1
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Shallcross J, Hámor P, Bechard AR, Romano M, Knackstedt L, Schwendt M. The Divergent Effects of CDPPB and Cannabidiol on Fear Extinction and Anxiety in a Predator Scent Stress Model of PTSD in Rats. Front Behav Neurosci 2019; 13:91. [PMID: 31133832 PMCID: PMC6523014 DOI: 10.3389/fnbeh.2019.00091] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) currently has no FDA-approved treatments that reduce symptoms in the majority of patients. The ability to extinguish fear memory associations is impaired in PTSD individuals. As such, the development of extinction-enhancing pharmacological agents to be used in combination with exposure therapies may benefit the treatment of PTSD. Both mGlu5 and CB1 receptors have been implicated in contextual fear extinction. Thus, here we tested the ability of the mGlu5 positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and cannabidiol (CBD) to reduce both conditioned and unconditioned fear. We used a predator-threat animal model of PTSD which we and others have previously shown to capture the heterogeneity of anxiety responses observed in humans exposed to trauma. Here, 1 week following a 10-min exposure to predator scent stress, rats were classified into stress-Susceptible and stress-Resilient phenotypes using behavioral criteria for elevated plus maze and acoustic startle response performance. Two weeks after classification, rats underwent 3 days of contextual fear extinction and were treated with vehicle, CDPPB or CBD prior to each session. Finally, the light-dark box test was employed to assess phenotypic differences and the effects of CDPPB and CBD on unconditioned anxiety. CDPBB but not CBD, reduced freezing in Susceptible rats relative to vehicle. In the light-dark box test for unconditioned anxiety, CBD, but not CDPPB, reduced anxiety in Susceptible rats. Resilient rats displayed reduced anxiety in the light-dark box relative to Susceptible rats. Taken together, the present data indicate that enhancement of mGlu5 receptor signaling in populations vulnerable to stress may serve to offset a resistance to fear memory extinction without producing anxiogenic effects. Furthermore, in a susceptible population, CBD attenuates unconditioned but not conditioned fear. Taken together, these findings support the use of predator-threat stress exposure in combination with stress-susceptibility phenotype classification as a model for examining the unique drug response profiles and altered neuronal function that emerge as a consequence of the heterogeneity of psychophysiological response to stress.
Collapse
Affiliation(s)
- John Shallcross
- Department of Psychology, University of Florida, Gainesville, FL, United States.,Center for Addiction Research & Education, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Peter Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States.,Center for Addiction Research & Education, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Allison R Bechard
- Department of Psychology, University of Florida, Gainesville, FL, United States
| | - Madison Romano
- Department of Psychology, University of Florida, Gainesville, FL, United States
| | - Lori Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States.,Center for Addiction Research & Education, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States.,Center for Addiction Research & Education, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Sanchez-Marin L, Pavon FJ, Decara J, Suarez J, Gavito A, Castilla-Ortega E, Rodriguez de Fonseca F, Serrano A. Effects of Intermittent Alcohol Exposure on Emotion and Cognition: A Potential Role for the Endogenous Cannabinoid System and Neuroinflammation. Front Behav Neurosci 2017; 11:15. [PMID: 28223925 PMCID: PMC5293779 DOI: 10.3389/fnbeh.2017.00015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/16/2017] [Indexed: 01/30/2023] Open
Abstract
Intermittent alcohol exposure is a common pattern of adolescent alcohol use that can lead to binge drinking episodes. Alcohol use is known to modulate the endocannabinoid system (ECS), which is involved in neuronal communication, neuroplasticity, neuroinflammation and behavior. Adolescent male Wistar rats were exposed to 4-week intermittent alcohol intoxication (3 g/kg injections for 4 days/week) or saline (N = 12 per group). After alcohol deprivation, adult rats were assessed for emotionality and cognition and the gene expression of the ECS and other factors related to behavior and neuroinflammation was examined in the brain. Alcohol-exposed rats exhibited anxiogenic-like responses and impaired recognition memory but no motor alterations. There were brain region-dependent changes in the mRNA levels of the ECS and molecular signals compared with control rats. Thus, overall, alcohol-exposed rats expressed higher mRNA levels of endocannabinoid synthetic enzymes (N-acyl-phosphatidylethanolamine phospholipase D and diacylglycerol lipases) in the medial-prefrontal cortex (mPFC) but lower mRNA levels in the amygdala. Furthermore, we observed lower mRNA levels of receptors CB1 CB2 and peroxisome proliferator-activated receptor-α in the striatum. Regarding neuropeptide signaling, alcohol-exposed rats displayed lower mRNA levels of the neuropeptide Y signaling, particularly NPY receptor-2, in the amygdala and hippocampus and higher mRNA levels of corticotropin-releasing factor in the hippocampus. Additionally, we observed changes of several neuroinflammation-related factors. Whereas, the mRNA levels of toll-like receptor-4, tumor necrosis factor-α, cyclooxygenase-2 and glial fibrillary acidic protein were significantly increased in the mPFC, the mRNA levels of cyclooxygenase-2 and glial fibrillary acidic protein were decreased in the striatum and hippocampus. However, nuclear factor-κβ mRNA levels were lower in the mPFC and striatum and allograft inflammatory factor-1 levels were differentially expressed in the amygdala and hippocampus. In conclusion, rats exposed to adolescent intermittent alcohol displayed anxiety-like behavior and cognitive deficits in adulthood and these alterations were accompanied by brain region-dependent changes in the gene expression of the ECS and other signals associated with neuroinflammation and behavior. An intermittent adolescent alcohol exposure has behavioral and molecular consequences in the adult brain, which might be linked to higher vulnerability to addictive behaviors and psychopathologies.
Collapse
Affiliation(s)
- Laura Sanchez-Marin
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Francisco J Pavon
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Juan Decara
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Juan Suarez
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Ana Gavito
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Estela Castilla-Ortega
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| | - Antonia Serrano
- Unidad de Gestion Clinica de Salud Mental, Instituto de Investigacion Biomedica de Malaga, Hospital Regional Universitario de Malaga, Universidad de Malaga Malaga, Spain
| |
Collapse
|
4
|
Chen A, Hu WW, Jiang XL, Potegal M, Li H. Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro. Psychopharmacology (Berl) 2017; 234:681-694. [PMID: 28028604 DOI: 10.1007/s00213-016-4503-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Abstract
The roles of group I metabotropic glutamate receptors, metabotropic glutamate receptor 1 (mGluR1) and mGluR5, in regulating synaptic plasticity and metaplasticity in the basolateral amygdala (BLA) remain unclear. The present study examined mGluR1- and mGluR5-mediated synaptic plasticity in the BLA and their respective signaling mechanisms. Bath application of the group I mGluR agonist, 3,5-dihydroxyphenylglycine (DHPG) (20 μM), directly suppressed basal fEPSPs (84.5 ± 6.3% of the baseline). The suppressive effect persisted for at least 30 min after washout; it was abolished by the mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) but was unaffected by the mGluR5 antagonist 2-methyl-6- (phenylethynyl)-pyridine (MPEP). Interestingly, application of DHPG (at both 2 and 20 μM), regardless of the presence of CPCCOEt, could transform single theta burst stimulation (TBS)-induced short-term synaptic potentiation into a long-term potentiation (LTP). Such a facilitating effect could be blocked by the mGluR5 antagonist MPEP. Blockade of phospholipase C (PLC), the downstream enzyme of group I mGluR, with U73122, prevented both mGluR1- and mGluR5-mediated effects on synaptic plasticity. Nevertheless, blockade of protein kinase C (PKC), the downstream enzyme of PLC, with chelerythrine (5 μM) only prevented the transforming effect of DHPG on TBS-induced LTP and did not affect DHPG-induced long-term depression (LTD). These results suggest that mGluR1 activation induced LTD via a PLC-dependent and PKC-independent mechanism, while the priming action of mGluR5 receptor on the BLA LTP is both PLC and PKC dependent. The BLA metaplasticity mediated by mGluR1 and mGluR5 may provide signal switching mechanisms mediating learning and memory with emotional significance.
Collapse
Affiliation(s)
- A Chen
- Department of Physiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - W W Hu
- Department of Physiology, Fujian Medical University, Fuzhou, People's Republic of China
| | - X L Jiang
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4799, USA
| | - M Potegal
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - H Li
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4799, USA.
| |
Collapse
|
5
|
Hulka LM, Treyer V, Scheidegger M, Preller KH, Vonmoos M, Baumgartner MR, Johayem A, Ametamey SM, Buck A, Seifritz E, Quednow BB. Smoking but not cocaine use is associated with lower cerebral metabotropic glutamate receptor 5 density in humans. Mol Psychiatry 2014; 19:625-32. [PMID: 23628984 DOI: 10.1038/mp.2013.51] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/18/2013] [Indexed: 12/18/2022]
Abstract
Long-lasting neuroadaptations in the glutamatergic corticostriatal circuitry have been suggested to be responsible for the persisting nature of drug addiction. In particular, animal models have linked the metabotropic glutamate receptor 5 (mGluR5) to drug-seeking behavior and extinction learning. Accordingly, blocking mGluR5s attenuated self-administration of cocaine and other addictive drugs in rats. How these animal findings extend to humans remains unclear. Therefore, we investigated if human cocaine users (CU) exhibit altered mGluR5 availability compared with drug-naïve control subjects. Seventeen male controls (11 smokers) and 18 male cocaine users (13 smokers) underwent positron emission tomography with (11)C-ABP688 to quantify mGluR5 availability in 12 volumes of interest in addiction-related brain areas. Drug use was assessed by self-report and quantitative hair toxicology. CU and controls did not significantly differ in regional mGluR5 availability. In contrast, smokers (n=24) showed significantly lower mGluR5 density throughout the brain (mean 20%) compared with non-smokers (n=11). In terms of effect sizes, lower mGluR5 availability was most pronounced in the caudate nucleus (d=1.50, 21%), insula (d=1.47, 20%), and putamen (d=1.46, 18%). Duration of smoking abstinence was positively associated with mGluR5 density in all brain regions of interest, indicating that lower mGluR5 availability was particularly pronounced in individuals who had smoked very recently. Specifically tobacco smoking was associated with lower mGluR5 availability in both CU and controls, while cocaine use was not linked to detectable mGluR5 alterations. These findings have important implications regarding the development of novel pharmacotherapies aimed at facilitating smoking cessation.
Collapse
Affiliation(s)
- L M Hulka
- Experimental and Clinical Pharmacopsychology, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - V Treyer
- Division of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - M Scheidegger
- 1] Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland [2] Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - K H Preller
- Experimental and Clinical Pharmacopsychology, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - M Vonmoos
- Experimental and Clinical Pharmacopsychology, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - M R Baumgartner
- Institute of Legal Medicine, University of Zurich, Zurich, Switzerland
| | - A Johayem
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, University of Zurich, Zurich, Switzerland
| | - S M Ametamey
- 1] Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, University of Zurich, Zurich, Switzerland [2] Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - A Buck
- 1] Division of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland [2] Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - E Seifritz
- 1] Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland [2] Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - B B Quednow
- 1] Experimental and Clinical Pharmacopsychology, University Hospital of Psychiatry Zurich, Zurich, Switzerland [2] Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Yousefi B, Farjad M, Nasehi M, Zarrindast MR. Involvement of the CA1 GABAA receptors in ACPA-induced impairment of spatial and non-spatial novelty detection in mice. Neurobiol Learn Mem 2013; 100:32-40. [DOI: 10.1016/j.nlm.2012.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/24/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
|
7
|
Serrano A, Rivera P, Pavon FJ, Decara J, Suárez J, Rodriguez de Fonseca F, Parsons LH. Differential effects of single versus repeated alcohol withdrawal on the expression of endocannabinoid system-related genes in the rat amygdala. Alcohol Clin Exp Res 2011; 36:984-94. [PMID: 22141465 DOI: 10.1111/j.1530-0277.2011.01686.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endogenous cannabinoids such as anandamide and 2-arachidonoylglycerol (2-AG) exert important regulatory influences on neuronal signaling, participate in short- and long-term forms of neuroplasticity, and modulate stress responses and affective behavior in part through the modulation of neurotransmission in the amygdala. Alcohol consumption alters brain endocannabinoid levels, and alcohol dependence is associated with dysregulated amygdalar function, stress responsivity, and affective control. METHODS The consequence of long-term alcohol consumption on the expression of genes related to endocannabinoid signaling was investigated using quantitative RT-PCR analyses of amygdala tissue. Two groups of ethanol (EtOH)-exposed rats were generated by maintenance on an EtOH liquid diet (10%): the first group received continuous access to EtOH for 15 days, whereas the second group was given intermittent access to the EtOH diet (5 d/wk for 3 weeks). Control subjects were maintained on an isocaloric EtOH-free liquid diet. To provide an initial profile of acute withdrawal, amygdala tissue was harvested following either 6 or 24 hours of EtOH withdrawal. RESULTS Acute EtOH withdrawal was associated with significant changes in mRNA expression for various components of the endogenous cannabinoid system in the amygdala. Specifically, reductions in mRNA expression for the primary clearance routes for anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) were evident, as were reductions in mRNA expression for CB(1) , CB(2) , and GPR55 receptors. Although similar alterations in FAAH mRNA were evident following either continuous or intermittent EtOH exposure, alterations in MAGL and cannabinoid receptor-related mRNA (e.g., CB(1) , CB(2) , GPR55) were more pronounced following intermittent exposure. In general, greater withdrawal-associated deficits in mRNA expression were evident following 24 versus 6 hours of withdrawal. No significant changes in mRNA expression for enzymes involved in 2-AG biosynthesis (e.g., diacylglicerol lipase-α/β) were found in any condition. CONCLUSIONS These findings suggest that EtOH dependence and withdrawal are associated with dysregulated endocannabinoid signaling in the amygdala. These alterations may contribute to withdrawal-related dysregulation of amygdalar neurotransmission.
Collapse
Affiliation(s)
- Antonia Serrano
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, Fundacion IMABIS, 29010 Malaga, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Krishnan B, Genzer KM, Pollandt SW, Liu J, Gallagher JP, Shinnick-Gallagher P. Dopamine-induced plasticity, phospholipase D (PLD) activity and cocaine-cue behavior depend on PLD-linked metabotropic glutamate receptors in amygdala. PLoS One 2011; 6:e25639. [PMID: 21980514 PMCID: PMC3181343 DOI: 10.1371/journal.pone.0025639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiologically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed 2–2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/enzymology
- Amygdala/metabolism
- Amygdala/physiology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benzazepines/pharmacology
- Cocaine/pharmacology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Cues
- Cyclopropanes/pharmacology
- Dopamine/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Isoenzymes/metabolism
- Long-Term Potentiation/drug effects
- Male
- Memory/drug effects
- Memory/physiology
- Neuronal Plasticity/drug effects
- Phospholipase D/metabolism
- Raclopride/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/metabolism
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Synapses/drug effects
- Synapses/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|