation Oncology, University of Colorado School of Medicine, Denver, Colorado
| | - Nicholas Foreman
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Denver, Colorado,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Melissa Widener
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Denver, Colorado
| | - Laura Fenton
- Department of Radiology, Children’s Hospital Colorado, Denver, Colorado
| | - Margaret E. Macy
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Denver, Colorado
| |
Collapse
|
11
|
Innovative mouse model mimicking human-like features of spinal cord injury: efficacy of Docosahexaenoic acid on acute and chronic phases. Sci Rep 2019; 9:8883. [PMID: 31222077 PMCID: PMC6586623 DOI: 10.1038/s41598-019-45037-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury has dramatic consequences and a huge social impact. We propose a new mouse model of spinal trauma that induces a complete paralysis of hindlimbs, still observable 30 days after injury. The contusion, performed without laminectomy and deriving from the pressure exerted directly on the bone, mimics more closely many features of spinal injury in humans. Spinal cord was injured at thoracic level 10 (T10) in adult anesthetized female CD1 mice, mounted on stereotaxic apparatus and connected to a precision impactor device. Following severe injury, we evaluated motor and sensory functions, and histological/morphological features of spinal tissue at different time points. Moreover, we studied the effects of early and subchronic administration of Docosahexaenoic acid, investigating functional responses, structural changes proximal and distal to the lesion in primary and secondary injury phases, proteome modulation in injured spinal cord. Docosahexaenoic acid was able i) to restore behavioural responses and ii) to induce pro-regenerative effects and neuroprotective action against demyelination, apoptosis and neuroinflammation. Considering the urgent health challenge represented by spinal injury, this new and reliable mouse model together with the positive effects of docosahexaenoic acid provide important translational implications for promising therapeutic approaches for spinal cord injuries.
Collapse
|
12
|
A Delay between Motor Cortex Lesions and Neuronal Transplantation Enhances Graft Integration and Improves Repair and Recovery. J Neurosci 2017; 37:1820-1834. [PMID: 28087762 DOI: 10.1523/jneurosci.2936-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 01/28/2023] Open
Abstract
We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged motor cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. Here, we report that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, and proliferation of grafted cells. More importantly, the delay dramatically increases the density of projections developed by grafted neurons and improves functional repair and recovery as assessed by intravital dynamic imaging and behavioral tests. These findings open new avenues in cell transplantation strategies as they indicate successful brain repair may occur following delayed transplantation.SIGNIFICANCE STATEMENT Cell transplantation represents a promising therapy for cortical trauma. We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. We demonstrate that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, proliferation, and the density of the projections developed by grafted neurons. More importantly, the delay has a beneficial impact on functional repair and recovery. These results impact the effectiveness of transplantation strategies in a wide range of traumatic injuries for which therapeutic intervention is not immediately feasible.
Collapse
|
13
|
Pandamooz S, Nabiuni M, Miyan J, Ahmadiani A, Dargahi L. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening. Mol Neurobiol 2015; 53:4659-74. [PMID: 26310972 DOI: 10.1007/s12035-015-9403-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Recent improvements in organotypic slice culturing and its accompanying technological innovations have made this biological preparation increasingly useful ex vivo experimental model. Among organotypic slice cultures obtained from various central nervous regions, spinal cord slice culture is an absorbing model that represents several unique advantages over other current in vitro and in vivo models. The culture of developing spinal cord slices, as allows real-time observation of embryonic cells behaviors, is an instrumental platform for developmental investigation. Importantly, due to the ability of ex vivo models to recapitulate different aspects of corresponding in vivo conditions, these models have been subject of various manipulations to derive disease-relevant slice models. Moreover spinal cord slice cultures represent a potential platform for screening of different pharmacological agents and evaluation of cell transplantation and neuroregenerative materials. In this review, we will focus on studies carried out using the ex vivo model of spinal cord slice cultures and main advantages linked to practicality of these slices in both normal and neuropathological diseases and summarize them in different categories based on application.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Wang H, Wang Y, Li D, Liu Z, Zhao Z, Han D, Yuan Y, Bi J, Mei X. VEGF inhibits the inflammation in spinal cord injury through activation of autophagy. Biochem Biophys Res Commun 2015; 464:453-458. [PMID: 26116774 DOI: 10.1016/j.bbrc.2015.06.146] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a secreted mitogen associated with angiogenesis and re-vascularization of spinal cord injury (SCI). VEGF has long been thought to be a potent neurotrophic factor for the survival of spinal cord neuron. However, the neuroprotective mechanism of VEGF is still unclear. The aim of this study was to investigate the effect of VEGF on spinal cord injury and its mechanisms. Young male Wistar rats were subjected to SCI and then VEGF165 were injected directly into the lesion epicenter 24 h post injury. We detected Basso, Beattie and Bresnahan (BBB) scores and numbers of motor neuron via Nissl staining. The expressions of autophagy related protein Beclin1 and LC3B were determined by Western blot and RT-PCR. We also detected the contents of inflammation factors interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α) and interleukin-10(IL-10) in LPS (Lipopolysaccharide) treated spinal neuron-glia co-culture by ELISA. We found that VEGF165 administration increased the BBB score and reduced the loss of motor neuron of rats induced by SCI. VEGF decreased the protein expressions of IL-1β, TNF-α and IL-10 and up-regulated the expressions of Beclin1 and LC3B of rats. In the in vitro study, VEGF165 decreased the levels of IL-1β, IL-10 and TNF-a in the medium of LPS treated spinal neuron-glia co-culture, which was partially blocked by 3-MA, the inhibitor of autophagy. In addition, VEGF165 up-regulate the expressions of Beclin1 and LC3B in co-culture cells. The results suggested that VEGF165 attenuated the spinal cord injury by inhibiting the inflammation and increasing the autophagy function.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Yansong Wang
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Dingding Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Zhiyuan Liu
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Ziming Zhao
- Department of Stomatology, Second Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Donghe Han
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Liaoning Medical University, Jinzhou City, PR China
| | - Yajiang Yuan
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China
| | - Jing Bi
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Liaoning Medical University, Jinzhou City, PR China
| | - Xifan Mei
- Department of Orthopedic Surgery, First Affiliated Hospital of Liaoning Medical University, Jinzhou City, PR China.
| |
Collapse
|
15
|
Chemokine-ligands/receptors: multiplayers in traumatic spinal cord injury. Mediators Inflamm 2015; 2015:486758. [PMID: 25977600 PMCID: PMC4419224 DOI: 10.1155/2015/486758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc) insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor) in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.
Collapse
|
16
|
Epineural Tube Repair. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Yamaya S, Ozawa H, Kanno H, Kishimoto KN, Sekiguchi A, Tateda S, Yahata K, Ito K, Shimokawa H, Itoi E. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury. J Neurosurg 2014; 121:1514-25. [DOI: 10.3171/2014.8.jns132562] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Object
Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether lowenergy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI.
Methods
Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord.
Results
In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p < 0.05). The number of NeuN-positive cells in the SCI-SW group was significantly higher than that in the SCI group at 42 days after injury (p < 0.05). In addition, mRNA expressions of VEGF and Flt-1 were significantly increased in the SCI-SW group compared with the SCI group at 7 days after injury (p < 0.05). The expression of VEGF protein in the SCI-SW group was significantly higher than that in the SCI group at 7 days (p < 0.01).
Conclusions
The present study showed that low-energy ESWT significantly increased expressions of VEGF and Flt-1 in the spinal cord without any detrimental effect. Furthermore, it significantly reduced neuronal loss in damaged neural tissue and improved locomotor function after SCI. These results suggested that low-energy ESWT enhances the neuroprotective effect of VEGF in reducing secondary injury and leads to better locomotor recovery following SCI. This study provides the first evidence that low-energy ESWT can be a safe and promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenta Ito
- 2Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- 2Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- 1Departments of Orthopaedic Surgery and
| |
Collapse
|
18
|
Mecollari V, Nieuwenhuis B, Verhaagen J. A perspective on the role of class III semaphorin signaling in central nervous system trauma. Front Cell Neurosci 2014; 8:328. [PMID: 25386118 PMCID: PMC4209881 DOI: 10.3389/fncel.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) has severe impact on the patients’ quality of life and initiates many molecular and cellular changes at the site of insult. Traumatic CNS injury results in direct damage of the axons of CNS neurons, loss of myelin sheaths, destruction of the surrounding vascular architecture and initiation of an immune response. Class III semaphorins (SEMA3s) are present in the neural scar and influence a wide range of molecules and cell types in and surrounding the injured tissue. SEMA3s and their receptors, neuropilins (NRPs) and plexins (PLXNs) were initially studied because of their involvement in repulsive axon guidance. To date, SEMA3 signaling is recognized to be of crucial importance for re-vascularization, the immune response and remyelination. The purpose of this review is to summarize and discuss how SEMA3s modulate these processes that are all crucial components of the tissue response to injury. Most of the functions for SEMA3s are achieved through their binding partners NRPs, which are also co-receptors for a variety of other molecules implicated in the above processes. The most notable ligands are members of the vascular endothelial growth factor (VEGF) family and the transforming growth factor family. Therefore, a second aim is to highlight the overlapping or competing signaling pathways that are mediated through NRPs in the same processes. In conclusion, we show that the role of SEMA3s goes beyond inhibiting axonal regeneration, since they are also critical modulators of re-vascularization, the immune response and re-myelination.
Collapse
Affiliation(s)
- Vasil Mecollari
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Bart Nieuwenhuis
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
19
|
Vijayalakshmi K, Ostwal P, Sumitha R, Shruthi S, Varghese AM, Mishra P, Manohari SG, Sagar BC, Sathyaprabha TN, Nalini A, Raju TR, Alladi PA. Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line. Mol Neurobiol 2014; 51:995-1007. [PMID: 24880751 DOI: 10.1007/s12035-014-8757-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.
Collapse
Affiliation(s)
- K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore, 560 029, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Third trimester NG2-positive amniotic fluid cells are effective in improving repair in spinal cord injury. Exp Neurol 2014; 254:121-33. [DOI: 10.1016/j.expneurol.2014.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/17/2022]
|
21
|
Kelsey CR, Vujaskovic Z, Jackson IL, Riedel RF, Marks LB. Lung. ALERT • ADVERSE LATE EFFECTS OF CANCER TREATMENT 2014. [PMCID: PMC7121399 DOI: 10.1007/978-3-540-75863-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The lungs are particularly sensitive to RT, and are often the primary dose-limiting structure during thoracic therapy. The alveolar/capillary units and pneumocytes within the alveoli appear to be particularly sensitive to RT. Hypoxia may be important in the underlying physiology of RT-associated lung injury. The cytokine transforming growth factor-beta (TGF-β), plays an important role in the development of RT-induced fibrosis. The histopathological changes observed in the lung after RT are broadly characterized as diffuse alveolar damage. The interaction between pre-treatment PFTs and the risk of symptomatic lung injury is complex. Similarly, the link between changes in PFTs and the development of symptoms is uncertain. The incidence of symptomatic lung injury increases with increase in most dosimetric parameters. The mean lung dose (MLD) and V20 have been the most-often considered parameters. MLD might be a preferable metric since it considers the entire 3D dose distribution. Radiation to the lower lobes appears to be more often associated with clinical symptoms than is radiation to the upper lobes. This might be related to incidental cardiac irradiation. In pre-clinical models, there appears to be a complex interaction between lung and heart irradiation. TGF-β has been suggested in several studies to predict for RT-induced lung injury, but the data are still somewhat inconsistent. Oral prednisone (Salinas and Winterbauer 1995), typically 40–60 mg daily for 1–2 weeks with a slow taper, is usually effective in treating pneumonitis. There are no widely accepted treatments for fibrosis. A number of chemotherapeutic agents have been suggested to be associated with a range of pulmonary toxicities.
Collapse
|
22
|
Yeom KW, Lober RM, Partap S, Telischak N, Tsolinas R, Barnes PD, Edwards MSB. Increased focal hemosiderin deposition in pediatric medulloblastoma patients receiving radiotherapy at a later age. J Neurosurg Pediatr 2013; 12:444-51. [PMID: 23992236 DOI: 10.3171/2013.7.peds1330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Focal hemosiderin deposition (FHD) is commonly observed on brain MRI scans of patients treated for childhood medulloblastoma (MB). The authors sought to determine the clinical significance of FHD and its relationship to patient age, radiation dose, and cognitive outcomes. METHODS A single-institution retrospective study of 93 MB patients at Lucile Packard Children's Hospital at Stanford from 1998 to 2011 identified 41 patients with a negative baseline MRI scan and at least 2 posttreatment MRI scans obtained with T2* gradient recalled echo (GRE). The number and cumulative rate of FHDs detectable by GRE were compared between patients aged 6 years and younger (early age) and aged 7-21 years (late age) at the time of radiotherapy (RT) and between low-dose (1800-2340 cGy) and high-dose (2920-3960 cGy) RT. RESULTS The median age at MB diagnosis was 7.3 years (range 0.9-21.0 years), the median clinical follow-up period was 5.8 years (range 0.8-13.4 years), and the median 5-year overall survival was 81% ± 7%. Of 30 school-aged children with MB, 21 (70%) required special education, and the median IQ of 10 tested patients was 100 (range 50-118). Thirty-three patients (80%) had FHD after a median latency of 1.9 years (range 0.1-5.9 years). Ninety-four percent (436 of 466) of the lesions arose in the supratentorial region of the brain, whereas 29 (6%) resided in the brainstem or the cerebellum. No spinal lesions were observed on routine spine MRI scans using T2 fast spin echo imaging. The mean cumulative lesion rate per year was 2.23 ± 3.05, and this rate was higher in older children at the time of RT compared with younger children (3.23 vs 0.67 per year, p = 0.002) but did not differ among different RT doses (p = 0.395). A child's IQ or need for special education showed no significant correlation with the rate of lesion development or number of lesions. None of the lesions resulted in symptomatic hemorrhage that required surgical intervention. CONCLUSIONS More FHD was observed in children treated for MB at the older ages than in those treated at the younger ages. There was no significant association of the incidence of FHD with radiation dose or cognitive outcomes, and none of the lesions required surgical intervention.
Collapse
|
23
|
Lladó J, Tolosa L, Olmos G. Cellular and molecular mechanisms involved in the neuroprotective effects of VEGF on motoneurons. Front Cell Neurosci 2013; 7:181. [PMID: 24155688 PMCID: PMC3803143 DOI: 10.3389/fncel.2013.00181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023] Open
Abstract
Vascular endothelial growth factor (VEGF), originally described as a factor with a regulatory role in vascular growth and development, it is also known for its direct effects on neuronal cells. The discovery in the past decade that transgenic mice expressing reduced levels of VEGF developed late-onset motoneuron pathology, reminiscent of amyotrophic lateral sclerosis (ALS), opened a new field of research on this disease. VEGF has been shown to protect motoneurons from excitotoxic death, which is a relevant mechanism involved in motoneuron degeneration in ALS. Thus, VEGF delays motoneuron degeneration and increases survival in animal models of ALS. VEGF exerts its anti-excitotoxic effects on motoneurons through molecular mechanisms involving the VEGF receptor-2 resulting in the activation of the PI3-K/Akt signaling pathway, upregulation of GluR2 subunit of AMPA receptors, inhibition of p38MAPK, and induction of the anti-apoptotic molecule Bcl-2. In addition, VEGF acts on astrocytes to reduce astroglial activation and to induce the release of growth factors. The potential use of VEGF as a therapeutic tool in ALS is counteracted by its vascular effects and by its short effective time frame. More studies are needed to assess the optimal isoform, route of administration, and time frame for using VEGF in the treatment of ALS.
Collapse
Affiliation(s)
- Jerònia Lladó
- Grup de Neurobiologia Celular, Departament de Biologia, Universitat de les Illes Balears Palma de Mallorca, Spain ; Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Universitat de les Illes Balears Palma de Mallorca, Spain
| | | | | |
Collapse
|
24
|
Kundi S, Bicknell R, Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci Res 2013; 76:1-9. [PMID: 23562792 DOI: 10.1016/j.neures.2013.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Patients with spinal cord injury (SCI) are permanently paralysed and anaesthetic below the lesion. This morbidity is attributed to the deposition of a dense scar at the injury site, the cellular components of which secrete axon growth inhibitory ligands that prevent severed axons reconnecting with denervated targets. Another complication of SCI is wound cavitation where a fluid filled cyst forms in the peri-lesion neuropil, enlarging over the first few months after injury and causes secondary axonal damage. Wound healing after SCI is accompanied by angiogenesis, which is regulated by angiogenic proteins, produced in response to oxygen deprivation. Necrosis in and about the SCI lesion sites may be suppressed by promoting angiogenesis and the resulting neuropil protection will enhance recovery after SCI. This review addresses the use of angiogenic/wound-healing related proteins including vascular endothelial growth factor, fibroblast growth factor, angiopoietin-1, angiopoietin-2 and transforming growth factor-β to moderate necrosis and axon sparing after SCI, providing a conducive environment for growth essential to functional recovery.
Collapse
Affiliation(s)
- Sarina Kundi
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
25
|
Cholas R, Hsu HP, Spector M. Collagen Scaffolds Incorporating Select Therapeutic Agents to Facilitate a Reparative Response in a Standardized Hemiresection Defect in the Rat Spinal Cord. Tissue Eng Part A 2012; 18:2158-72. [DOI: 10.1089/ten.tea.2011.0577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rahmatullah Cholas
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Tissue Engineering Laboratories, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Hu-Ping Hsu
- Tissue Engineering Laboratories, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Myron Spector
- Tissue Engineering Laboratories, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Histopathological Investigation of Syringomyelia in the Cavalier King Charles Spaniel. J Comp Pathol 2012; 146:192-201. [DOI: 10.1016/j.jcpa.2011.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 11/21/2022]
|
27
|
Gupta PK, Prabhakar S, Abburi C, Sharma NK, Anand A. Vascular endothelial growth factor-A and chemokine ligand (CCL2) genes are upregulated in peripheral blood mononuclear cells in Indian amyotrophic lateral sclerosis patients. J Neuroinflammation 2011; 8:114. [PMID: 21906274 PMCID: PMC3177897 DOI: 10.1186/1742-2094-8-114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022] Open
Abstract
Background We have earlier shown that protein levels of vascular endothelial growth factor-A (VEGF-A) and chemokine ligand-2 (CCL2) were elevated in Indian amyotrophic lateral sclerosis (ALS) patients. Here, we report the mRNA levels of VEGF-A and CCL2 in Indian ALS patients since they display extended survival after disease onset. Methods VEGF-A and CCL2 mRNA levels were measured in peripheral blood mononuclear cells (PBMCs) of 50 sporadic Indian ALS patients using Real Time Polymerase Chain Reaction (PCR) and compared with normal controls (n = 50). Their levels were adjusted for possible confounders like cigarette smoking, alcohol and meat consumption. Results VEGF-A and CCL2 mRNA levels were found to be significantly elevated in PBMCs in ALS patients as compared to controls. PBMCs from definite ALS revealed higher VEGF-A mRNA expression as compared to probable and possible ALS. CCL2 mRNA levels were found to be unaltered when definite, probable and possible ALS were compared. PBMCs from patients with respiratory dysfunction showed much higher VEGF-A and CCL2 elevation when compared to patients without respiratory dysfunction. No association of smoking, alcohol and meat consumption with VEGF-A and CCL2 was observed after analyzing the data with univariate and multivariate analysis. Conclusion VEGF-A and CCL2 mRNA upregulation in PBMCs may have a clinico-pathological/etiological/epidemiological association with ALS pathogenesis. The cross-cultural and cross-ethnic investigations of these molecules could determine if they have any role in enhancing the mean survival time unique to Indian ALS patients.
Collapse
Affiliation(s)
- Pawan K Gupta
- Department of Neurology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | | | |
Collapse
|
28
|
Peripheral Nerve Defect Repair With Epineural Tubes Supported With Bone Marrow Stromal Cells. Ann Plast Surg 2011; 67:73-84. [DOI: 10.1097/sap.0b013e318223c2db] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
De Laporte L, des Rieux A, Tuinstra HM, Zelivyanskaya ML, De Clerck NM, Postnov AA, Préat V, Shea LD. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury. J Biomed Mater Res A 2011; 98:372-82. [PMID: 21630429 DOI: 10.1002/jbm.a.33112] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/18/2010] [Accepted: 01/13/2011] [Indexed: 12/12/2022]
Abstract
The host response to spinal cord injury can lead to an ischemic environment that can induce cell death and limits cell transplantation approaches to promote spinal cord regeneration. Spinal cord bridges that provide a localized and sustained release of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) were investigated for their ability to promote angiogenesis and nerve growth within the injury. Bridges were fabricated by fusion of poly(lactide-co-glycolide) microspheres using a gas foaming/particulate leaching technique, and proteins were incorporated by encapsulation into the microspheres and/or mixing with the microspheres before foaming. Compared to the mixing method, encapsulation reduced the losses during leaching and had a slower protein release, while VEGF was released more rapidly than FGF-2. In vivo implantation of bridges loaded with VEGF enhanced the levels of VEGF within the injury at 1 week, and bridges releasing VEGF and FGF-2 increased the infiltration of endothelial cells and the formation of blood vessel at 6 weeks postimplantation. Additionally, substantial neurofilament staining was observed within the bridge; however, no significant difference was observed between bridges with or without protein. Bridges releasing angiogenic factors may provide an approach to overcome an ischemic environment that limits regeneration and cell transplantation-based approaches.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
van Neerven S, Joosten EA, Brook GA, Lambert CA, Mey J, Weis J, Marcus MA, Steinbusch HW, van Kleef M, Patijn J, Deumens R. Repetitive Intrathecal VEGF165 Treatment Has Limited Therapeutic Effects after Spinal Cord Injury in the Rat. J Neurotrauma 2010; 27:1781-91. [DOI: 10.1089/neu.2010.1484] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Sabien van Neerven
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute of Biology II, Medical Faculty, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Elbert A.J. Joosten
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Gary A. Brook
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Charles A. Lambert
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Sart-Tilman, Belgium
| | - Jörg Mey
- Institute of Biology II, Medical Faculty, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Marco A. Marcus
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Harry W. Steinbusch
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Maarten van Kleef
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaap Patijn
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronald Deumens
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
- European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| |
Collapse
|
31
|
Patel CB, Cohen DM, Ahobila-Vajjula P, Sundberg LM, Chacko T, Narayana PA. Effect of VEGF treatment on the blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced magnetic resonance imaging. J Neurotrauma 2010; 26:1005-16. [PMID: 19226205 DOI: 10.1089/neu.2008.0860] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.
Collapse
Affiliation(s)
- Chirag B Patel
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Serum levels of platelet-derived growth factor BB homodimers are increased in male children with autism. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:154-8. [PMID: 19879307 DOI: 10.1016/j.pnpbp.2009.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 01/08/2023]
Abstract
BACKGROUND The neurobiological basis of autism remains poorly understood. To examine the role played by serum cytokines in brain development, we hypothesized that Platelet-Derived Growth Factor (PDGF) and Vascular Endothelial Growth Factor (VEGF) may be associated with pathophysiology of autism. In this study, we screened serum levels of these growth factors in young male subjects with autism. METHODS We measured serum levels of PDGF subtypes and VEGF in the 31 male children with autism (6-19 years old) and 31 healthy age- and gender-matched subjects. RESULTS The serum levels of PDGF-BB in male children with autism (N=31, 5624.5+/-1651.8 pg/mL [mean+/-SD]) were significantly higher (two-tailed Student's t-test: p=0.0188) than those of normal control subjects (N=31, 4758.2+/-1521.5 pg/mL [mean+/-SD]). There was a significant and positive correlation (Pearson's r=0.5320, p=0.0010) between the serum levels of PDGF-BB and the Autism Diagnostic Interview-Revised (ADI-R) domain C scores, which represent stereotyped patterns of behavior in the children with autism. However, there were no marked or significant correlations between serum PDGF-BB levels and clinical variables, including the other ADI-R scores and Intellectual Quotient (IQ) scores by WAIS-R. There were no significant change and correlations with clinical variables in serum PDGF-AA, PDGF-AB, and VEGF levels in the children with autism. CONCLUSIONS Increased levels of serum PDGF-BB homodimers might be implicated in the pathophysiology of autism.
Collapse
|
33
|
Azadzoi KM, Golabek T, Radisavljevic ZM, Yalla SV, Siroky MB. Oxidative stress and neurodegeneration in penile ischaemia. BJU Int 2010; 105:404-10. [DOI: 10.1111/j.1464-410x.2009.08717.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Tang ZY, Shu B, Cui XJ, Zhou CJ, Shi Q, Holz J, Wang YJ. Changes of cervical dorsal root ganglia induced by compression injury and decompression procedure: a novel rat model of cervical radiculoneuropathy. J Neurotrauma 2009; 26:289-95. [PMID: 19191544 DOI: 10.1089/neu.2008.0506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our study aimed to establish a model of compression injury of cervical dorsal root ganglia (DRG) in the rat and to investigate the pathological changes following compression injury and decompression procedures. Thirty rats were divided into three groups: control group receiving sham surgery, compression group undergoing surgery to place a micro-silica gel on C6 DRG, and decompression group with subsequent decompression procedure. The samples harvested from the different groups were examined with light microscopy, ultrastructural analysis, and horseradish peroxidase (HRP) retrograde tracing techniques. Apoptosis of DRG neurons was demonstrated with TUNEL staining. Changes in PGE2 and PLA2 in DRG neurons were detected with enzyme-linked immunosorbent assay (ELISA). Local expression of vascular endothelial growth factor (VEGF) was monitored with immunohistochemistry. DRG neurons in the compression group became swollen with vacuolar changes in cytoplasm. Decompression procedure partially ameliorated the resultant compression pathology. Ultrastructural examination showed a large number of swollen vacuoles, demyelinated nerve root fibers, absence of Schwann cells, and proliferation in the surrounding connective tissues in the compression group. Compared to the control group, the compression group showed a significant decrease in the number of the HRP-labeled cells and a significant increase in levels of PGE2 and PLA2, in the expression of VEGF protein, and in the number of apoptotic DRG neurons. These findings demonstrate that compression results in local inflammation, followed by increased apoptosis and upregulation of VEGF. We conclude that such a model provides a tool to study the pathogenesis and treatment of cervical radiculoneuropathy.
Collapse
Affiliation(s)
- Zhan-Ying Tang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu AK, Macy ME, Foreman NK. Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys 2009; 75:1148-54. [PMID: 19857784 DOI: 10.1016/j.ijrobp.2008.12.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 12/18/2008] [Indexed: 10/20/2022]
Abstract
PURPOSE Diffuse pontine gliomas are a pediatric brain tumor that is fatal in nearly all patients. Given the poor prognosis for patients with this tumor, their quality of life is very important. Radiation therapy provides some palliation, but can result in radiation necrosis and associated neurologic decline. The typical treatment for this necrosis is steroid therapy. Although the steroids are effective, they have numerous side effects that can often significantly compromise quality of life. Bevacizumab, an antibody against vascular endothelial growth factor, has been suggested as a treatment for radiation necrosis. We report on our initial experience with bevacizumab therapy for radiation necrosis in pediatric pontine gliomas. MATERIALS AND METHODS Four children with pontine gliomas treated at the Children's Hospital in Denver and the University of Colorado Denver developed evidence of radiation necrosis both clinically and on imaging. Those 4 children then received bevacizumab as a treatment for the radiation necrosis. We reviewed the clinical outcome and imaging findings. RESULTS After bevacizumab therapy, 3 children had significant clinical improvement and were able to discontinue steroid use. One child continued to decline, and, in retrospect, had disease progression, not radiation necrosis. In all cases, bevacizumab was well tolerated. CONCLUSIONS In children with pontine gliomas, bevacizumab may provide both therapeutic benefit and diagnostic information. More formal evaluation of bevacizumab in these children is needed.
Collapse
Affiliation(s)
- Arthur K Liu
- University of Colorado Denver, Department of Radiation Oncology, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
36
|
Benton RL, Maddie MA, Gruenthal MJ, Hagg T, Whittemore SR. Neutralizing endogenous VEGF following traumatic spinal cord injury modulates microvascular plasticity but not tissue sparing or functional recovery. Curr Neurovasc Res 2009; 6:124-31. [PMID: 19442162 DOI: 10.2174/156720209788185678] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute loss of spinal cord vascularity followed by an endogenous adaptive angiogenic response with concomitant microvascular dysfunction is a hallmark of traumatic spinal cord injury (SCI). Recently, the potent vasoactive factor vascular endothelial growth factor (VEGF) has received much attention as a putative therapeutic for the treatment of various neurodegenerative disorders, including SCI. Exogenous VEGF exerts both protective and destabilizing effects on microvascular elements and tissue following SCI but the role of endogenous VEGF is unclear. In the present study, we systemically applied a potent and well characterized soluble VEGF antagonist to adult C57Bl/6 mice post-SCI to elucidate the relative contribution of VEGF on the acute evolving microvascular response and its impact on functional recovery. While the VEGF Trap did not alter vascular density in the injury epicenter or penumbra, an overall increase in the number of Griffonia simplicifolia isolectin-B4 bound microvessels was observed, suggesting a VEGF-dependency to more subtle aspects of endothelial plasticity post-SCI. Neutralizing endogenous VEGF neither attenuated nor exacerbated chronic histopathology or functional recovery. These results support the idea that overall, endogenous VEGF is not neuroprotective or detrimental following traumatic SCI. Furthermore, they suggest that angiogenesis in traumatically injured spinal tissue is regulated by multiple effectors and is not limited by endogenous VEGF activation of affected spinal microvessels.
Collapse
Affiliation(s)
- Richard L Benton
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
37
|
Li X, Lu L, Bush DJ, Zhang X, Zheng L, Suswam EA, King PH. Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3'-untranslated region. J Neurochem 2009; 108:1032-44. [PMID: 19196430 DOI: 10.1111/j.1471-4159.2008.05856.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a neurotrophic factor essential for maintenance of motor neurons. Loss of this factor produces a phenotype similar to amyotrophic lateral sclerosis (ALS). We recently showed that ALS-producing mutations of Cu/Zn-superoxide dismutase (SOD1) disrupt post-transcriptional regulation of VEGF mRNA, leading to significant loss of expression [Lu et al., J. Neurosci.27 (2007), 7929]. Mutant SOD1 was present in the ribonucleoprotein complex associated with adenine/uridine-rich elements (ARE) of the VEGF 3'-untranslated region (UTR). Here, we show by electrophoretic mobility shift assay that mutant SOD1 bound directly to the VEGF 3'-UTR with a predilection for AREs similar to the RNA stabilizer HuR. SOD1 mutants A4V and G37R showed higher affinity for the ARE than L38V or G93A. Wild-type SOD1 bound very weakly with an apparent K(d) 11- to 72-fold higher than mutant forms. Mutant SOD1 showed an additional lower shift with VEGF ARE that was accentuated in the metal-free state. A similar pattern of binding was observed with AREs of tumor necrosis factor-alpha and interleukin-8, except only a single shift predominated. Using an ELISA-based assay, we demonstrated that mutant SOD1 competes with HuR and neuronal HuC for VEGF 3'-UTR binding. To define potential RNA-binding domains, we truncated G37R, G93A and wild-type SOD1 and found that peptides from the N-terminal portion of the protein that included amino acids 32-49 could recapitulate the binding pattern of full-length protein. Thus, the strong RNA-binding affinity conferred by ALS-associated mutations of SOD1 may contribute to the post-transcriptional dysregulation of VEGF mRNA.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Neurology, University of Alabama at Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zeman RJ, Wen X, Ouyang N, Rocchio R, Shih L, Alfieri A, Moorthy C, Etlinger JD. STEREOTACTIC RADIOSURGERY IMPROVES LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY IN RATS. Neurosurgery 2008; 63:981-7; discussion 987-8. [DOI: 10.1227/01.neu.0000330404.37092.3e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
Currently, because of the precision of stereotactic radiosurgery, radiation can now be delivered by techniques that shape the radiation beam to the tissue target for a variety of clinical applications. This avoids unnecessary and potentially damaging irradiation of surrounding tissues inherent in conventional irradiation, so that irradiation of the minimum volume of tissue necessary for optimal therapeutic benefit can be achieved. Although conventional x-irradiation has been shown to improve recovery from spinal cord injury in animals, the efficacy of targeted irradiation of the injured spinal cord has not been demonstrated previously. The purpose of these studies was to determine whether stereotactic x-irradiation of the injured spinal cord can enhance locomotor function and spare spinal cord tissue after contusion injury in a standard experimental model of spinal cord injury.
METHODS
Contusion injury was produced in rats at the level of T10 with a weight-drop device, and doses of x-irradiation were delivered 2 hours after injury via a Novalis, 6-MeV linear accelerator shaped beam radiosurgery system (BrainLAB USA, Westchester, IL) in 4 sequential fractions, with beam angles 60 to 70 degrees apart, at a rate of 6.4 Gy/minute. The target volume was a 4 × 15-mm cylinder along the axis of the spinal cord, with the isocenter positioned at the contusion epicenter. Locomotor function was determined for 6 weeks after injury with the 21-point Basso, Beattie, and Bresnahan (BBB) locomotor scale and tissue sparing in histological sections of the spinal cord.
RESULTS
Locomotor function recovered progressively during the 6-week postinjury observation period. BBB scores were significantly greater in the 10-Gy x-irradiated group compared with controls (9.4 versus 7.3; P < 0.05), indicating hind limb weight support or dorsal stepping in contrast to hind limb joint mobility without weight bearing. Doses in the range of 2 to 10 Gy increased BBB scores progressively, whereas greater doses of 15 to 25 Gy were associated with lower BBB scores. The extent of locomotor recovery after treatment with x-irradiation correlated with measurements of spared spinal cord tissue at the contusion epicenter.
CONCLUSION
These results suggest a beneficial role for stereotactic radiosurgery in a rat model of acute spinal cord contusion injury and raise hopes for human treatment strategies. Additional animal studies are needed to further define potential benefits.
Collapse
Affiliation(s)
- Richard J. Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, and MotoGen, Inc., Mount Kisco, New York
| | - Xialing Wen
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Nengtai Ouyang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Ronald Rocchio
- Department of Radiation Medicine, New York Medical College, Valhalla, New York
| | - Lynn Shih
- Department of Radiation Medicine, New York Medical College, Valhalla, New York
| | - Alan Alfieri
- Department of Radiation Medicine, New York Medical College, Valhalla, New York
| | - Chitti Moorthy
- Department of Radiation Medicine, New York Medical College, Valhalla, New York
| | - Joseph D. Etlinger
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, and MotoGen, Inc., Mount Kisco, New York
| |
Collapse
|
39
|
Krum JM, Mani N, Rosenstein JM. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol 2008; 212:108-17. [PMID: 18482723 DOI: 10.1016/j.expneurol.2008.03.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 01/13/2023]
Abstract
Following trauma to the brain significant changes occur in both the astroglial and vascular components of the neuropil. Angiogenesis is required to re-establish metabolic support and astrocyte activation encompasses several functions including scar formation and the production of growth factors. VEGF has seminal involvement in the process of brain repair and is upregulated during many pathological events. VEGF signaling is regulated mainly through its two primary receptors: flk-1 (KDR/VEGF-R2) is expressed on vascular endothelium and some neurons and flt-1 (VEGF-R1) in the CNS, is expressed predominantly by activated astrocytes. Using an injury model of chronic minipump infusion of neutralizing antibodies (NA) to block VEGF receptor signaling, this study takes advantage of these differences in VEGF receptor distribution in order to understand the role the cytokine plays after brain injury. Infusion of NA to flk-1 caused a significant decrease in vascular proliferation and increased endothelial cell degeneration compared to control IgG infusions but had no effect on astrogliosis. By contrast infusion of NA to flt-1 significantly decreased astroglial mitogenicity and scar formation and caused some increase in endothelial degeneration. Neutralization of the flt-1 receptor function, but not flk-1, caused significant reduction in the astroglial expression of the growth factors, CNTF and FGF by 7days. These data suggest that after CNS injury, endogenous VEGF upregulation (by astrocytes) induces angiogenesis and, by autocrine signaling, increases both astrocyte proliferation and facilitates expression of growth factors. It is likely that VEGF plays an important role in aspects of astroglial scar formation.
Collapse
Affiliation(s)
- Janette M Krum
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037, USA.
| | | | | |
Collapse
|
40
|
Kim BW, Choi M, Kim YS, Park H, Lee HR, Yun CO, Kim EJ, Choi JS, Kim S, Rhim H, Kaang BK, Son H. Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin. Cell Signal 2008; 20:714-25. [DOI: 10.1016/j.cellsig.2007.12.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 01/17/2023]
|
41
|
McCloskey DP, Hintz TM, Scharfman HE. Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects. Brain Res Bull 2007; 76:36-44. [PMID: 18395608 DOI: 10.1016/j.brainresbull.2007.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 11/26/2007] [Accepted: 11/30/2007] [Indexed: 01/19/2023]
Abstract
Previous studies have shown that VEGF expression in forebrain increases after experimental manipulations that increase neuronal activity. One question is whether this also occurs in motor neurons. If so, it could be potentially advantageous from a therapeutic perspective, because VEGF prevents motor neuron degeneration. Therefore, we asked whether endogenous VEGF expression in motor neurons could be modulated. We also asked how VEGF exposure would influence motor neurons using electrophysiology. Immunocytochemistry showed that motor neuron VEGF expression increased after a stimulus that increases neuronal and motor activity, i.e., convulsive seizures. The increase in VEGF immunoreactivity occurred in all motor neuron populations that were examined 24h later. This effect was unlikely to be due to seizure-induced toxicity, because silver degeneration stain did not show the typical appearance of a dying or dead neuron. To address the effects of VEGF on motor neuron function, VEGF was applied directly to motor neurons while recording intracellularly, using a brainstem slice preparation. Exposure to exogenous VEGF (200 ng/ml) in normal conditions depressed stimulus-evoked depolarization of hypoglossal motor neurons. There was no detectable effect of VEGF on membrane properties or firing behavior. We suggest that VEGF is upregulated in neurons when they are strongly activated, and VEGF depresses neuronal excitation as a compensatory mechanism. Failure of this mechanism may contribute to diseases that involve a dysregulation of VEGF, excessive excitation of motor neurons, and motor neuron loss, such as amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Daniel P McCloskey
- The College of Staten Island-CUNY, Staten Island, NY, United States; Helen Hayes Hospital, West Haverstraw, NY, United States
| | | | | |
Collapse
|
42
|
Tolosa L, Mir M, Asensio VJ, Olmos G, Lladó J. Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J Neurochem 2007; 105:1080-90. [PMID: 18182045 DOI: 10.1111/j.1471-4159.2007.05206.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motoneurons. Recently, vascular endothelial growth factor (VEGF) has been identified as a neurotrophic factor and has been implicated in the mechanisms of pathogenesis of ALS and other neurological diseases. The potential neuroprotective effects of VEGF in a rat spinal cord organotypic culture were studied in a model of chronic glutamate excitotoxicity in which glutamate transporters are inhibited by threohydroxyaspartate (THA). Particularly, we focused on the effects of VEGF in the survival and vulnerability to excitotoxicity of spinal cord motoneurons. VEGF receptor-2 was present on spinal cord neurons, including motoneurons. Chronic (3 weeks) treatment with THA induced a significant loss of motoneurons that was inhibited by co-exposure to VEGF (50 ng/mL). VEGF activated the phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) signal transduction pathway in the spinal cord cultures, and the effect on motoneuron survival was fully reversed by the specific PI3-K inhibitor, LY294002. VEGF also prevented the down-regulation of Bcl-2 and survivin, two proteins implicated in anti-apoptotic and/or anti-excitotoxic effects, after THA exposure. Together, these findings indicate that VEGF has neuroprotective effects in rat spinal cord against chronic glutamate excitotoxicity by activating the PI3-K/Akt signal transduction pathway and also reinforce the hypothesis of the potential therapeutic effects of VEGF in the prevention of motoneuron degeneration in human ALS.
Collapse
Affiliation(s)
- Laia Tolosa
- Grup de Neurobiologia Cellular, Departament de Biologia, Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
43
|
Lesional expression of the endogenous angiogenesis inhibitor endostatin/collagen XVIII following traumatic brain injury (TBI). Exp Neurol 2007; 208:228-37. [DOI: 10.1016/j.expneurol.2007.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 07/23/2007] [Accepted: 07/25/2007] [Indexed: 11/17/2022]
|
44
|
Mueller CA, Conrad S, Schluesener HJ, Pietsch T, Schwab JM. Spinal cord injury-induced expression of the antiangiogenic endostatin/collagen XVIII in areas of vascular remodelling. J Neurosurg Spine 2007; 7:205-14. [PMID: 17688061 DOI: 10.3171/spi-07/08/205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECT Spinal cord injury (SCI) induces the disruption of neural and vascular structures. In contrast to the emerging knowledge of mechanisms regulating the onset of the postinjury angiogenic response, little is known about counterregulatory signals. METHODS Using immunohistochemical methods, the authors investigated the expression of the endogenous angiogenic inhibitor endostatin/collagen XVIII during the tissue remodeling response to SCI. RESULTS After SCI, endostatin/collagen XVIII+ cells accumulated at the lesion site, in pannecrotic regions (especially in areas of cavity formation), at the lesion margin/areas of ongoing secondary damage, and in perivascular Virchow-Robin spaces. In remote areas (> 0.75 cm from the epicenter) a more modest accumulation of endostatin/collagen XVIII+ cells was observed, especially in areas of pronounced Wallerian degeneration. The numbers of endostatin/collagen XVIII+ cells reached their maximum on Day 7 after SCI. The cell numbers remained elevated in both, the lesion and remote regions, compared with control spinal cords for 4 weeks afterwards. In addition to being predominantly confined to ED1+-activated microglia/macrophages within the pannecrotic lesion core, endostatin/collagen XVIII expression was frequently detected by the endothelium/vessel walls. Numbers of lesional endostatin/collagen XVIII+ endothelium/vessel walls were found to increase early by Day 1 postinjury, reaching their maximum on Day 3 and declining subsequently to enhanced (above control) levels 30 days after SCI. CONCLUSIONS The authors detected that in comparison to the early expression of neoangiogenic factors, there was a postponed lesional expression of the antiangiogenic endostatin/collagen XVIII. Furthermore, the expression of endostatin/collagen XVIII was localized to areas of neovascular pruning and retraction (cavity formation). The expression of endostatin/collagen XVIII by macrophages in a "late" activated phagocytic mode suggests that this factor plays a role in counteracting the preceding "early" neoangiogenic response after SCI.
Collapse
Affiliation(s)
- Christian A Mueller
- Institute of Brain Research, University of Tübingen Medical School, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
45
|
Zhang S, Kluge B, Huang F, Nordstrom T, Doolen S, Gross M, Sarmiere P, Holmberg EG. Photochemical scar ablation in chronically contused spinal cord of rat. J Neurotrauma 2007; 24:411-20. [PMID: 17376003 DOI: 10.1089/neu.2006.0065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glial scar represents a physical and molecular barrier to axonal regeneration and has become an important target for regeneration research in chronic spinal cord injury. Although many methods have been proven useful for the prevention of scar formation in an acute injury model, to date no effective method has been described to remove an existing glial scar in a chronic injury. The chronic lesion possesses an irregular shaped scar that lines the entire perimeter of the cavity. In the present study, we used rose bengal, a molecule commonly used for biological staining, injected into the cavity at the injury site of Long-Evans rat spinal cord (5 weeks after 25-mm contusion injury). Visible light was used to illuminate the injury site. Histological observation illustrates that at least partial glial scar tissue is ablated by rose bengal/illumination. The lack of glial fibrillary acidic protein (GFAP) immunoreactivity at the glial scar coupled with the reduction of GFAP density surrounding spared tissue suggests that this photochemical scar ablation preferentially kills astrocytes at the scar tissue but also reacts, to a lesser degree, in the spared tissue. There is an observed reduction of Basso, Beattie, and Bresnahan (BBB) scale scores after scar ablation, but it is not statistically significant from stabilized behavioral scoring prior to the scar ablation treatment. Our findings indicate that the rose bengal/illumination is feasible for ablation of the glial scar which surrounds an irregular lesion cavity in shape. The scar ablation might provide a permissive environment for the regenerating axons when enriched by cellular or drug therapy.
Collapse
Affiliation(s)
- Shuxin Zhang
- Spinal Cord Society Research Center, Fort Collins, Colorado 80526, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Azadzoi KM, Yalla SV, Siroky MB. Oxidative stress and neurodegeneration in the ischemic overactive bladder. J Urol 2007; 178:710-5. [PMID: 17574610 DOI: 10.1016/j.juro.2007.03.096] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Indexed: 11/16/2022]
Abstract
PURPOSE The central and peripheral nervous systems are highly sensitive to ischemia and oxidative stress. We searched for markers of oxidative injury and examined neural density in the rabbit ischemic overactive bladder. MATERIALS AND METHODS Blood flow and oxygenation were recorded during cystometrogram in overactive and control rabbit bladders at weeks 8 and 16 after the induction of ischemia. Oxidative products and neural density were assessed by enzyme immunoassay and immunohistochemical staining, respectively. Reverse transcriptase-polymerase chain reaction was done to determine the gene expression of nerve growth factor and its receptor p75. The effect of acute oxidative stress was examined in tissue culture medium containing H(2)O(2). RESULTS Overactivity produced repeating cycles of ischemia/reperfusion and hypoxia/reoxygenation in the ischemic bladder, leading to oxidative and nitrosative products. Neural density in the 8-week ischemic bladder was similar to that in controls, while neurodegeneration was evident after 16 weeks of ischemia. Nerve growth factor gene levels initially increased at week 8 but significantly decreased at week 16 after the induction of ischemia. Gene levels of p75 decreased after 8 weeks and remained lower than in controls after 16 weeks of ischemia. Acute oxidative stress decreased nerve growth factor protein release in culture medium. The antioxidant enzyme catalase had no significant effect on control tissues but it partially protected nerve growth factor from H(2)O(2) injury. CONCLUSIONS Ischemia may have a role in bladder neuropathy. Overactivity under ischemic conditions produces noxious oxidative products in the bladder. Neurodegeneration in bladder ischemia may involve a lack of nutrients, hypoxia and overactivity induced free radicals. Nerve growth factor and its receptors may regulate neural reactions to oxidative injury.
Collapse
Affiliation(s)
- Kazem M Azadzoi
- Department of Urology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
47
|
Galoyan AA, Sarkissian DS, Chavushyan VA, Meliksetyan IB, Avakyan ZE, Sulkhanyan RM, Poghosyan MV, Avetisyan ZA. Studies of the protective effect of the hypothalamic peptide PRP-3 on spinal cord neurons at different periods after lateral hemisection. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Dilmanian FA, Qu Y, Feinendegen LE, Peña LA, Bacarian T, Henn FA, Kalef-Ezra J, Liu S, Zhong Z, McDonald JW. Tissue-sparing effect of x-ray microplanar beams particularly in the CNS: is a bystander effect involved? Exp Hematol 2007; 35:69-77. [PMID: 17379090 DOI: 10.1016/j.exphem.2007.01.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Normal tissues, including the central nervous system, tolerate single exposures to narrow planes of synchrotron-generated x-rays (microplanar beams; microbeams) up to several hundred Gy. The repairs apparently involve the microvasculature and the glial system. We evaluate a hypothesis on the involvement of bystander effects in these repairs. METHODS Confluent cultures of bovine aortic endothelial cells were irradiated with three parallel 27-microm microbeams at 24 Gy. Rats' spinal cords were transaxially irradiated with a single microplanar beam, 270 microm thick, at 750 Gy; the dose distribution in tissue was calculated. RESULTS Within 6 hours following irradiation of the cell culture the hit cells died, apparently by apoptosis, were lost, and the confluency was maintained. The spinal cord study revealed a loss of oligodendrocytes, astrocytes, and myelin in 2 weeks, but by 3 months repopulation and remyelination was nearly complete. Monte Carlo simulations showed that the microbeam dose fell from the peak's 80% to 20% in 9 microm. CONCLUSIONS In both studies the repair processes could have involved "beneficial" bystander effects leading to tissue restoration, most likely through the release of growth factors, such as cytokines, and the initiation of cell-signaling cascades. In cell culture these events could have promoted fast disappearance of the hit cells and fast structural response of the surviving neighboring cells, while in the spinal cord study similar events could have been promoting angiogenesis to replace damaged capillary blood vessels, and proliferation, migration, and differentiation of the progenitor glial cells to produce new, mature, and functional glial cells.
Collapse
Affiliation(s)
- F Avraham Dilmanian
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Choi JS, Kim HY, Cha JH, Choi JY, Park SI, Jeong CH, Jeun SS, Lee MY. Upregulation of Vascular Endothelial Growth Factor Receptors Flt-1 and Flk-1 Following Acute Spinal Cord Contusion in Rats. J Histochem Cytochem 2007; 55:821-30. [PMID: 17409380 DOI: 10.1369/jhc.6a7139.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To investigate the possible role of vascular endothelial growth factor (VEGF) in the injured spinal cord, we analyzed the distribution and time course of the two tyrosine kinase receptors for VEGF, Flt-1 and Flk-1, in the rat spinal cord following contusion injury using a weight-drop impactor. The semi-quantitative RT-PCR analysis of Flt-1 and Flk-1 in the spinal cord showed slight upregulation of these receptors following spinal cord injury. Although mRNAs for Flt-1 and Flk-1 were constitutively expressed in neurons, vascular endothelial cells, and some astrocytes in laminectomy control rats, their upregulation was induced in association with microglia/macrophages and reactive astrocytes in the vicinity of the lesion within 1 day in rats with a contusion injury and persisted for at least 14 days. The spatiotemporal expression of Flt-1 in the contused spinal cord mirrored that of Flk-1 expression. In the early phase of spinal cord injury, upregulation of Flt-1 and Flk-1 mRNA occurred in microglia/macrophages that infiltrated the lesion. In addition, the expression of both receptors increased progressively in reactive astrocytes within the vicinity of the lesion, predominately in the white matter, and almost all reactive astrocytes coexpressed Flt-1 or Flk-1 and nestin. These results suggest that VEGF may be involved in the inflammatory response and the astroglial reaction to contusion injuries of the spinal cord via specific VEGF receptors. (J Histochem Cytochem 55: 821–830, 2007)
Collapse
Affiliation(s)
- Jeong-Sun Choi
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hillard VH, Peng H, Das K, Murali R, Moorthy CR, Etlinger JD, Zeman RJ. Inhibition of x-irradiation–enhanced locomotor recovery after spinal cord injury by hyperbaric oxygen or the antioxidant nitroxide tempol. J Neurosurg Spine 2007; 6:337-43. [PMID: 17436923 DOI: 10.3171/spi.2007.6.4.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Hyperbaric oxygen (HBO), the nitroxide antioxidant tempol, and x-irradiation have been used to promote locomotor recovery in experimental models of spinal cord injury. The authors used x-irradiation of the injury site together with either HBO or tempol to determine whether combined therapy offers greater benefit to rats.
Methods
Contusion injury was produced with a weight-drop device in rats at the T-10 level, and recovery was determined using the 21-point Basso-Beattie-Bresnahan (BBB) locomotor scale. Locomotor function recovered progressively during the 6-week postinjury observation period and was significantly greater after x-irradiation (20 Gy) of the injury site or treatment with tempol (275 mg/kg intraperitoneally) than in untreated rats (final BBB Scores 10.6 [x-irradiation treated] and 9.1 [tempol treated] compared with 6.4 [untreated], p < 0.05). Recovery was not significantly improved by HBO (2 atm for 1 hour [BBB Score 8.2, p > 0.05]). Interestingly, the improved recovery of locomotor function after x-irradiation, in contrast with antiproliferative radiotherapy for neoplasia, was inhibited when used together with either HBO or tempol (BBB Scores 8.2 and 8.3, respectively). The ability of tempol to block enhanced locomotor recovery by x-irradiation was accompanied by prevention of alopecia at the irradiation site. The extent of locomotor recovery following treatment with tempol, HBO, and x-irradiation correlated with measurements of spared spinal cord tissue at the contusion epicenter.
Conclusions
These results suggest that these treatments, when used alone, can activate neuroprotective mechanisms but, in combination, may result in neurotoxicity.
Collapse
Affiliation(s)
- Virany H Hillard
- Department of Neurosurgery, New York Medical College, New York,. USA.
| | | | | | | | | | | | | |
Collapse
|