1
|
König S, Schmidt N, Bechberger K, Morris S, Priego M, Zaky H, Song Y, Pielage J, Brunholz S, Brady ST, Kins S, Morfini G. Axon-Autonomous Effects of the Amyloid Precursor Protein Intracellular Domain (AICD) on Kinase Signaling and Fast Axonal Transport. Cells 2023; 12:2403. [PMID: 37830617 PMCID: PMC10572015 DOI: 10.3390/cells12192403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The amyloid precursor protein (APP) is a key molecular component of Alzheimer's disease (AD) pathogenesis. Proteolytic APP processing generates various cleavage products, including extracellular amyloid beta (Aβ) and the cytoplasmic APP intracellular domain (AICD). Although the role of AICD in the activation of kinase signaling pathways is well established in the context of full-length APP, little is known about intracellular effects of the AICD fragment, particularly within discrete neuronal compartments. Deficits in fast axonal transport (FAT) and axonopathy documented in AD-affected neurons prompted us to evaluate potential axon-autonomous effects of the AICD fragment for the first time. Vesicle motility assays using the isolated squid axoplasm preparation revealed inhibition of FAT by AICD. Biochemical experiments linked this effect to aberrant activation of selected axonal kinases and heightened phosphorylation of the anterograde motor protein conventional kinesin, consistent with precedents showing phosphorylation-dependent regulation of motors proteins powering FAT. Pharmacological inhibitors of these kinases alleviated the AICD inhibitory effect on FAT. Deletion experiments indicated this effect requires a sequence encompassing the NPTY motif in AICD and interacting axonal proteins containing a phosphotyrosine-binding domain. Collectively, these results provide a proof of principle for axon-specific effects of AICD, further suggesting a potential mechanistic framework linking alterations in APP processing, FAT deficits, and axonal pathology in AD.
Collapse
Affiliation(s)
- Svenja König
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Nadine Schmidt
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Karin Bechberger
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Hannah Zaky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jan Pielage
- Department of Zoology, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany;
| | - Silke Brunholz
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Stefan Kins
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
3
|
Chebli J, Rahmati M, Lashley T, Edeman B, Oldfors A, Zetterberg H, Abramsson A. The localization of amyloid precursor protein to ependymal cilia in vertebrates and its role in ciliogenesis and brain development in zebrafish. Sci Rep 2021; 11:19115. [PMID: 34580355 PMCID: PMC8476544 DOI: 10.1038/s41598-021-98487-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid precursor protein (APP) is expressed in many tissues in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa−/−appb−/− mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.
Collapse
Affiliation(s)
- Jasmine Chebli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maryam Rahmati
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Tammaryn Lashley
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Brigitta Edeman
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute, London, UK
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden.
| |
Collapse
|
4
|
Uddin MS, Kabir MT, Tewari D, Mamun AA, Mathew B, Aleya L, Barreto GE, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer's disease. J Neurol Sci 2020; 416:116974. [PMID: 32559516 DOI: 10.1016/j.jns.2020.116974] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) is an intricate molecule that interacts with several biomolecules and/or produces insoluble assemblies and eventually the nonphysiological depositions of its alternate with normal neuronal conditions leading to Alzheimer's disease (AD). Aβ is formed through the proteolytic cleavage of the amyloid precursor protein (APP). Significant efforts are being made to explore the exact role of Aβ in AD pathogenesis. It is believed that the deposition of Aβ in the brain takes place from Aβ components which are derived from the brain itself. However, recent evidence suggests that Aβ derived also from the periphery and hence the Aβ circulating in the blood is capable of penetrating the blood-brain barrier (BBB) and the role of Aβ derived from the periphery is largely unknown so far. Therefore, Aβ origin determination and the underlying mechanisms of its pathological effects are of considerable interest in exploring effective therapeutic strategies. The purpose of this review is to provide a novel insight into AD pathogenesis based on Aβ in both the brain and periphery and highlight new therapeutic avenues to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Corsetti V, Borreca A, Latina V, Giacovazzo G, Pignataro A, Krashia P, Natale F, Cocco S, Rinaudo M, Malerba F, Florio R, Ciarapica R, Coccurello R, D’Amelio M, Ammassari-Teule M, Grassi C, Calissano P, Amadoro G. Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse Alzheimer's disease models. Brain Commun 2020; 2:fcaa039. [PMID: 32954296 PMCID: PMC7425324 DOI: 10.1093/braincomms/fcaa039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidβ metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidβ-dependent and independent neuropathological and cognitive alterations in affected subjects.
Collapse
Affiliation(s)
| | - Antonella Borreca
- Humanitas University Laboratory of Pharmacology and Brain Pathology, Neuro Center, 20089 Milan, Italy
- Institute of Neuroscience, 20129 Milan, Italy
| | | | | | | | - Paraskevi Krashia
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | - Francesca Natale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Rita Florio
- European Brain Research Institute (EBRI), 00161 Rome, Italy
| | | | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Institute for Complex Systems (ISC), CNR, 00185 Rome, Italy
| | - Marcello D’Amelio
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT)–National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
6
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
7
|
Bittar A, Bhatt N, Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis 2019; 134:104707. [PMID: 31841678 PMCID: PMC6980703 DOI: 10.1016/j.nbd.2019.104707] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
The multifactorial and complex nature of Alzheimer’s disease (AD) has made it difficult to identify therapeutic targets that are causally involved in the disease process. However, accumulating evidence from experimental and clinical studies that investigate the early disease process point towards the required role of tau in AD etiology. Importantly, a large number of studies investigate and characterize the plethora of pathological forms of tau protein involved in disease onset and propagation. Immunotherapy is one of the most clinical approaches anticipated to make a difference in the field of AD therapeutics. Tau –targeted immunotherapy is the new direction after the failure of amyloid beta (Aß)-targeted immunotherapy and the growing number of studies that highlight the Aß-independent disease process. It is now well established that immunotherapy alone will most likely be insufficient as a monotherapy. Therefore, this review discusses updates on tau-targeted immunotherapy studies, AD-relevant tau species, updates on promising biomarkers and a prospect on combination therapies to surround the disease propagation in an efficient and timely manner.
Collapse
Affiliation(s)
- Alice Bittar
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Nemil Bhatt
- Department of Neuroscience, Cell Biology and Anatomy, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Rakez Kayed
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| |
Collapse
|
8
|
Colligris P, Perez de Lara MJ, Colligris B, Pintor J. Ocular Manifestations of Alzheimer's and Other Neurodegenerative Diseases: The Prospect of the Eye as a Tool for the Early Diagnosis of Alzheimer's Disease. J Ophthalmol 2018; 2018:8538573. [PMID: 30151279 PMCID: PMC6091327 DOI: 10.1155/2018/8538573] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dementia, including Alzheimer's disease (AD), is a major disorder, leading to several ocular manifestations amongst the elderly population. These visual disorders may be due to retinal nerve degenerative changes, including nerve fibre layer thinning, degeneration of retinal ganglion cells, and changes to vascular parameters. There is no cure for Alzheimer's, but medicines can slow down the development of many of the classic symptoms, such as loss of memory and communication skills, mood swings, and depression. The disease diagnosis is difficult, and it is only possible through PET scans of the brain, detecting evidence of the accumulation of amyloid and tau. PET is expensive and invasive, requiring the injection of radioactive tracers, which bind with these proteins and glow during scanning. Recently, scientists developed promising eye-scan techniques that may detect Alzheimer's disease at its earliest stage, before major symptoms appear, leading to improved management of the disease symptoms. In this review, we are discussing the visual abnormalities of Alzheimer's and other neurodegenerative diseases, focused on ocular functional-visual-structural biomarkers, retinal pathology, and potential novel diagnostic tools.
Collapse
Affiliation(s)
- Pade Colligris
- Universidad Alfonso X, Madrid, Spain
- Ocupharm Diagnostics SL, Madrid, Spain
| | | | - Basilio Colligris
- Ocupharm Diagnostics SL, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Jesus Pintor
- Ocupharm Diagnostics SL, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Kametani F, Hasegawa M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Front Neurosci 2018; 12:25. [PMID: 29440986 PMCID: PMC5797629 DOI: 10.3389/fnins.2018.00025] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The so-called amyloid hypothesis, that the accumulation and deposition of oligomeric or fibrillar amyloid β (Aβ) peptide is the primary cause of Alzheimer's disease (AD), has been the mainstream concept underlying AD research for over 20 years. However, all attempts to develop Aβ-targeting drugs to treat AD have ended in failure. Here, we review recent findings indicating that the main factor underlying the development and progression of AD is tau, not Aβ, and we describe the deficiencies of the amyloid hypothesis that have supported the emergence of this idea.
Collapse
Affiliation(s)
- Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
10
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
11
|
Abstract
FE65 is a brain-enriched, developmentally regulated adaptor protein that was first identified as a binding partner of amyloid precursor protein (APP), an important molecule in Alzheimer's disease. FE65 possesses three protein interaction domains, including an N-terminal WW domain and two C-terminal phosphotyrosine-binding (PTB) domains. It is capable of mediating the assembly of multimolecular complexes. Although initial work reveals its roles in APP processing and gene transactivation, increasing evidence suggests that FE65 participates in more diverse biological processes than originally anticipated. This article discusses the role of FE65 in signal transduction during cell stress and protein turnover through the ubiquitin-proteasome system and in various neuronal processes, including neurogenesis, neuronal migration and positioning, neurite outgrowth, synapse formation and synaptic plasticity, learning, and memory.
Collapse
|
12
|
Cai Z, Xiao M, Chang L, Yan LJ. Role of insulin resistance in Alzheimer's disease. Metab Brain Dis 2015; 30:839-51. [PMID: 25399337 DOI: 10.1007/s11011-014-9631-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
A critical role of insulin resistance (IR) in Alzheimer's disease (AD) includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles (NFTs), failure of synaptic transmission and neuronal degeneration. Aβ is sequentially cleavaged from APP by two proteolytic enzymes: β-secretase and γ-secretase. IR could regulate Aβ production via enhancing β- and γ-secretase activity. Meanwhile, IR induces oxidative stress and inflammation in the brain which contributes to Aβ and tau pathology. Aβ accumulation can enhance IR through Aβ-mediated inflammation and oxidative stress. IR is a possible linking between amyloid plaques and NFTs pathology via oxidative stress and neuroinflammation. Additionally, IR could disrupt acetylcholine activity, and accelerate axon degeneration and failures in axonal transport, and lead to cognitive impairment in AD. Preclinical and clinical studies have supported that insulin could be useful in the treatment of AD. Thus, an effective measure to inhibit IR may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China,
| | | | | | | |
Collapse
|
13
|
Sun Y, Sun J, Lungchukiet P, Quarni W, Yang S, Zhang X, Bai W. Fe65 Suppresses Breast Cancer Cell Migration and Invasion through Tip60 Mediated Cortactin Acetylation. Sci Rep 2015; 5:11529. [PMID: 26166158 PMCID: PMC4499803 DOI: 10.1038/srep11529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022] Open
Abstract
Fe65 is a brain-enriched adaptor protein known for its role in the action of the Aβ amyloid precursor protein in neuronal cells and Alzheimer’s disease, but little is known about its functions in cancer cells. The present study documents for the first time a role of Fe65 in suppressing breast cancer cell migration and invasion. Mechanistic studies suggest that the suppression is mediated through its phosphotyrosine binding domain 1 that mediates the recruitment of Tip60 to cortactin to stimulate its acetylation. The studies identify the Tip60 acetyltransferase as a cytoplasmic drug target for the therapeutic intervention of metastatic breast cancers.
Collapse
Affiliation(s)
- Yuefeng Sun
- Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Jianwei Sun
- Comprehensive Melanoma Research Center and Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Panida Lungchukiet
- Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Waise Quarni
- Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Shengyu Yang
- Comprehensive Melanoma Research Center and Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xiaohong Zhang
- 1] Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [2] Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [3] Program of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Wenlong Bai
- 1] Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [2] Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [3] Program of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
14
|
van der Kant R, Goldstein LSB. Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 2015; 32:502-15. [PMID: 25710536 DOI: 10.1016/j.devcel.2015.01.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amyloid precursor protein (APP) is a key player in Alzheimer's disease (AD). The Aβ fragments of APP are the major constituent of AD-associated amyloid plaques, and mutations or duplications of the gene coding for APP can cause familial AD. Here we review the roles of APP in neuronal development, signaling, intracellular transport, and other aspects of neuronal homeostasis. We suggest that APP acts as a signaling nexus that transduces information about a range of extracellular conditions, including neuronal damage, to induction of intracellular signaling events. Subtle disruptions of APP signaling functions may be major contributors to AD-causing neuronal dysfunction.
Collapse
Affiliation(s)
- Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
UV irradiation accelerates amyloid precursor protein (APP) processing and disrupts APP axonal transport. J Neurosci 2014; 34:3320-39. [PMID: 24573290 DOI: 10.1523/jneurosci.1503-13.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction.
Collapse
|
16
|
Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA. Axonal degeneration in Alzheimer's disease: when signaling abnormalities meet the axonal transport system. Exp Neurol 2013; 246:44-53. [PMID: 22721767 PMCID: PMC3465504 DOI: 10.1016/j.expneurol.2012.06.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/17/2012] [Accepted: 06/09/2012] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD.
Collapse
Affiliation(s)
- Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | | | | | | | | |
Collapse
|
17
|
Increasing Tip60 HAT levels rescues axonal transport defects and associated behavioral phenotypes in a Drosophila Alzheimer's disease model. J Neurosci 2013; 33:7535-47. [PMID: 23616558 DOI: 10.1523/jneurosci.3739-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal transport defects and axonopathy are prominent in early preclinical stages of Alzheimer's disease (AD), often preceding known disease-related pathology by over a year. As epigenetic transcriptional regulatory mechanisms, such as histone acetylation, are critical for neurogenesis, it is postulated that their misregulation might be linked to early pathophysiological mechanisms that contribute to AD. The histone acetyltransferase (HAT) Tip60 epigenetically regulates genes enriched for neuronal functions and is implicated in AD via its formation of a transcriptional regulatory complex with the amyloid precursor protein (APP) intracellular domain. Disruption of APP function is associated with axonal transport defects, raising the possibility that an epigenetic role for Tip60 might also be involved. Here, we examine whether Tip60 HAT activity functions in axonal transport using Drosophila CNS motor neurons as a well-characterized transport model. We show that reduction of Tip60 HAT activity in the nervous system causes axonopathy and transport defects associated with epigenetic misregulation of certain axonal transport-linked Tip60 target genes. Functional consequences of these defects are evidenced by reduced locomotion activity of the mutant Tip60 larvae, and these phenotypes can be partially rescued with certain histone deacetylase inhibitors. Finally, we demonstrate that Tip60 function in axonal transport is mediated by APP and that, remarkably, excess Tip60 exerts a neuroprotective role in APP-induced axonal transport and functional locomotion defects. Our observations highlight a novel functional interactive role between Tip60 HAT activity and APP in axonal transport and provide insight into the importance of specific HAT modulators for cognitive disorder treatment.
Collapse
|
18
|
Riemer J, Kins S. Axonal Transport and Mitochondrial Dysfunction in Alzheimer's Disease. NEURODEGENER DIS 2013; 12:111-24. [DOI: 10.1159/000342020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
|
19
|
Rodrigues EM, Weissmiller AM, Goldstein LSB. Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects. Hum Mol Genet 2012; 21:4587-601. [PMID: 22843498 DOI: 10.1093/hmg/dds297] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease pathologically characterized by amyloid plaques and neurofibrillary tangles in the brain. Before these hallmark features appear, signs of axonal transport defects develop, though the initiating events are not clear. Enhanced amyloidogenic processing of amyloid precursor protein (APP) plays an integral role in AD pathogenesis, and previous work suggests that both the Aβ region and the C-terminal fragments (CTFs) of APP can cause transport defects. However, it remains unknown if APP processing affects the axonal transport of APP itself, and whether increased APP processing is sufficient to promote axonal dystrophy. We tested the hypothesis that β-secretase cleavage site mutations of APP alter APP axonal transport directly. We found that the enhanced β-secretase cleavage reduces the anterograde axonal transport of APP, while inhibited β-cleavage stimulates APP anterograde axonal transport. Transport behavior of APP after treatment with β- or γ-secretase inhibitors suggests that the amount of β-secretase cleaved CTFs (βCTFs) of APP underlies these transport differences. Consistent with these findings, βCTFs have reduced anterograde axonal transport compared with full-length, wild-type APP. Finally, a gene-targeted mouse with familial AD (FAD) Swedish mutations to APP, which enhance the β-cleavage of APP, develops axonal dystrophy in the absence of mutant protein overexpression, amyloid plaque deposition and synaptic degradation. These results suggest that the enhanced β-secretase processing of APP can directly impair the anterograde axonal transport of APP and are sufficient to lead to axonal defects in vivo.
Collapse
Affiliation(s)
- Elizabeth M Rodrigues
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
20
|
Steuble M, Diep TM, Schätzle P, Ludwig A, Tagaya M, Kunz B, Sonderegger P. Calsyntenin-1 shelters APP from proteolytic processing during anterograde axonal transport. Biol Open 2012; 1:761-74. [PMID: 23213470 PMCID: PMC3507217 DOI: 10.1242/bio.20121578] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/22/2012] [Indexed: 11/27/2022] Open
Abstract
Endocytosis of amyloid-β precursor protein (APP) is thought to represent the major source of substrate for the production of the amyloidogenic Aβ peptide by the β-secretase BACE1. The irreversible nature of proteolytic cleavage implies the existence of an efficient replenishment route for APP from its sites of synthesis to the cell surface. We recently found that APP exits the trans-Golgi network in intimate association with calsyntenin-1, a transmembrane cargo-docking protein for Kinesin-1-mediated vesicular transport. Here we characterized the function of calsyntenin-1 in neuronal APP transport using selective immunoisolation of intracellular trafficking organelles, immunocytochemistry, live-imaging, and RNAi. We found that APP is co-transported with calsyntenin-1 along axons to early endosomes in the central region of growth cones in carriers that exclude the α-secretase ADAM10. Intriguingly, calsyntenin-1/APP organelles contained BACE1, suggesting premature cleavage of APP along its anterograde path. However, we found that APP contained in calsyntenin-1/APP organelles was stable. We further analyzed vesicular trafficking of APP in cultured hippocampal neurons, in which calsyntenin-1 was reduced by RNAi. We found a markedly increased co-localization of APP and ADAM10 in axons and growth cones, along with increased proteolytic processing of APP and Aβ secretion in these neurons. This suggested that the reduced capacity for calsyntenin-1-dependent APP transport resulted in mis-sorting of APP into additional axonal carriers and, therefore, the premature encounter of unprotected APP with its ectodomain proteases. In combination, our results characterize calsyntenin-1/APP organelles as carriers for sheltered anterograde axonal transport of APP.
Collapse
Affiliation(s)
- Martin Steuble
- Department of Biochemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich , Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Goldstein LSB. Axonal transport and neurodegenerative disease: can we see the elephant? Prog Neurobiol 2012; 99:186-90. [PMID: 22484448 DOI: 10.1016/j.pneurobio.2012.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/18/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023]
Abstract
Although it is well established that axonal transport defects are part of the initiation or progression of some neurodegenerative diseases, the precise role of these defects in disease development is poorly understood. Thus, in this article, rather than enumerate the already well-reviewed evidence that there are transport deficits in disease, I will focus on a discussion of two crucial and unanswered questions about the possible role of axonal transport defects in HD and AD. (1) Are alterations in axonal transport caused by changes in the normal function of proteins mutated or altered in HD and AD and/or do such alterations in transport occur as a result of the formation of toxic aggregates of peptides or proteins? (2) Do alterations in axonal transport contribute to the causes of HD and AD or are they early, or late, secondary consequences of other cellular defects caused by disease-induction?
Collapse
Affiliation(s)
- Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine and Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA.
| |
Collapse
|
22
|
Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res 2012; 217:353-64. [PMID: 21960299 PMCID: PMC3670699 DOI: 10.1007/s00221-011-2870-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/07/2011] [Indexed: 12/12/2022]
Abstract
Over two decades have passed since the original discovery of amyloid precursor protein (APP). While physiological function(s) of APP still remain a matter of debate, consensus exists that the proteolytic processing of this protein represents a critical event in the life of neurons and that abnormalities in this process are instrumental in Alzheimer's disease (AD) pathogenesis. Specific molecular components involved in APP proteolysis have been identified, and their enzymatic activities characterized in great detail. As specific proteolytic fragments of APP are identified and novel physiological effects for these fragments are revealed, more obvious becomes our need to understand the spatial organization of APP proteolysis. Valuable insights on this process have been obtained through the study of non-neuronal cells. However, much less is known about the topology of APP processing in neuronal cells, which are characterized by their remarkably complex cellular architecture and extreme degree of polarization. In this review, we discuss published literature addressing various molecular mechanisms and components involved in the trafficking and subcellular distribution of APP and APP secretases in neurons. These include the relevant machinery involved in their sorting, the identity of membranous organelles in which APP is transported, and the molecular motor-based mechanisms involved in their translocation. We also review experimental evidence specifically addressing the processing of APP at the axonal compartment. Understanding neuron-specific mechanisms of APP processing would help illuminating the physiological roles of APP-derived proteolytic fragments and provide novel insights on AD pathogenesis.
Collapse
Affiliation(s)
- Silke Brunholz
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Secreted human amyloid precursor protein binds semaphorin 3a and prevents semaphorin-induced growth cone collapse. PLoS One 2011; 6:e22857. [PMID: 21829538 PMCID: PMC3146505 DOI: 10.1371/journal.pone.0022857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/29/2011] [Indexed: 12/04/2022] Open
Abstract
The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα695 (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα695 binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα695 inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (Kd≤8·10−9 M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins.
Collapse
|
24
|
Chang KA, Suh YH. Possible roles of amyloid intracellular domain of amyloid precursor protein. BMB Rep 2011; 43:656-63. [PMID: 21034527 DOI: 10.5483/bmbrep.2010.43.10.656] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Amyloid precursor protein (APP), which is critically involved in the pathogenesis of Alzheimer's disease (AD), is cleaved by gamma/epsilon-secretase activity and results in the generation of different lengths of the APP Intracellular C-terminal Domain (AICD). In spite of its small size and short half-life, AICD has become the focus of studies on AD pathogenesis. Recently, it was demonstrated that AICD binds to different intracellular binding partners ('adaptor protein'), which regulate its stability and cellular localization. In terms of choice of adaptor protein, phosphorylation seems to play an important role. AICD and its various adaptor proteins are thought to take part in various cellular events, including regulation of gene transcription, apoptosis, calcium signaling, growth factor, and NF-κB pathway activation, as well as the production, trafficking, and processing of APP, and the modulation of cytoskeletal dynamics. This review discusses the possible roles of AICD in the pathogenesis of neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Keun-A Chang
- Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, Seoul National University, Seoul 110-799, Korea
| | | |
Collapse
|
25
|
Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:504-23. [PMID: 20522007 PMCID: PMC2992341 DOI: 10.2174/187152710791556104] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/30/2010] [Indexed: 12/16/2022]
Abstract
Human neurodegenerative diseases are devastating illnesses that predominantly affect elderly people. The majority of the diseases are associated with pathogenic oligomers from misfolded proteins, eventually causing the formation of aggregates and the progressive loss of neurons in the brain and nervous system. Several of these proteinopathies are sporadic and the cause of pathogenesis remains elusive. Heritable forms are associated with genetic defects, suggesting that the affected protein is causally related to disease formation and/or progression. The limitations of human genetics, however, make it necessary to use model systems to analyse affected genes and pathways in more detail. During the last two decades, research using the genetically amenable fruitfly has established Drosophila melanogaster as a valuable model system in the study of human neurodegeneration. These studies offer reliable models for Alzheimer's, Parkinson's, and motor neuron diseases, as well as models for trinucleotide repeat expansion diseases, including ataxias and Huntington's disease. As a result of these studies, several signalling pathways including phosphatidylinositol 3-kinase (PI3K)/Akt and target of rapamycin (TOR), c-Jun N-terminal kinase (JNK) and bone morphogenetic protein (BMP) signalling, have been shown to be deregulated in models of proteinopathies, suggesting that two or more initiating events may trigger disease formation in an age-related manner. Moreover, these studies also demonstrate that the fruitfly can be used to screen chemical compounds for their potential to prevent or ameliorate the disease, which in turn can directly guide clinical research and the development of novel therapeutic strategies for the treatment of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Frank Hirth
- King's College London, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, Department of Neuroscience, London, UK.
| |
Collapse
|
26
|
Abstract
Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.
Collapse
|
27
|
Lorenzo DN, Li MG, Mische SE, Armbrust KR, Ranum LPW, Hays TS. Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila. ACTA ACUST UNITED AC 2010; 189:143-58. [PMID: 20368622 PMCID: PMC2854382 DOI: 10.1083/jcb.200905158] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
How spectrin mutations caused Purkinje cell death becomes clearer following studies that examined the effect of expressing mutant SCA5 in the fly eye. Mutant spectrin causes deficits in synapse formation at the neuromuscular junction and disrupts vesicular trafficking. Spinocerebellar ataxia type 5 (SCA5) is an autosomal dominant neurodegenerative disorder caused by mutations in the SPBTN2 gene encoding β-III–spectrin. To investigate the molecular basis of SCA5, we established a series of transgenic Drosophila models that express human β-III–spectrin or fly β-spectrin proteins containing SCA5 mutations. Expression of the SCA5 mutant spectrin in the eye causes a progressive neurodegenerative phenotype, and expression in larval neurons results in posterior paralysis, reduced synaptic terminal growth, and axonal transport deficits. These phenotypes are genetically enhanced by both dynein and dynactin loss-of-function mutations. In summary, we demonstrate that SCA5 mutant spectrin causes adult-onset neurodegeneration in the fly eye and disrupts fundamental intracellular transport processes that are likely to contribute to this progressive neurodegenerative disease.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
28
|
APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 2009; 29:14534-44. [PMID: 19923287 DOI: 10.1523/jneurosci.1546-09.2009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amyloid precursor protein (APP) is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochemical composition of such a vesicle and the specific kinesin-1 motor responsible for transport are poorly defined. APP may be sequentially cleaved by beta- and gamma-secretases leading to accumulation of beta-amyloid (Abeta) peptides in brains of Alzheimer's disease patients, whereas cleavage of APP by alpha-secretases prevents Abeta generation. Here, we demonstrate by time-lapse analysis and immunoisolations that APP is a cargo of a vesicle containing the kinesin heavy chain isoform kinesin-1C, the small GTPase Rab3A, and a specific subset of presynaptic protein components. Moreover, we report that assembly of kinesin-1C and APP in this vesicle type requires Rab3A GTPase activity. Finally, we show cleavage of APP in transport vesicles by alpha-secretase activity, likely mediated by ADAM10. Together, these data indicate that maturation of APP transport vesicles, including recruitment of conventional kinesin, requires Rab3 GTPase activity.
Collapse
|
29
|
Bartzokis G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2009; 32:1341-71. [PMID: 19775776 DOI: 10.1016/j.neurobiolaging.2009.08.007] [Citation(s) in RCA: 402] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
The amyloid hypothesis (AH) of Alzheimer's disease (AD) posits that the fundamental cause of AD is the accumulation of the peptide amyloid beta (Aβ) in the brain. This hypothesis has been supported by observations that genetic defects in amyloid precursor protein (APP) and presenilin increase Aβ production and cause familial AD (FAD). The AH is widely accepted but does not account for important phenomena including recent failures of clinical trials to impact dementia in humans even after successfully reducing Aβ deposits. Herein, the AH is viewed from the broader overarching perspective of the myelin model of the human brain that focuses on functioning brain circuits and encompasses white matter and myelin in addition to neurons and synapses. The model proposes that the recently evolved and extensive myelination of the human brain underlies both our unique abilities and susceptibility to highly prevalent age-related neuropsychiatric disorders such as late onset AD (LOAD). It regards oligodendrocytes and the myelin they produce as being both critical for circuit function and uniquely vulnerable to damage. This perspective reframes key observations such as axonal transport disruptions, formation of axonal swellings/sphenoids and neuritic plaques, and proteinaceous deposits such as Aβ and tau as by-products of homeostatic myelin repair processes. It delineates empirically testable mechanisms of action for genes underlying FAD and LOAD and provides "upstream" treatment targets. Such interventions could potentially treat multiple degenerative brain disorders by mitigating the effects of aging and associated changes in iron, cholesterol, and free radicals on oligodendrocytes and their myelin.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Rezával C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernández MP, Beckwith EJ, Aranovich EJ, Sabio y García CA, Ceriani MF. A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS One 2008; 3:e3332. [PMID: 18841196 PMCID: PMC2553195 DOI: 10.1371/journal.pone.0003332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 08/31/2008] [Indexed: 01/23/2023] Open
Abstract
Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism.
Collapse
Affiliation(s)
- Carolina Rezával
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stokin GB, Almenar-Queralt A, Gunawardena S, Rodrigues EM, Falzone T, Kim J, Lillo C, Mount SL, Roberts EA, McGowan E, Williams DS, Goldstein LSB. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides. Hum Mol Genet 2008; 17:3474-86. [PMID: 18694898 DOI: 10.1093/hmg/ddn240] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.
Collapse
Affiliation(s)
- Gorazd B Stokin
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Müller T, Meyer HE, Egensperger R, Marcus K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog Neurobiol 2008; 85:393-406. [PMID: 18603345 DOI: 10.1016/j.pneurobio.2008.05.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/31/2008] [Accepted: 05/15/2008] [Indexed: 11/30/2022]
Abstract
Since the discovery of the amyloid precursor protein (APP) in 1987, extensive research has been conducted analyzing the APP-derived beta-amyloid (Abeta) which is found in massive quantities in senile plaques of Alzheimer disease (AD) patients. Numerous studies over the last two decades have demonstrated the neurotoxic properties of Abeta. However, it is still unclear whether Abeta neurotoxicity is an initial cause or rather a late event in the pathophysiology of AD. The understanding of preclinical AD-related pathophysiological mechanisms is of significant interest in the identification of potential pharmacological targets. In this context another APP-derived cleavage product, the amyloid precursor protein intracellular domain (AICD), has sparked considerable research interest over the last 7 years. Different AICD levels as a result of gamma-secretase activity may contribute to early pathophysiological mechanisms in AD. However, the relevance of AICD is being discussed highly controversially amongst AD researchers. This review summarizes recent findings in terms of the origin of AICD by regulated intramembrane proteolysis; its structure, binding factors, and post-translational modifications; and its putative role in gene transcription, apoptosis, and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Thorsten Müller
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
33
|
Doronkin S, Reiter LT. Drosophila orthologues to human disease genes: an update on progress. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:1-32. [PMID: 18929137 DOI: 10.1016/s0079-6603(08)00001-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sergey Doronkin
- Department of Neurology, Univeristy of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|