1
|
Rangon CM, Niezgoda A. Understanding the Pivotal Role of the Vagus Nerve in Health from Pandemics. Bioengineering (Basel) 2022; 9:352. [PMID: 36004877 PMCID: PMC9405360 DOI: 10.3390/bioengineering9080352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
The COVID-19 pandemic seems endless with the regular emergence of new variants. Is the SARS-CoV-2 virus particularly evasive to the immune system, or is it merely disrupting communication between the body and the brain, thus pre-empting homeostasis? Retrospective analysis of the COVID-19 and AIDS pandemics, as well as prion disease, emphasizes the pivotal but little-known role of the 10th cranial nerve in health. Considering neuroimmunometabolism from the point of view of the vagus nerve, non-invasive bioengineering solutions aiming at monitoring and stimulating the vagal tone are subsequently discussed as the next optimal and global preventive treatments, far beyond pandemics.
Collapse
Affiliation(s)
- Claire-Marie Rangon
- Child Neurologist and Pain Specialist, INWE’CARE Medical Center, 92210 Saint-Cloud, France
| | - Adam Niezgoda
- Chair and Department of Neurology, University of Medical Sciences, 60-355 Poznań, Poland;
| |
Collapse
|
2
|
Málaga-Trillo E, Ochs K. Uncontrolled SFK-mediated protein trafficking in prion and Alzheimer's disease. Prion 2017; 10:352-361. [PMID: 27649856 DOI: 10.1080/19336896.2016.1221873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Prions and Amyloid beta (Aβ) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrPC) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters. Here we discuss our recent work in zebrafish and accumulating evidence suggesting that subversion of this pleiotropic regulatory mechanism by Aβ oligomers and prions explains diverse neurotransmission deficits observed in human patients and mouse models of prion and Alzheimer's neurodegeneration. While Aβ, PrPC and SFKs constitute potential therapeutic targets on their own, drug discovery efforts might benefit significantly from aiming at protein-protein interactions that modulate the endocytosis of specific SFK targets.
Collapse
Affiliation(s)
| | - Katharina Ochs
- a Department of Biology , Universidad Peruana Cayetano Heredia , Lima , Perú.,b Department of Biology , University of Konstanz , Konstanz , Germany
| |
Collapse
|
3
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
4
|
Carneiro MV, Americo TA, Guimarães MZ, Linden R. The prion protein selectively binds to and modulates the content of purinergic receptor P2X4R. Biochem Biophys Res Commun 2016; 472:293-8. [DOI: 10.1016/j.bbrc.2016.02.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 10/24/2022]
|
5
|
Beckman D, Santos LE, Americo TA, Ledo JH, de Mello FG, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem 2015; 290:20488-98. [PMID: 26152722 DOI: 10.1074/jbc.m115.666156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 12/14/2022] Open
Abstract
We sought to examine interactions of the prion protein (PrP(C)) with monoaminergic systems due to: the role of PrP(C) in both Prion and Alzheimer diseases, which include clinical depression among their symptoms, the implication of monoamines in depression, and the hypothesis that PrP(C) serves as a scaffold for signaling systems. To that effect we compared both behavior and monoaminergic markers in wild type (WT) and PrP(C)-null (PrP(-/-)) mice. PrP(-/-) mice performed poorly when compared with WT in forced swimming, tail suspension, and novelty suppressed feeding tests, typical of depressive-like behavior, but not in the control open field nor rotarod motor tests; cyclic AMP responses to stimulation of D1 receptors by dopamine was selectively impaired in PrP(-/-) mice, and responses to serotonin, but not to norepinephrine, also differed between genotypes. Contents of dopamine, tyrosine hydroxylase, and the 5-HT5A serotonin receptor were increased in the cerebral cortex of PrP(-/-), as compared with WT mice. Microscopic colocalization, as well as binding in overlay assays were found of PrP(C) with both the 5HT5A and D1, but not D4 receptors. The data are consistent with the scaffolding of monoaminergic signaling modules by PrP(C), and may help understand the pathogenesis of clinical depression and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jose H Ledo
- Instituto de Bioquímica Médica da UFRJ, Rio de Janeiro 21941-902, Brasil
| | | | | |
Collapse
|
6
|
Abstract
Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, β-rich oligomers that bind to PrP(C).
Collapse
|
7
|
Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 2011; 42:68-89. [PMID: 22050423 DOI: 10.3109/10408444.2011.623150] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, tobacco smoking is the cause of ~5-6 million deaths per year, counting 31% and 6% of all cancer deaths (affecting 18 different organs) in middle-aged men and women, respectively. Nicotine is the addictive component of tobacco acting on neuronal nicotinic receptors (nAChR). Functional nAChR, are also present on endothelial, haematological and epithelial cells. Although nicotine itself is regularly not referred to as a carcinogen, there is an ongoing debate whether nicotine functions as a 'tumour promoter'. Nicotine, with its specific binding to nAChR, deregulates essential biological processes like regulation of cell proliferation, apoptosis, migration, invasion, angiogenesis, inflammation and cell-mediated immunity in a wide variety of cells including foetal (regulation of development), embryonic and adult stem cells, adult tissues as well as cancer cells. Nicotine seems involved in fundamental aspects of the biology of malignant diseases, as well as of neurodegeneration. Investigating the biological effects of nicotine may provide new tools for therapeutic interventions and for the understanding of neurodegenerative diseases and tumour biology.
Collapse
|
8
|
Graham JF, Kurian D, Agarwal S, Toovey L, Hunt L, Kirby L, Pinheiro TJT, Banner SJ, Gill AC. Na+/K+-ATPase is present in scrapie-associated fibrils, modulates PrP misfolding in vitro and links PrP function and dysfunction. PLoS One 2011; 6:e26813. [PMID: 22073199 PMCID: PMC3206849 DOI: 10.1371/journal.pone.0026813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022] Open
Abstract
Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrPC, to the disease-associated form, PrPSc, through mechanisms that remain elusive but which require either direct or indirect interaction between PrPC and PrPSc isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrPC or to provide a scaffold ensuring correct alignment of PrPC and PrPSc during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF) from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na+/K+-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na+/K+-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrPC and Na+/K+-ATPase have previously been reported in astrocytes, our data highlight this molecule as a key link between PrP function, dysfunction and misfolding.
Collapse
Affiliation(s)
- James F. Graham
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Dominic Kurian
- Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom
| | - Sonya Agarwal
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Lorna Toovey
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Lawrence Hunt
- Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom
| | - Louise Kirby
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | | | - Steven J. Banner
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
| | - Andrew C. Gill
- The Roslin Institute and R(D)SVS, Neuropathogenesis Division, University of Edinburgh, Easter Bush, Roslin, Edinburgh, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Beraldo FH, Arantes CP, Santos TG, Queiroz NGT, Young K, Rylett RJ, Markus RP, Prado MAM, Martins VR. Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J Biol Chem 2010; 285:36542-50. [PMID: 20837487 DOI: 10.1074/jbc.m110.157263] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The prion protein (PrP(C)) is a conserved glycosylphosphatidylinositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrP(C)-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that α-bungarotoxin, a specific inhibitor for α7 nicotinic acetylcholine receptor (α7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when α7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C)·α7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.
Collapse
Affiliation(s)
- Flavio H Beraldo
- Ludwig Institute for Cancer Research, Hospital Alemão Oswaldo Cruz, São Paulo 01323-903, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Transcriptional changes in the brains of cattle orally infected with the bovine spongiform encephalopathy agent precede detection of infectivity. J Virol 2009; 83:9464-73. [PMID: 19587050 DOI: 10.1128/jvi.00352-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal, transmissible, neurodegenerative disease of cattle. BSE can be transmitted experimentally between cattle through the oral route, and in this study, brain tissue samples from animals at different time points postinoculation were analyzed for changes in gene expression. The aims of this study were to identify differentially regulated genes during the progression of BSE using microarray-based gene expression profiling and to understand the effect of prion pathogenesis on gene expression. A total of 114 genes were found to be differentially regulated over the time course of the infection, and many of these 114 genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response, and transcription. This study also revealed a broad correlation between gene expression profiles and the progression of BSE in cattle. At 21 months postinoculation, the largest number of differentially regulated genes was detected, suggesting that there are many pathogenic processes in the animal brain even prior to the detection of infectivity in the central nervous systems of these orally infected cattle. Moreover, evidence is presented to suggest that it is possible to predict the infectious status of animals using the expression profiles from this study.
Collapse
|
11
|
Petrakis S, Malinowska A, Dadlez M, Sklaviadis T. Identification of proteins co-purifying with scrapie infectivity. J Proteomics 2009; 72:690-4. [PMID: 19367687 DOI: 10.1016/j.jprot.2009.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PrP(C), the cellular isoform of prion protein, is widely expressed in most tissues. Despite its involvement in several bioprocesses it still has no apparent physiological role. During propagation of Transmissible Spongiform Encephalopathies, PrP(C) is converted to the pathological isoform, PrP(Sc), in a process believed to be mediated by unknown host factors. PrP(Sc) has altered biochemical properties and forms amyloid aggregates that display infectious characteristics. PrP(Sc) is also the major component in biochemically enriched infectious samples. Other molecules co-purify with it, but the protein content of these aggregates remains unknown. The goal of this project was to identify other host molecules with high affinity for PrP(Sc). Here, we present the identification of protein molecules that co-purify with PrP(Sc) isolated from naturally scrapie-infected ovine brain tissue. The infectious preparations were analyzed by two-dimensional gel electrophoresis and unknown proteins were identified by LC-MS/MS. These proteins may prove to be strategic targets for prevention and therapy of prion diseases.
Collapse
Affiliation(s)
- S Petrakis
- Prion Disease Research Group, Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
12
|
Petrakis S, Irinopoulou T, Panagiotidis CH, Engelstein R, Lindstrom J, Orr-Urtreger A, Gabizon R, Grigoriadis N, Sklaviadis T. Cellular prion protein co-localizes with nAChR β4 subunit in brain and gastrointestinal tract. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2008.06243.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|