1
|
Lu X, Wickens JR, Hyland BI. Multimodal convergence in the pedunculopontine tegmental nucleus: Motor, sensory and theta-frequency inputs influence activity of single neurons. Eur J Neurosci 2024; 60:3643-3658. [PMID: 38698531 DOI: 10.1111/ejn.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
The pedunculopontine tegmental nucleus of the brainstem (PPTg) has extensive interconnections and neuronal-behavioural correlates. It is implicated in movement control and sensorimotor integration. We investigated whether single neuron activity in freely moving rats is correlated with components of skilled forelimb movement, and whether individual neurons respond to both motor and sensory events. We found that individual PPTg neurons showed changes in firing rate at different times during the reach. This type of temporally specific modulation is like activity seen elsewhere in voluntary movement control circuits, such as the motor cortex, and suggests that PPTg neural activity is related to different specific events occurring during the reach. In particular, many neuronal modulations were time-locked to the end of the extension phase of the reach, when fine distal movements related to food grasping occur, indicating strong engagement of PPTg in this phase of skilled individual forelimb movements. In addition, some neurons showed brief periods of apparent oscillatory firing in the theta range at specific phases of the reach-to-grasp movement. When movement-related neurons were tested with tone stimuli, many also responded to this auditory input, allowing for sensorimotor integration at the cellular level. Together, these data extend the concept of the PPTg as an integrative structure in generation of complex movements, by showing that this function extends to the highly coordinated control of the forelimb during skilled reach to grasp movement, and that sensory and motor-related information converges on single neurons, allowing for direct integration at the cellular level.
Collapse
Affiliation(s)
- Xiaodong Lu
- Department of Physiology, School of Biomedical Sciences and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence, Dunedin and Auckland, New Zealand
| | - Jeffery R Wickens
- Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
| | - Brian Ian Hyland
- Department of Physiology, School of Biomedical Sciences and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence, Dunedin and Auckland, New Zealand
| |
Collapse
|
2
|
Kaushik P, Naudé J, Raju SB, Alexandre F. A VTA GABAergic computational model of dissociated reward prediction error computation in classical conditioning. Neurobiol Learn Mem 2022; 193:107653. [PMID: 35772681 DOI: 10.1016/j.nlm.2022.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Classical Conditioning is a fundamental learning mechanism where the Ventral Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA) Dopamine neurons when a reward is expected. However, recent evidences point to a new candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA. In this system-level computational model, the VTA GABA signal is hypothesised to be a combination of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively. This dissociation enables the model to explain recent results wherein Ventral Striatum lesions affected the temporal expectation of the reward but the magnitude of the reward was intact. This model also exhibits other features in classical conditioning namely, progressively decreasing firing for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and cancellation of US dopamine after training.
Collapse
Affiliation(s)
- Pramod Kaushik
- International Institute of Information Technology, Hyderabad, India; Inria Bordeaux Sud-Ouest, Talence, France
| | - Jérémie Naudé
- Institut de Génomique Fonctionnelle, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | | | - Frédéric Alexandre
- Inria Bordeaux Sud-Ouest, Talence, France; LaBRI, University of Bordeaux, Bordeaux INP, CNRS, UMR 5800, Talence, France; Institute of Neurodegenerative Diseases, University of Bordeaux, CNRS, UMR 5293, Bordeaux, France.
| |
Collapse
|
3
|
Inagaki HK, Chen S, Ridder MC, Sah P, Li N, Yang Z, Hasanbegovic H, Gao Z, Gerfen CR, Svoboda K. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 2022; 185:1065-1081.e23. [PMID: 35245431 PMCID: PMC8990337 DOI: 10.1016/j.cell.2022.02.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023]
Abstract
Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.
Collapse
Affiliation(s)
- Hidehiko K Inagaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| | - Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Margreet C Ridder
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zidan Yang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Hana Hasanbegovic
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Allen Institute for Neural Dynamics, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Marino RA, Levy R, Munoz DP. Distinct Sensory and Goal Related Signals Underlie the Gap Effect in the Superior Colliculus. Eur J Neurosci 2021; 55:205-226. [PMID: 34791728 DOI: 10.1111/ejn.15533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
The removal of a fixation point (FP) prior to the appearance of a saccade target (gap effect) influences pre-motor circuits and reduces saccadic reaction time (SRT). Saccade preparation signals underlying the gap effect have been observed within the intermediate layers of the superior colliculus (SCi). Neurons in the caudal SCi, coding a target location, increase their activity during the gap, while neurons in the rostral SCi, with tonic activity related to visual fixation, decrease activity. However, the gap effect confounds two factors: 1) a goal-driven temporal warning component (upcoming saccade target appearance); and 2) a stimulus-driven sensory component (FP disappearance). These factors combine to reduce SRT and elicit pre-target responses in the SCi. To dissociate warning and sensory effects, we altered the luminance of the FP during the gap period (renamed warning period) such that it could increase, decrease, or stay the same. Faster SRTs resulted with larger decrements in FP luminance. Different categories of SCi warning period activity were evaluated: 1) always increasing or decreasing; or 2) sensory-linked responses to changes in FP luminance. In the caudal SCi (at the location coding the target), all activity correlated negatively with SRT (i.e. saccade facilitation) and two categories of activity were observed (always increasing or opposing FP luminance changes). In the rostral SCi, four categories of activity were observed: Activity that increased or followed the change in FP luminance correlated positively with SRT (i.e. saccade inhibition), while activity that decreased or opposed FP luminance changes correlated negatively with SRT. Such SCi activity reflected both goal-driven saccade preparation signals and FP sensory properties.
Collapse
Affiliation(s)
- Robert A Marino
- Centre for Neuroscience Studies.,Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| | - Ron Levy
- Centre for Neuroscience Studies.,Department of Surgery, Kingston General Hospital, Kingston, Ontario, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies.,Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Okada KI, Takahira M, Mano T, Uga T, Konaka K, Hosomi K, Saitoh Y. Concomitant improvement in anti-saccade success rate and postural instability gait difficulty after rTMS treatment for Parkinson's disease. Sci Rep 2021; 11:2472. [PMID: 33510266 PMCID: PMC7844238 DOI: 10.1038/s41598-021-81795-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder characterised by motor and non-motor deficits. Repetitive transcranial magnetic stimulation (rTMS) over the bilateral primary motor cortex at a high frequency (5 Hz or higher) is reported to be a potential treatment of PD. We aimed to assess the effect of rTMS on eye movement control in patients with PD in their ‘on’ state. We enrolled 14 patients with PD and assessed motor symptoms (Movement Disorder Society-Sponsored Unified Parkinson’s Disease Rating Scale; MDS-UPDRS) and eye movement performances (visually guided saccades, volitional anti-saccades, and small involuntary saccades during fixation) at baseline and after administering bilateral 10 Hz rTMS on leg region of the motor cortex. We confirmed that rTMS improved the MDS-UPDRS motor scores and found that rTMS improved the anti-saccade success rate, which requires adequate inhibition of the reflexive response. The improvement in anti-saccade success rate was correlated with that of the postural instability gait difficulty (PIGD) sub-scores of MDS-UPDRS and lower baseline Japanese version of the Montreal Cognitive Assessment scores. This result is consistent with previous findings that PIGD and inhibitory control deficits share common brain dysfunctions in PD. rTMS may alleviate dysfunctions of that circuit and have a clinical effect.
Collapse
Affiliation(s)
- Ken-Ichi Okada
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, 1-4 Yamadaoka, Suita, 565-0871, Japan.,Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Mizuki Takahira
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tomoo Mano
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.,Department of Neurology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521, Japan
| | - Taichi Uga
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Kuni Konaka
- Department of Physical Therapy, Faculty of Health Science, Osaka Yukioka College of Health Science, 1-1-41 Soujiji, Ibaraki, 567-0801, Japan
| | - Koichi Hosomi
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Youichi Saitoh
- Department of Neuromodulation and Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan. .,Department of Neurosurgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
6
|
Klarendic M, Kaski D. Deep brain stimulation and eye movements. Eur J Neurosci 2020; 53:2344-2361. [DOI: 10.1111/ejn.14898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Maja Klarendic
- Neurological Department University Clinical Center Ljubljana Ljubljana Slovenia
| | - Diego Kaski
- Department of Clinical and Motor Neurosciences Centre for Vestibular and Behavioural Neurosciences University College London London UK
| |
Collapse
|
7
|
Chambers NE, Lanza K, Bishop C. Pedunculopontine Nucleus Degeneration Contributes to Both Motor and Non-Motor Symptoms of Parkinson's Disease. Front Pharmacol 2020; 10:1494. [PMID: 32009944 PMCID: PMC6974690 DOI: 10.3389/fphar.2019.01494] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by hypokinetic motor features; however, patients also display non-motor symptoms like sleep disorders. The standard treatment for PD is dopamine replacement with L-DOPA; however, symptoms including gait deficits and sleep disorders are unresponsive to L-DOPA. Notably, these symptoms have been linked to aberrant activity in the pedunculopontine nucleus (PPN). Of late, clinical trials involving PPN deep brain stimulation (DBS) have been employed to alleviate gait deficits. Although preclinical evidence implicating PPN cholinergic neurons in gait dysfunction was initially promising, DBS trials fell short of expected outcomes. One reason for the failure of DBS may be that the PPN is a heterogenous nucleus that consists of GABAergic, cholinergic, and glutamatergic neurons that project to a diverse array of brain structures. Second, DBS trials may have been unsuccessful because PPN neurons are susceptible to mitochondrial dysfunction, Lewy body pathology, and degeneration in PD. Therefore, pharmaceutical or gene-therapy strategies targeting specific PPN neuronal populations or projections could better alleviate intractable PD symptoms. Unfortunately, how PPN neuronal populations and their respective projections influence PD motor and non-motor symptoms remains enigmatic. Herein, we discuss normal cellular and neuroanatomical features of the PPN, the differential susceptibility of PPN neurons to PD-related insults, and we give an overview of literature suggesting a role for PPN neurons in motor and sleep deficits in PD. Finally, we identify future approaches directed towards the PPN for the treatment of PD motor and sleep symptoms.
Collapse
Affiliation(s)
| | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
8
|
Structure and function of the mesencephalic locomotor region in normal and parkinsonian primates. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Okada KI, Kobayashi Y. Reward and Behavioral Factors Contributing to the Tonic Activity of Monkey Pedunculopontine Tegmental Nucleus Neurons during Saccade Tasks. Front Syst Neurosci 2016; 10:94. [PMID: 27891082 PMCID: PMC5104745 DOI: 10.3389/fnsys.2016.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 01/24/2023] Open
Abstract
The pedunculopontine tegmental nucleus (PPTg) in the brainstem plays a role in controlling reinforcement learning and executing conditioned behavior. We previously examined the activity of PPTg neurons in monkeys during a reward-conditioned, visually guided saccade task, and reported that a population of these neurons exhibited tonic responses throughout the task period. These tonic responses might depend on prediction of the upcoming reward, successful execution of the task, or both. Here, we sought to further distinguish these factors and to investigate how each contributes to the tonic neuronal activity of the PPTg. In our normal visually guided saccade task, the monkey initially fixated on the central fixation target (FT), then made saccades to the peripheral saccade target and received a juice reward after the saccade target disappeared. Most of the tonic activity terminated shortly after the reward delivery, when the monkey broke fixation. To distinguish between reward and behavioral epochs, we then changed the task sequence for a block of trials, such that the saccade target remained visible after the reward delivery. Under these visible conditions, the monkeys tended to continue fixating on the saccade target even after the reward delivery. Therefore, the prediction of the upcoming reward and the end of an individual trial were separated in time. Regardless of the task conditions, half of the tonically active PPTg neurons terminated their activity around the time of the reward delivery, consistent with the view that PPTg neurons might send reward prediction signals until the time of reward delivery, which is essential for computing reward prediction error in reinforcement learning. On the other hand, the other half of the tonically active PPTg neurons changed their activity dependent on the task condition. In the normal condition, the tonic responses terminated around the time of the reward delivery, while in the visible condition, the activity continued until the disappearance of the saccade target (ST) after reward delivery. Thus, for these neurons, the tonic activity might be related to maintaining attention to complete fixation behavior. These results suggest that, in addition to the reward value information, some PPTg neurons might contribute to the execution of conditioned task behavior.
Collapse
Affiliation(s)
- Ken-Ichi Okada
- Laboratories for Neuroscience, Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan
| | - Yasushi Kobayashi
- Laboratories for Neuroscience, Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka UniversityOsaka, Japan; Research Center for Behavioral Economics, Osaka UniversityOsaka, Japan
| |
Collapse
|
10
|
Mori F, Okada KI, Nomura T, Kobayashi Y. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia. Front Neuroanat 2016; 10:109. [PMID: 27872585 PMCID: PMC5097925 DOI: 10.3389/fnana.2016.00109] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson’s disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.
Collapse
Affiliation(s)
- Fumika Mori
- Laboratories for Neuroscience Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology and Osaka UniversityOsaka, Japan
| | - Ken-Ichi Okada
- Laboratories for Neuroscience Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology and Osaka UniversityOsaka, Japan
| | - Taishin Nomura
- Bio-Dynamics Group, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University Osaka, Japan
| | - Yasushi Kobayashi
- Laboratories for Neuroscience Visual Neuroscience Group, Graduate School of Frontier Biosciences, Osaka UniversityOsaka, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology and Osaka UniversityOsaka, Japan; Research Center for Behavioral Economics, Osaka UniversityOsaka, Japan
| |
Collapse
|
11
|
Thompson JA, Costabile JD, Felsen G. Mesencephalic representations of recent experience influence decision making. eLife 2016; 5. [PMID: 27454033 PMCID: PMC4987136 DOI: 10.7554/elife.16572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/23/2016] [Indexed: 01/25/2023] Open
Abstract
Decisions are influenced by recent experience, but the neural basis for this phenomenon is not well understood. Here, we address this question in the context of action selection. We focused on activity in the pedunculopontine tegmental nucleus (PPTg), a mesencephalic region that provides input to several nuclei in the action selection network, in well-trained mice selecting actions based on sensory cues and recent trial history. We found that, at the time of action selection, the activity of many PPTg neurons reflected the action on the previous trial and its outcome, and the strength of this activity predicted the upcoming choice. Further, inactivating the PPTg predictably decreased the influence of recent experience on action selection. These findings suggest that PPTg input to downstream motor regions, where it can be integrated with other relevant information, provides a simple mechanism for incorporating recent experience into the computations underlying action selection. DOI:http://dx.doi.org/10.7554/eLife.16572.001 The decisions we make are influenced by recent experience, yet it is not known how this experience is represented in the brain. For decisions about when, where and how to move, researchers have hypothesized that recent experience might influence activity in a region of the brainstem – the central trunk of the brain – that is known to be involved in movement. When deciding when, where and how to move, several areas of the brain are involved in selecting the optimal action. Recent studies suggest that groups of neurons known as locomotor brainstem nuclei may also contribute to making decisions about movements. Thompson et al. investigated whether a brainstem locomotor area called the pedunculopontine tegmental (PPTg) nucleus in mice might contribute to decision making rather than just conveying the selected response. The mice were trained to recognize particular odors and move to either the left or right to collect a food reward. While the mice were selecting an action, the activity of neurons in the PPTg nucleus reflected the action they had chosen on a previous experience and the outcome of that choice (i.e. whether they received a reward). These representations of past experiences influenced the upcoming decision the mice were about to take. The findings of Thompson et al. suggest that the PPTg nucleus might play a critical role in the process of selecting the optimal action. Future work will examine what kinds of information about the environment or recent experience have the biggest effect on the activity of this region. DOI:http://dx.doi.org/10.7554/eLife.16572.002
Collapse
Affiliation(s)
- John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, United States.,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
12
|
Freeman SM, Young LJ. Comparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications. J Neuroendocrinol 2016; 28. [PMID: 26940141 PMCID: PMC4886472 DOI: 10.1111/jne.12382] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
In the last several decades, sophisticated experimental techniques have been used to determine the neurobiology of the oxytocin and vasopressin systems in rodents. Using a suite of methodologies, including electrophysiology, site-specific selective pharmacology, receptor autoradiography, in vivo microdialysis, and genetic and optogenetic manipulations, we have gained unprecedented knowledge about how these neuropeptides engage neural circuits to regulate behaviour, particularly social behaviour. Based on this foundation of information from rodent studies, we have started generating new hypotheses and frameworks about how the oxytocin and vasopressin systems could be acting in humans to influence social cognition. However, despite the recent inundation of publications using intranasal oxytocin in humans, we still know very little about the neurophysiology of the oxytocin system in primates more broadly. Furthermore, the design and analysis of these human studies have remained largely uninformed of the potential neurobiological mechanisms underlying their findings. Although the methods available for studying the oxytocin and vasopressin systems in humans are incredibly limited as a result of practical and ethical considerations, there is great potential to fill the gaps in our knowledge by developing better nonhuman primate models of social functioning. Behavioural pharmacology and receptor autoradiography have been used to study the oxytocin and vasopressin systems in nonhuman primates, and there is now great potential to broaden our understanding of the neurobiology of these systems. In this review, we discuss comparative findings in receptor distributions in rodents and primates, with perspectives on the functionality of conserved regions of expression in these distinct mammalian clades. We also identify specific ways that established technologies can be used to answer basic research questions in primates. Finally, we highlight areas of future research in nonhuman primates that are experimentally poised to yield critical insights into the anatomy, physiology and behavioural effects of the oxytocin system, given its remarkable translational potential.
Collapse
Affiliation(s)
- Sara M Freeman
- Department of Psychology, California National Primate Research Center, University of California-Davis, Davis, CA, USA
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Ogura Y, Izumi T, Yoshioka M, Matsushima T. Dissociation of the neural substrates of foraging effort and its social facilitation in the domestic chick. Behav Brain Res 2015; 294:162-76. [DOI: 10.1016/j.bbr.2015.07.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/04/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023]
|
14
|
Wolf AB, Lintz MJ, Costabile JD, Thompson JA, Stubblefield EA, Felsen G. An integrative role for the superior colliculus in selecting targets for movements. J Neurophysiol 2015. [PMID: 26203103 DOI: 10.1152/jn.00262.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models-including primates, cats, and rodents-that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions-the basal ganglia, parabrachial region, and neocortex-and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions.
Collapse
Affiliation(s)
- Andrew B Wolf
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Mario J Lintz
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A Stubblefield
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
15
|
Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task. PLoS One 2015; 10:e0128147. [PMID: 26030664 PMCID: PMC4452564 DOI: 10.1371/journal.pone.0128147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/22/2015] [Indexed: 11/19/2022] Open
Abstract
The pedunculopontine tegmental nucleus (PPTN) has been thought to be involved in the control of behavioral state. Projections to the entire thalamus and reciprocal connections with the basal ganglia nuclei suggest a potential role for the PPTN in the control of various rhythmic behaviors, including waking/sleeping and locomotion. Recently, rhythmic activity in the local field potentials was recorded from the PPTN of patients with Parkinson's disease who were treated with levodopa, suggesting that rhythmic firing is a feature of the functioning PPTN and might change with the behaving conditions even within waking. However, it remains unclear whether and how single PPTN neurons exhibit rhythmic firing patterns during various behaving conditions, including executing conditioned eye movement behaviors, seeking reward, or during resting. We previously recorded from PPTN neurons in healthy monkeys during visually guided saccade tasks and reported task-related changes in firing rate, and in this paper, we reanalyzed these data and focused on their firing patterns. A population of PPTN neurons demonstrated a regular firing pattern in that the coefficient of variation of interspike intervals was lower than what would be expected of theoretical random and irregular spike trains. Furthermore, a group of PPTN neurons exhibited a clear periodic single spike firing that changed with the context of the behavioral task. Many of these neurons exhibited a periodic firing pattern during highly active conditions, either the fixation condition during the saccade task or the free-viewing condition during the intertrial interval. We speculate that these task context-related changes in rhythmic firing of PPTN neurons might regulate the monkey's attentional and vigilance state to perform the task.
Collapse
|
16
|
Lau B, Welter ML, Belaid H, Fernandez Vidal S, Bardinet E, Grabli D, Karachi C. The integrative role of the pedunculopontine nucleus in human gait. Brain 2015; 138:1284-96. [PMID: 25765327 DOI: 10.1093/brain/awv047] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023] Open
Abstract
The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait-specific. These data highlight the crucial role of these two nuclei in motor control and shed light on the complex functions of the lateral mesencephalus in humans.
Collapse
Affiliation(s)
- Brian Lau
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Marie-Laure Welter
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Hayat Belaid
- 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Sara Fernandez Vidal
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 3 Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - Eric Bardinet
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 3 Centre de Neuroimagerie de Recherche, Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France
| | - David Grabli
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Carine Karachi
- 1 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, ICM, F-75013, Paris, France 2 Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
17
|
Freeman SM, Inoue K, Smith AL, Goodman MM, Young LJ. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta). Psychoneuroendocrinology 2014; 45:128-41. [PMID: 24845184 PMCID: PMC4043226 DOI: 10.1016/j.psyneuen.2014.03.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/17/2014] [Accepted: 03/31/2014] [Indexed: 01/23/2023]
Abstract
The rhesus macaque (Macaca mulatta) is an important primate model for social cognition, and recent studies have begun to explore the impact of oxytocin on social cognition and behavior. Macaques have great potential for elucidating the neural mechanisms by which oxytocin modulates social cognition, which has implications for oxytocin-based pharmacotherapies for psychiatric disorders such as autism and schizophrenia. Previous attempts to localize oxytocin receptors (OXTR) in the rhesus macaque brain have failed due to reduced selectivity of radioligands, which in primates bind to both OXTR and the structurally similar vasopressin 1a receptor (AVPR1A). We have developed a pharmacologically-informed competitive binding autoradiography protocol that selectively reveals OXTR and AVPR1A binding sites in primate brain sections. Using this protocol, we describe the neuroanatomical distribution of OXTR in the macaque. Finally, we use in situ hybridization to localize OXTR mRNA. Our results demonstrate that OXTR expression in the macaque brain is much more restricted than AVPR1A. OXTR is largely limited to the nucleus basalis of Meynert, pedunculopontine tegmental nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the ventromedial hypothalamus. These regions are involved in a variety of functions relevant to social cognition, including modulating visual attention, processing auditory and multimodal sensory stimuli, and controlling orienting responses to visual stimuli. These results provide insights into the neural mechanisms by which oxytocin modulates social cognition and behavior in this species, which, like humans, uses vision and audition as the primary modalities for social communication.
Collapse
Affiliation(s)
- Sara M. Freeman
- Corresponding Author: Sara M. Freeman, Ph.D. California National Primate Research Center- BMB University of California, Davis One Shields Ave. Davis, CA 95616 Telephone: 530.752.1506 Fax: 530.754.8166
| | | | | | | | | |
Collapse
|
18
|
Okada KI, Kobayashi Y. Fixational saccade-related activity of pedunculopontine tegmental nucleus neurons in behaving monkeys. Eur J Neurosci 2014; 40:2641-51. [DOI: 10.1111/ejn.12632] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Ken-ichi Okada
- Graduate School of Frontier Biosciences; Osaka University; 1-4 Yamadaoka Suita 563-0871 Japan
- Center for Information and Neural Networks (CiNet); National Institute of Information and Communications Technology; Osaka University; Osaka Japan
| | - Yasushi Kobayashi
- Graduate School of Frontier Biosciences; Osaka University; 1-4 Yamadaoka Suita 563-0871 Japan
- Center for Information and Neural Networks (CiNet); National Institute of Information and Communications Technology; Osaka University; Osaka Japan
- Osaka University Research Center for Behavioral Economics; Suita Japan
- PRESTO; Japan Science and Technology Agency (JST); Saitama Japan
| |
Collapse
|
19
|
Thompson JA, Felsen G. Activity in mouse pedunculopontine tegmental nucleus reflects action and outcome in a decision-making task. J Neurophysiol 2013; 110:2817-29. [PMID: 24089397 DOI: 10.1152/jn.00464.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent studies across several mammalian species have revealed a distributed network of cortical and subcortical brain regions responsible for sensorimotor decision making. Many of these regions have been shown to be interconnected with the pedunculopontine tegmental nucleus (PPTg), a brain stem structure characterized by neuronal heterogeneity and thought to be involved in several cognitive and behavioral functions. However, whether this structure plays a general functional role in sensorimotor decision making is unclear. We hypothesized that, in the context of a sensorimotor task, activity in the PPTg would reflect task-related variables in a similar manner as do the cortical and subcortical regions with which it is anatomically associated. To examine this hypothesis, we recorded PPTg activity in mice performing an odor-cued spatial choice task requiring a stereotyped leftward or rightward orienting movement to obtain a reward. We studied single-neuron activity during epochs of the task related to movement preparation, execution, and outcome (i.e., whether or not the movement was rewarded). We found that a substantial proportion of neurons in the PPTg exhibited direction-selective activity during one or more of these epochs. In addition, an overlapping population of neurons reflected movement direction and reward outcome. These results suggest that the PPTg should be considered within the network of brain areas responsible for sensorimotor decision making and lay the foundation for future experiments to examine how the PPTg interacts with other regions to control sensory-guided motor output.
Collapse
Affiliation(s)
- John A Thompson
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
20
|
Okada KI, Kobayashi Y. Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus. Front Integr Neurosci 2013; 7:36. [PMID: 23717270 PMCID: PMC3653103 DOI: 10.3389/fnint.2013.00036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/25/2013] [Indexed: 11/13/2022] Open
Abstract
The neuromodulators serotonin, acetylcholine, and dopamine have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the roles of the other neuromodulators remain elusive. Reportedly, neurons in the dorsal raphe nucleus, one major source of serotonin, continually track the state of expectation of future rewards by showing a correlated response to the start of a behavioral task, reward cue presentation, and reward delivery. Here, we show that neurons in the pedunculopontine tegmental nucleus (PPTN), one major source of acetylcholine, showed similar encoding of the expectation of future rewards by a systematic increase or decrease in tonic activity. We recorded and analyzed PPTN neuronal activity in monkeys during a reward conditioned visually guided saccade task. The firing patterns of many PPTN neurons were tonically increased or decreased throughout the task period. The tonic activity pattern of neurons was correlated with their encoding of the predicted reward value; neurons exhibiting an increase or decrease in tonic activity showed higher or lower activity in the large reward-predicted trials, respectively. Tonic activity and reward-related modulation ended around the time of reward delivery. Additionally, some tonic changes in activity started prior to the appearance of the initial stimulus, and were related to the anticipatory fixational behavior. A partially overlapping population of neurons showed both the initial anticipatory response and subsequent predicted reward value-dependent activity modulation by their systematic increase or decrease of tonic activity. These bi-directional reward- and anticipatory behavior-related modulation patterns are suitable for the presumed role of the PPTN in reward processing and motivational control.
Collapse
Affiliation(s)
- Ken-Ichi Okada
- Graduate School of Frontier Biosciences, Osaka University Osaka, Japan ; Center for Information and Neural Networks, National Institute of Information and Communications Technology, and Osaka University Osaka, Japan
| | | |
Collapse
|
21
|
Vestibular responses in the macaque pedunculopontine nucleus and central mesencephalic reticular formation. Neuroscience 2012; 223:183-99. [PMID: 22864184 DOI: 10.1016/j.neuroscience.2012.07.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
Abstract
The pedunculopontine nucleus (PPN) and central mesencephalic reticular formation (cMRF) both send projections and receive input from areas with known vestibular responses. Noting their connections with the basal ganglia, the locomotor disturbances that occur following lesions of the PPN or cMRF, and the encouraging results of PPN deep brain stimulation in Parkinson's disease patients, both the PPN and cMRF have been linked to motor control. In order to determine the existence of and characterize vestibular responses in the PPN and cMRF, we recorded single neurons from both structures during vertical and horizontal rotation, translation, and visual pursuit stimuli. The majority of PPN cells (72.5%) were vestibular-only (VO) cells that responded exclusively to rotation and translation stimuli but not visual pursuit. Visual pursuit responses were much more prevalent in the cMRF (57.1%) though close to half of cMRF cells were VO cells (41.1%). Directional preferences also differed between the PPN, which was preferentially modulated during nose-down pitch, and cMRF, which was preferentially modulated during ipsilateral yaw rotation. Finally, amplitude responses were similar between the PPN and cMRF during rotation and pursuit stimuli, but PPN responses to translation were of higher amplitude than cMRF responses. Taken together with their connections to the vestibular circuit, these results implicate the PPN and cMRF in the processing of vestibular stimuli and suggest important roles for both in responding to motion perturbations like falls and turns.
Collapse
|
22
|
Abstract
The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Department of Physiology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | |
Collapse
|
23
|
A neural correlate of predicted and actual reward-value information in monkey pedunculopontine tegmental and dorsal raphe nucleus during saccade tasks. Neural Plast 2011; 2011:579840. [PMID: 22013541 PMCID: PMC3195531 DOI: 10.1155/2011/579840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 07/13/2011] [Accepted: 08/04/2011] [Indexed: 11/28/2022] Open
Abstract
Dopamine, acetylcholine, and serotonin, the main modulators of the central nervous system, have been proposed to play important roles in the execution of movement, control of several forms of attentional behavior, and reinforcement learning. While the response pattern of midbrain dopaminergic neurons and its specific role in reinforcement learning have been revealed, the role of the other neuromodulators remains rather elusive. Here, we review our recent studies using extracellular recording from neurons in the pedunculopontine tegmental nucleus, where many cholinergic neurons exist, and the dorsal raphe nucleus, where many serotonergic neurons exist, while monkeys performed eye movement tasks to obtain different reward values. The firing patterns of these neurons are often tonic throughout the task period, while dopaminergic neurons exhibited a phasic activity pattern to the task event. The different modulation patterns, together with the activity of dopaminergic neurons, reveal dynamic information processing between these different neuromodulator systems.
Collapse
|
24
|
Scarnati E, Florio T, Capozzo A, Confalone G, Mazzone P. The pedunculopontine tegmental nucleus: implications for a role in modulating spinal cord motoneuron excitability. J Neural Transm (Vienna) 2010; 118:1409-21. [PMID: 21161714 DOI: 10.1007/s00702-010-0532-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/06/2010] [Indexed: 12/19/2022]
Abstract
There is evidence that deep brain stimulation (DBS) of the pedunculopontine tegmental nucleus (PPTg) improves parkinsonian motor signs. The mechanisms that mediate these effects and the modifications that occur in the PPTg in Parkinson's disease (PD) are not fully known and are the object of current debate. The aim of this paper was to critically review available data with respect to (1) the presence of PPTg neurons linked to reticulospinal projections, (2) the involvement of these neurons in modulating spinal reflexes, and (3) the participation of fibers close to or within the PPTg region in such modulation. The PPTg neurons are distributed in a large pontotegmental region, stimulation of which can evoke activity in hindlimb, shoulder and neck muscles, and potentiate motor responses evoked by stimulation of dorsal roots. This influence seems to be carried out by fast-conducting descending fibers, which likely run in the medial reticulospinal pathway. It is yet unclear which neurotransmitters are involved and on which elements of the gray matter of the spinal cord PPTg fibers synapse. The modulation of spinal cord activity which can be achieved by stimulating the PPTg region seems to be mediated not only by PPTg neurons, but also by tecto-reticular fibers which run in the pontotegmental area, and which likely are activated during PPTg-DBS. The importance of these fibers is discussed taking into account the degeneration of PPTg neurons in PD and the benefits in gait and postural control that PPTg-DBS exerts in PD. The potential usefulness of PPTg-DBS in other neurodegenerative disorders characterized by neuronal loss in the brainstem is also considered.
Collapse
Affiliation(s)
- Eugenio Scarnati
- Department of Biomedical Sciences and Technologies (STB), University of L'Aquila, Via Vetoio Coppito 2, 67100, L'Aquila, Italy.
| | | | | | | | | |
Collapse
|