1
|
de Melo MB, Daldegan-Bueno D, Favaro VM, Oliveira MGM. The subiculum role on learning and memory tasks using rats and mice: A scoping review. Neurosci Biobehav Rev 2023; 155:105460. [PMID: 37939978 DOI: 10.1016/j.neubiorev.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
This scoping review aimed to systematically identify and summarize data related to subiculum involvement in learning and memory behavioral tasks in rats and mice. Following a systematic strategy based on PICO and PRISMA guidelines, we searched five indexed databases (PubMed, Web of Science, EMBASE, Scopus, and PsycInfo) using a standardized search strategy to identify peer-reviewed articles published in English (pre-registration: osf.io/hm5ea). We identified 31 articles investigating the role of the subiculum in spatial, working, and recognition memories (n = 11), memories related to addiction models (n = 9), aversive memories (n = 7), and memories related to appetitive learning (n = 5). We highlight a dissociation in the dorsoventral axis of the subiculum with many studies exploring the ventral subiculum (n = 21) but only a few exploring the dorsal one (n = 10). We also observe the necessity of more data including mice, female animals, genetic tools, and better statistical approaches for replication purposes and research refinement. These findings provide a broad framework of the subiculum involvement in learning and memory, showing essential questions that can be explored by further studies.
Collapse
Affiliation(s)
- Márcio Braga de Melo
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Dimitri Daldegan-Bueno
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa Manchim Favaro
- Setor de Investigação de Doenças Neuromusculares, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
Bruno JP. Enhancing the resolution of behavioral measures: Key observations during a forty year career in behavioral neuroscience. Neurosci Biobehav Rev 2023; 145:105004. [PMID: 36549379 DOI: 10.1016/j.neubiorev.2022.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reviews several key observations from the research program of Professor John P. Bruno that are believed to have significantly advanced our understanding of the brain's mediation of behavior. This review focuses on findings within several important research areas in behavioral neuroscience, including a) age-dependent neurobehavioral plasticity following brain damage; b) the role of the cortical cholinergic system in attentional processing and cognitive flexibility; and c) the design and validation of animal models of cognitive deficits in schizophrenia. In selecting these observations, emphasis was given to examples in which the heuristic potency was increased by maximizing the resolution and microanalysis of behavioral assays in the same fashion as one typically refines neuronal manipulations. Professor Bruno served the International Behavioral Neuroscience Society (IBNS) as an IBNS Fellow (1995-present) and President of the IBNS (2001-02).
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021; 12:6810. [PMID: 34815409 PMCID: PMC8611076 DOI: 10.1038/s41467-021-27114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice. The authors show that mice that mimic the dual genetic-environmental etiology of psychiatric risk have poor lateral entorhinal cortex-dependent recognition memory already at pre-juvenile age and abnormal communication within LECHP-PFC networks throughout development.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
4
|
Saoud H, Kereselidze E, Eybrard S, Louilot A. MK-801-induced behavioral and dopaminergic responses in the shell part of the nucleus accumbens in adult male rats are disrupted after neonatal blockade of the ventral subiculum. Neurochem Int 2021; 150:105195. [PMID: 34582961 DOI: 10.1016/j.neuint.2021.105195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/08/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022]
Abstract
The present study was conducted in the context of animal modeling of schizophrenia. It investigated in adult male rats, after transient neonatal blockade of the ventral subiculum (VSub), the impact of a very specific non-competitive antagonist of NMDA receptors (MK-801) on locomotor activity and dopaminergic (DAergic) responses in the dorsomedial shell part of the nucleus accumbens (Nacc), a striatal subregion described as the common target region for antipsychotics. The functional neonatal inactivation of the VSub was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8 (PND8). Control pups were microinjected with the solvent phosphate buffered saline (PBS). Locomotor responses and DAergic variations in the dorsomedial shell part of the Nacc were measured simultaneously using in vivo voltammetry in awake, freely moving male animals after sc administration of MK-801. The following results were obtained: 1) a dose-dependent increase in locomotor activity in PBS and TTX animals, greater in TTX rats/PBS rats; and 2) divergent DAergic responses for PBS and TTX animals. A decrease in DA levels with a return to around basal values was observed in PBS animals. An increase in DA levels was obtained in TTX animals. The present data suggest that neonatal blockade of the VSub results in disruption in NMDA glutamatergic transmission, causing a disturbance in DA release in the dorsomedial shell in adults male rats. In the context of animal modeling of schizophrenia using the same approach it would be interesting to investigate possible changes in postsynaptic NMDA receptors-related proteins in the dorsomedial shell region in the Nacc.
Collapse
Affiliation(s)
- Hana Saoud
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Elora Kereselidze
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
5
|
Saoud H, De Beus D, Eybrard S, Louilot A. Postnatal functional inactivation of the ventral subiculum enhances dopaminergic responses in the core part of the nucleus accumbens following ketamine injection in adult rats. Neurochem Int 2020; 137:104736. [PMID: 32283120 DOI: 10.1016/j.neuint.2020.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
For almost two decades schizophrenia has been considered to be a functional disconnection disorder. This functional disconnectivity between several brain regions could have a neurodevelopmental origin. Various approaches suggest the ventral subiculum (SUB) is a particular target region for neurodevelopemental disturbances in schizophrenia. It is also commonly acknowledged that there is a striatal dopaminergic (DA) dysregulation in schizophrenia which may depend on a subiculo-striatal disconnection involving glutamatergic NMDA receptors. The present study was designed to investigate, in adult rats, the effects of the non-competitive NMDA receptor antagonist ketamine on DA responses in the ventral striatum, or, more specifically, the core part of the nucleus accumbens (Nacc), following postnatal functional inactivation of the SUB. Functional inactivation of the left SUB was carried out by local tetrodotoxin (TTX) microinjection at postnatal day 8 (PND8), i.e. at a critical point in the neurodevelopmental period. DA variations were recorded using in vivo voltammetry in freely moving adult rats (11 weeks). Locomotor activity was recorded simultaneously with the extracellular levels of DA in the core part of the Nacc. Data obtained during the present study showed that after administration of ketamine, the two indexes were higher in TTX animals than PBS animals, the suggestion being that animals microinjected with TTX in the left SUB at PND8 present greater reactivity to ketamine than animals microinjected with PBS. These findings could provide new information regarding the involvement of NMDA glutamatergic receptors in the core part of the Nacc in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Hana Saoud
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Duco De Beus
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
6
|
Gill KM, Miller SA, Grace AA. Impaired contextual fear-conditioning in MAM rodent model of schizophrenia. Schizophr Res 2018; 195:343-352. [PMID: 28927551 PMCID: PMC5854517 DOI: 10.1016/j.schres.2017.08.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
Abstract
The methylazoxymethanol acetate (MAM) rodent neurodevelopmental model of schizophrenia exhibits aberrant dopamine system activation attributed to hippocampal dysfunction. Context discrimination is a component of numerous behavioral and cognitive functions and relies on intact hippocampal processing. The present study explored context processing behaviors, along with dopamine system activation, during fear learning in the MAM model. Male offspring of dams treated with MAM (20mg/kg, i.p.) or saline on gestational day 17 were used for electrophysiological and behavioral experiments. Animals were tested on the immediate shock fear conditioning paradigm, with either different pre-conditioning contexts or varying amounts of context pre-exposure (0-10 sessions). Amphetamine-induced locomotor activity and dopamine neural activity was measured 1-week after fear conditioning. Saline, but not MAM animals, demonstrated enhanced fear responses following a single context pre-exposure in the conditioning context. One week following fear learning, saline rats with 2 or 7min of context pre-exposure prior to fear conditioning also demonstrated enhanced amphetamine-induced locomotor response relative to MAM animals. Dopamine neuron recordings showed fear learning-induced reductions in spontaneous dopamine neural activity in MAM rats that was further reduced by amphetamine. Apomorphine administration confirmed that reductions in dopamine neuron activity in MAM animals resulted from over excitation, or depolarization block. These data show a behavioral insensitivity to contextual stimuli in MAM rats that coincide with a less dynamic dopamine response after fear learning.
Collapse
Affiliation(s)
- Kathryn M Gill
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA.
| | - Sarah A Miller
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA
| | - Anthony A Grace
- University of Pittsburgh, Pittsburgh, PA 15260, Departments of Neuroscience, Psychiatry and Psychology, USA
| |
Collapse
|
7
|
Tagliabue E, Pouvreau T, Eybrard S, Meyer F, Louilot A. Dopaminergic responses in the core part of the nucleus accumbens to subcutaneous MK801 administration are increased following postnatal transient blockade of the prefrontal cortex. Behav Brain Res 2017; 335:191-198. [PMID: 28823626 DOI: 10.1016/j.bbr.2017.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a complex and devastating neuropsychiatric disease thought to result from impaired connectivity between several integrative regions, stemming from developmental failures. In particular, the left prefrontal cortex of schizophrenia patients seems to be targeted by such early developmental disturbances. Data obtained over the last three decades support the hypothesis of a dopaminergic dysfunction in schizophrenia. Striatal dopaminergic dysregulation in schizophrenia may result from a dysconnection between the prefrontal cortex and the striatum (dorsal and ventral) involving glutamatergic N-methyl-d-aspartate (NMDA) receptors. In the context of animal modeling of the pathophysiology of schizophrenia, the present study was designed to investigate the effects of MK 801 (dizocilpine) on locomotor activity and dopaminergic responses in the left core part of the nucleus accumbens (ventral striatum) in adult rats following neonatal tetrodotoxin inactivation of the left prefrontal cortex (infralimbic/prelimbic region) at postnatal day 8. Dopaminergic variations were recorded in the nucleus accumbens by means of in vivo voltammetry in freely moving adult animals. Following MK 801 administration, and in comparison to control (PBS) animals, animals microinjected with tetrodotoxin display locomotor hyperactivity and increased extracellular dopamine levels in the core part of the nucleus accumbens. These findings suggest neonatal functional inactivation of the prefrontal cortex may lead to a dysregulation of dopamine release in the core part of the nucleus accumbens involving NMDA receptors. The results obtained may provide new insight into the involvement of NMDA receptors in the pathophysiology of schizophrenia and suggest that future studies should look carefully at the core of the nucleus accumbens.
Collapse
Affiliation(s)
- Emmanuelle Tagliabue
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Tiphaine Pouvreau
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Francisca Meyer
- Department of Molecular Animal Physiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
8
|
Hollins SL, Zavitsanou K, Walker FR, Cairns MJ. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure. Brain Behav Immun 2016; 56:187-96. [PMID: 26923065 DOI: 10.1016/j.bbi.2016.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023] Open
Abstract
Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Katerina Zavitsanou
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia.
| |
Collapse
|
9
|
Pouvreau T, Tagliabue E, Usun Y, Eybrard S, Meyer F, Louilot A. Neonatal Prefrontal Inactivation Results in Reversed Dopaminergic Responses in the Shell Subregion of the Nucleus Accumbens to NMDA Antagonists. ACS Chem Neurosci 2016; 7:964-71. [PMID: 27145294 DOI: 10.1021/acschemneuro.6b00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Striatal dopaminergic dysregulation in schizophrenia could result from a prefronto-striatal dysconnectivity, of neurodevelopmental origin, involving N-methyl-d-aspartate (NMDA) receptors. The dorsomedian shell part of the nucleus accumbens is a striatal subregion of particular interest inasmuch as it has been described as the common target region for antipsychotics. Moreover, NMDA receptors located on the dopaminergic endings have been reported in the shell. The present study examines in adult rats the effects of early functional inactivation of the left prefrontal cortex on behavioral and dopaminergic responses in the dorsomedian shell part of the nucleus accumbens following administration of two noncompetitive NMDA receptor antagonists, ketamine, and dizocilpine (MK-801). The results showed that postnatal blockade of the prefrontal cortex led to increased locomotor activity as well as increased extracellular dopamine levels in the dorsomedian shell following administration of both noncompetitive NMDA receptor antagonists, and, more markedly, after treatment with the more specific one, MK-801, whereas decreased dopaminergic levels were observed in respective controls. These data suggest a link between NMDA receptor dysfunctioning and dopamine dysregulation at the level of the dorsomedian shell part of the nucleus accumbens. They may help to understand the pathophysiology of schizophrenia in a neurodevelopmental perspective.
Collapse
Affiliation(s)
- Tiphaine Pouvreau
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Emmanuelle Tagliabue
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Yusuf Usun
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Séverine Eybrard
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| | - Francisca Meyer
- Department of
Molecular Animal Physiology, Radboud University Nijmegen, Donders
Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Alain Louilot
- INSERM U 1114,
Faculty of Medicine, FMTS, University of Strasbourg, Strasbourg 67085, France
| |
Collapse
|
10
|
Molero-Chamizo A, Morón I. Latent inhibition of conditioned taste aversion in rats with excitotoxic dorsal hippocampal lesions. J Neurosci Res 2015; 93:1740-7. [DOI: 10.1002/jnr.23633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 11/12/2022]
Affiliation(s)
| | - Ignacio Morón
- Department of Psychobiology; University of Granada; Campus Cartuja Granada Spain
| |
Collapse
|
11
|
Molero-Chamizo A. Excitotoxic lesion of the posterior part of the dorsal striatum does not affect the typically dopaminergic phenomenon of latent inhibition in conditioned taste aversion. Neurosci Res 2015; 91:8-12. [DOI: 10.1016/j.neures.2014.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
|
12
|
O'Reilly KC, Flatberg A, Islam S, Olsen LC, Kruge IU, Witter MP. Identification of dorsal-ventral hippocampal differentiation in neonatal rats. Brain Struct Funct 2014; 220:2873-93. [PMID: 25012113 DOI: 10.1007/s00429-014-0831-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/21/2014] [Indexed: 12/21/2022]
Abstract
The adult hippocampal formation (HF) is functionally, connectionally, and transcriptionally differentiated along the dorsal-ventral axis. At birth, the hippocampus appears shortened along its dorsal-ventral axis. We therefore questioned at what postnatal age the differentiated dorsal-ventral hippocampus is present. We first established that the ventral tissue in the short postnatal hippocampus remains ventral in the adult-like hippocampus. Second, using anatomical tracing techniques we report that, within the first postnatal week, the main input from the entorhinal cortex (EC) to HF is topographically organized. The terminal distribution of this input along the dorsal-ventral axis of HF was related to a dorsolateral-to-ventromedial axis of origin in EC, thus reflecting adult topography. Finally, we examined gene expression along the dorsal-ventral axis in the developing hippocampus. We found that several genes that were differentially enriched in the adult dorsal and ventral hippocampus were similarly enriched in the dorsal and ventral hippocampal poles at birth. The differentially expressed genes relate to different molecular pathways and biomarkers of disease. Taken together, these data lead us to conclude that the entire dorsal-ventral axis of HF is present at birth showing adult-like functional differentiation. Moreover, our findings indicate that the neonatal ventral hippocampus is enriched with biomarkers associated with mental illnesses. These include schizophrenia, affective and anxiety disorders, disorders previously deemed as ventral hippocampal associated disorders, as well as alcoholism. Our results thus suggest an early developmental susceptibility of the ventral HF to mental illness.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Medical Technical Research Centre, Norwegian University of Science and Technology, Postboks 8905, 7491, Trondheim, Norway,
| | | | | | | | | | | |
Collapse
|
13
|
Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood. Neuropharmacology 2014; 84:19-30. [PMID: 24747179 DOI: 10.1016/j.neuropharm.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious cognition enhancers. We have utilized an animal model in which the above distributed system is altered, during a sensitive period of development, by transiently inactivating the VH and its efferent projections. We determined the ability of NAc shell activation to evoke prefrontal glutamate release in adult male Wistar rats that had received saline (Sal) or tetrodotoxin (TTX) as neonates (PD7) or as adolescents (PD32). The nucleus accumbens shell (NAcSh) was activated by NMDA infusions (0.05-0.30 μg/0.5 μL). Basal and evoked glutamate levels were measured amperometrically using a glutamate-sensitive microelectrode. There were no differences in basal glutamate levels among the groups tested (overall 1.41 ± 0.26 uM). However, the dose-related stimulation of prefrontal glutamate levels seen in control rats treated with saline on PD7 (4.31 ± 0.22 μM after 0.15 μg) was markedly attenuated in rats treated with TTX on PD7 (0.45 ± 0.12 μM after 0.15 μg). This effect was age-dependent as infusions of TTX on PD32 did not alter the NMDA-induced increases in glutamate release (4.10 ± 0.37 μM after 0.15 μg). Collectively, these findings reveal that transient inactivation of VH transmission, during a sensitive period of development, leads to a functional mesolimbic-cortical disconnection that produces neurochemical and ultimately cognitive impairments resembling those seen in SZ.
Collapse
|
14
|
Meyer F, Louilot A. Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 2014; 8:118. [PMID: 24778609 PMCID: PMC3985036 DOI: 10.3389/fnbeh.2014.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 11/16/2022] Open
Abstract
The psychic disintegration characteristic of schizophrenia is thought to result from a defective connectivity, of neurodevelopmental origin, between several integrative brain regions. The parahippocampal region and the prefrontal cortex are described as the main regions affected in schizophrenia. Interestingly, latent inhibition (LI) has been found to be reduced in patients with schizophrenia, and the existence of a dopaminergic dysfunction is also generally well accepted in this disorder. In the present review, we have integrated behavioral and neurochemical data obtained in a LI protocol involving adult rats subjected to neonatal functional inactivation of the entorhinal cortex, the ventral subiculum or the prefrontal cortex. The data discussed suggest a subtle and transient functional blockade during early development of the aforementioned brain regions is sufficient to induce schizophrenia-related behavioral and dopaminergic abnormalities in adulthood. In summary, these results support the view that our conceptual and methodological approach, based on functional disconnections, is valid for modeling some aspects of the pathophysiology of schizophrenia from a neurodevelopmental perspective.
Collapse
Affiliation(s)
- Francisca Meyer
- 1Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Alain Louilot
- 2INSERM U 1114, Faculty of Medicine, FMTS, University of Strasbourg Strasbourg, France
| |
Collapse
|
15
|
Reichelt AC, Lee JLC. Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 2013; 7:118. [PMID: 24058336 PMCID: PMC3766793 DOI: 10.3389/fnbeh.2013.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of Birmingham Birmingham, UK
| | | |
Collapse
|
16
|
Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex. Behav Brain Res 2013; 256:229-37. [PMID: 23958806 DOI: 10.1016/j.bbr.2013.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/09/2013] [Accepted: 08/11/2013] [Indexed: 02/04/2023]
Abstract
Schizophrenia is a complex psychiatric disorder that may result from defective connectivity, of neurodevelopmental origin, between several integrative brain regions. Different anomalies consistent with brain development failures have been observed in patients' left prefrontal cortex (PFC). A striatal dopaminergic functional disturbance is also commonly acknowledged in schizophrenia and could be related to a dysfunctioning of dopamine-glutamate interactions. Non-competitive NMDA antagonists, such as ketamine, can induce psychotic symptoms in healthy individuals and worsen these symptoms in patients with schizophrenia. Our study set out to investigate the consequences of neonatal functional blockade of the PFC for dopaminergic and behavioral reactivity to ketamine in adult rats. Following tetrodotoxin (TTX) inactivation of the left PFC at postnatal day 8, dopaminergic responses induced by ketamine (5 mg/kg, 10 mg/kg, 20 mg/kg sc) were monitored using in vivo voltammetry in the left part of the dorsal striatum in freely moving adult rats. Dopaminergic responses and locomotor activity were followed in parallel. Compared to PBS animals, in rats microinjected with TTX, ketamine challenge induced a greater release of dopamine in the dorsal striatum for the highest dose (20 mg/kg sc) and the intermediate dose (10mg/kg sc). A higher increase in locomotor activity in TTX animals was observed only for the highest dose of ketamine (20 mg/kg sc). These data suggest transient inactivation of the PFC during early development results in greater behavioral and striatal dopaminergic reactivity to ketamine in adulthood. Our study provides an anatomo-functional framework that may contribute toward a better understanding of the involvement of NMDA glutamatergic receptors in schizophrenia.
Collapse
|
17
|
Transient inactivation of the neonatal ventral hippocampus impairs attentional set-shifting behavior: reversal with an α7 nicotinic agonist. Neuropsychopharmacology 2012; 37:2476-86. [PMID: 22781844 PMCID: PMC3442342 DOI: 10.1038/npp.2012.106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cognitive deficits represent a core symptom cluster in schizophrenia that are thought to reflect developmental dysregulations within a neural system involving the ventral hippocampus (VH), nucleus accumbens (NAC), and prefrontal cortex (PFC). The present experiments determined the cognitive effects of transiently inactivating VH in rats during a sensitive period of development. Neonatal (postnatal day 7, PD7) and adolescent (PD32) male rats received a single bilateral infusion of saline or tetrodotoxin (TTX) within the VH to transiently inactivate local circuitry and efferent outflow. Rats were tested as adults on an attentional set-shifting task. Performance in this task depends upon the integrity of the PFC and NAC. TTX infusions did not affect the initial acquisition or ability to learn an intra-dimensional shift. However, TTX rats required a greater number of trials than did controls to acquire the first reversal and extra-dimensional shift (ED) stages. These impairments were age and region-specific as rats infused with TTX into the VH at PD32, or into the dorsal hippocampus at PD7, exhibited performance in the task similar to that of controls. Finally, acute systemic administration of the partial α7 nicotinic acetylcholine receptor (nAChR) agonist SSR 180711 (3.0 mg/kg) eliminated the TTX-induced performance deficits. Given that patients with schizophrenia exhibit hippocampal pathophysiology and deficits in the ED stages of set-shifting tasks, our results support the significance of transient hippocampal inactivation as an animal model for studying the cognitive impairments in schizophrenia as well as the pro-cognitive therapeutic potential of α7 nAChR agonists.
Collapse
|
18
|
Early prefrontal functional blockade in rats results in schizophrenia-related anomalies in behavior and dopamine. Neuropsychopharmacology 2012; 37:2233-43. [PMID: 22588351 PMCID: PMC3422488 DOI: 10.1038/npp.2012.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growing evidence suggests schizophrenia may arise from abnormalities in early brain development. The prefrontal cortex (PFC) stands out as one of the main regions affected in schizophrenia. Latent inhibition, an interesting cognitive marker for schizophrenia, has been found in some studies to be reduced in acute patients. It is generally widely accepted that there is a dopaminergic dysfunctioning in schizophrenia. Moreover, several authors have reported that the psychostimulant, D-amphetamine (D-AMP), exacerbates symptoms in patients with schizophrenia. We explored in rats the effects in adulthood of neonatal transient inactivation of the PFC on behavioral and neurochemical anomalies associated with schizophrenia. Following tetrodotoxin (TTX) inactivation of the left PFC at postnatal day 8, latent inhibition-related dopaminergic responses and dopaminergic reactivity to D-AMP were monitored using in vivo voltammetry in the left core part of the nucleus accumbens in adult freely moving rats. Dopaminergic responses and behavioral responses were followed in parallel. Prefrontal neonatal inactivation resulted in disrupted behavioral responses of latent inhibition and latent inhibition-related dopaminergic responses in the core subregion. After D-AMP challenge, the highest dose (1.5 mg/kg i.p.) induced a greater dopamine increase in the core in rats microinjected with TTX, and a parallel increase in locomotor activity, suggesting that following prefrontal neonatal TTX inactivation animals display a greater behavioral and dopaminergic reactivity to D-AMP. Transitory inactivation of the PFC early in the postnatal developmental period leads to behavioral and neurochemical changes in adulthood that are meaningful for schizophrenia modeling. The data obtained may help our understanding of the pathophysiology of this disabling disorder.
Collapse
|
19
|
Transient inactivation of the neonatal ventral hippocampus permanently disrupts the mesolimbic regulation of prefrontal cholinergic transmission: implications for schizophrenia. Neuropsychopharmacology 2011; 36:2477-87. [PMID: 21814184 PMCID: PMC3194075 DOI: 10.1038/npp.2011.136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
These experiments determined the mesolimbic modulation of cortical cholinergic transmission in a neurodevelopmental model of schizophrenia. Mesolimbic-cholinergic abnormalities are hypothesized to contribute to the cognitive deficits seen in schizophrenia. Stimulation of NMDA receptors in nucleus accumbens (NAC) increases acetylcholine (ACh) release in the prefrontal cortex (PFC), a mechanism recently demonstrated to contribute to the control of attentional performance. We determined the ability of intra-NAC administration of NMDA to increase prefrontal ACh levels in adult rats that had received bilateral infusions of tetrodotoxin (TTX) to transiently interrupt impulse flow in the ventral hippocampus (VH) during development. Rats received infusions of TTX or saline on postnatal day 7 (PD7) or day 32 (PD32), and the effects of NAC NMDA receptor stimulation on prefrontal cholinergic neurotransmission were assessed in adulthood. In animals treated as controls on PD7, NMDA increased prefrontal ACh levels by 121% above baseline. In contrast, PD7 infusions of TTX into the VH abolished the ability of NAC NMDA to activate prefrontal cholinergic neurotransmission (7% increase). In animals that received TTX infusions on PD32, NMDA-evoked cholinergic activity did not differ from controls, indicating a restricted, neonatal critical period during which VH TTX impacts the organization of mesolimbic-basal forebrain-cortical circuitry. Importantly, the failure of NAC NMDA to evoke cholinergic activity in rats treated with TTX on PD7 did not reflect a reduced excitability of corticopetal cholinergic neurons because administration of amphetamine produced similar elevations of prefrontal ACh levels in PD7 TTX and PD7 control animals. A third series of experiments demonstrated that the effects of PD7 TTX are a specific consequence of transient disruption of impulse flow in the VH. Intra-NAC NMDA evoked prefrontal ACh release in rats receiving TTX, on PD7, into the dorsal hippocampus (DH), basolateral amygdala, or NAC. Thus, impulse flow specifically within the VH, during a sensitive period of development, is necessary for the functional organization of a mesolimbic-cortical circuit known to mediate attentional control processes. Therefore, neonatal inactivation of VH represents an effective animal model for studying the basis of certain cognitive symptoms of schizophrenia.
Collapse
|
20
|
Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum. Neuropsychopharmacology 2011; 36:1421-32. [PMID: 21430650 PMCID: PMC3096811 DOI: 10.1038/npp.2011.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.
Collapse
|
21
|
Quintero E, Díaz E, Vargas JP, de la Casa G, López JC. Ventral subiculum involvement in latent inhibition context specificity. Physiol Behav 2011; 102:414-20. [DOI: 10.1016/j.physbeh.2010.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 11/25/2022]
|